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Abstract. This paper presents the integration of Soot, a byte-code analysis and
transformation framework, with an integrated development environment (IDE),
Eclipse. Such an integrated toolkit is useful for both the compiler developer, to
aid in understanding and debugging new analyses, and also for the end-user of the
IDE, to aid in program understanding by exposing semantic information gathered
by the advanced compiler analyses. The paper discusses these advantages and
provides concrete examples of its usefulness.
There are several major challenges to overcome in developing the integrated
toolkit, and the paper discusses three major challenges and the solutions to those
challenges. An overview of Soot and the integrated toolkit is given, followed by
a more detailed discussion of the fundamental components. The paper concludes
with several illustrative examples of using the integrated toolkit along with a dis-
cussion of future plans and research.

1 Introduction

In this paper we present the integration of Soot [23], a byte-code analysis and transfor-
mation framework, into an integrated development environment (IDE), Eclipse.

Traditionally, optimizing compilers and optimizing compiler toolkits concentrate on
providing the compiler developer with relevant intermediate representations (IRs) and
support for a variety of program analyses and transformations. Although this support
is key for the development of new compiler analyses, it does not provide the compiler
writer with tools for easily visualizing the results of their analysis (which is very useful
for debugging), nor does it provide a simple way of conveying the analysis information
to an end-user.

On the other hand, IDEs often produce various visual representations of the code to
help the developer understand it. However, IDEs do not usually support the low-level
intermediate representations and advanced compiler analyses found in optimizing com-
pilers. Thus most visual representations in IDEs are based only on structural analysis
of a high-level representation of the code, so they cannot communicate to the developer
the wealth of semantic information that is deduced by an optimizing compiler.

By integrating a compiler toolkit with an IDE, we can provide a much richer envi-
ronment for both the compiler developer and for the end-user. For the compiler writer,
we can provide mechanisms for easily displaying and browsing the results of compiler
analyses. This is very useful for both students who are developing their first simple
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analyses and for more advanced researchers and developers who are developing more
complex analyses. For the end-user, we can provide interesting ways of conveying pro-
gram analysis information back to them. For ordinary users we can provide information
to help them understand the behaviour or potential problems in their program, based
on analyses that are more complex than currently supported in IDEs. For example, we
could display information about potential array bounds problems. For advanced users
we can provide more detailed information about the results of program analyses. For
example, we can expose side-effect or alias information.

1.1 Challenges

There are three major challenges to overcome in order to make a useful integration of
a compiler toolkit and an IDE. First, the compiler developer would like to concentrate
mostly on developing and implementing an analysis or transformation on a convenient
IR and should not be burdened with the complexities of how this information will be
displayed in the IDE.

Second, the compiler analysis/transformation will likely be performed on a lower-
level IR than the Java source and for debugging purposes the analysis results should be
displayed on this IR. However, the end-user is not likely to understand the low-level
IR and will likely want to view information at the Java source level. Thus, there must
be a simple and transparent mechanism for keeping the correspondence between the
lower-level IR and the Java source files, and for displaying the analysis information at
both levels.

Third, the compiler framework and the IDE are separate pieces of software and
the interface to make them interact cleanly must be carefully designed. In particular,
we need simple mechanisms for conveying information from the IDE to the compiler
framework, and analysis information from the compiler framework back to the IDE.

1.2 Contributions

In this paper we present our integration of the Soot compiler framework into the Eclipse
IDE and we show how we have addressed the three major challenges given above.
Although we discuss our approach with respect to a specific IDE, namely Eclipse, the
general strategy should apply to other IDEs as well.

We tackle the challenge of isolating the compiler developer from complex IDE dis-
play concerns by providing three new kinds of abstract tags which can be attached to
classes, fields, methods, statements or values in the low-level IR. The compiler devel-
oper only has to worry about tagging the IR with the results of a compiler analysis (a
simple process) and the mechanism for conveying the information to the IDE and dis-
playing the information in the IDE is handled automatically by the integrated toolkit.

For the challenge of supporting the display of analysis information for both the low-
level IR and the source code, we provide automated support for transparently keeping
the correspondence between the low-level IR statements and the correct position within
the source code. This is done by providing a new front-end based on Polyglot which
parses Java source and produces the lower-level Jimple IR with tags already added to
give the line number and column offset in the Java Source.



Finally, we address the challenge of combining the Soot framework and the Eclipse
IDE by providing integration code comprised of three main modules (launcher, IR edi-
tor and attribute handler), and by defining an XML specification for both the command-
line options to Soot and for the attribute information which conveys line numbers, col-
umn offsets and analysis information.

1.3 Paper Roadmap

The remainder of the paper is structured as follows. In Section 2, we provide an overview
of the structure of Soot and the structure of the integration code. In Section 3, we discuss
our three new kinds of tags. Section 4 discusses the mechanisms we have developed for
communicating between the IDE and the compiler framework. In Section 5, we provide
four illustrative examples of using the integrated toolkit. Section 6 gives an overview of
related work and Section 7 provides conclusions and future work.

2 Structure of Soot and the IDE plugin

2.1 Soot

Soot [23] was originally developed as a framework to allow researchers to experiment
with analyses and optimizations of Java bytecode, and to provide a common infras-
tructure to compare results. It was later extended with an annotation framework, which
allows analysis results to be encoded as class file annotations for use by other tools [17].
Many standard and advanced analyses and optimizations have been implemented both
at McGill and at many other institutions. Examples from McGill include array bounds
analysis [18], variable type analysis [21] and pointer and side-effect analysis [13].

In order to make Soot useful in the IDE integration, and to support visualization of
program analysis results, several modifications and extensions were required. Figure 1
shows a high-level view of Soot, including the new parts that have been developed to
support the IDE integration and visualizations (new parts are shaded in dark grey or
red). As indicated at the top of Figure 1, Soot takes as input the program to analyze in
one of three forms (Java class files, Jimple files or Java source files) and the command-
line arguments which specify which input files to process, what phases and options to
enable in Soot, and what kind of output to create.

Inside Soot, the input program is converted into the Jimple IR, which is a three-
address typed intermediate representation that is convenient for program analysis. After
Jimple has been created, various analyses and transformations can be applied to the
program, resulting in Jimple code that is associated with analysis information. Soot
supports a variety of intraprocedural analyses, as well as interprocedural analyses such
as points-to and side-effect analysis. Compiler developers can add new analyses and/or
transformations to this phase quite easily.

The next phase in Soot attaches tags to the Jimple IR. The original purpose of tags
was as a mechanism for conveying flow information, such as array bounds checking
information, to a VM. However, for the purposes of the IDE integration, we have devel-
oped three new kinds of tags which are used to convey program analysis information to
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Fig. 1. Overview of Soot

the IDE. We have also added a collection of built-in tagging modules based on analyses
already available in Soot. In addition, it is a very simple process for the compiler writer
to create appropriate tags to encode the results of new analyses he/she has added to
Soot. These new visualization tags are discussed in detail in Section 3.

As indicated at the bottom of Figure 1, Soot can produce three kinds of outputs:
class files, Java source files or Jimple files. In addition to these output files, Soot com-
municates the analysis results from the tags to the Eclipse plugin using XML files. The
details of this communication are described in Section 4.

2.2 Soot Plugin for Eclipse

The Soot framework was originally designed as an ordinary Java application that was
run from the command-line. In order to keep this functionality, as well as provide inte-
gration with an IDE, we created a Soot Plugin for Eclipse.1 As illustrated in Figure 2,
the plugin is composed of two main pieces: Soot (which can serve as a stand-alone
application when used by itself), as outlined in Figure 1, and the Soot Interface which
provides the glue between the Eclipse platform and Soot. The Soot Interface itself is
composed of three main parts: the Soot Launcher, the IR Editor and the Attribute Han-
dler.

The Soot Launcher module handles calling Soot with the appropriate command-
line arguments, interfaces with the Eclipse resource manager to determine the location
of the input files and libraries, determines the correct location for the output files, and
handles all messages sent to standard output by Soot.

The command line version of Soot provides many options to specify its behaviour.
Users of the Eclipse plugin can set these same options in two different ways. First, we

1 The Eclipse plugin is distributed as part of Soot, which is publicly available under the LGPL
at http://www.sable.mcgill.ca/soot/.
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Fig. 2. Soot as an Eclipse Plugin

have made several common settings (such as generating Jimple output and decompil-
ing) available as menu items. For more advanced users, the plugin includes a dialog
containing all the Soot options. The settings in this dialog can be saved as named con-
figurations, to make it easy to run Soot many times with the same options. The config-
urations are persistent, so they are available in subsequent Eclipse sessions.

Soot has a large number of options, and they often change as analyses and transfor-
mations are added to Soot. An important engineering challenge was how to maintain
consistency between Soot and the plugin. Our solution was to create an XML file spec-
ifying and documenting all the options. This file is used to automatically generate the
option handling code for both Soot and the Eclipse plugin, as well as documentation,
both printed and on-line (including tooltips in the options dialog). Using a single source
for the option information ensures that Soot, the plugin, and the documentation remain
consistent.

The IR Editor handles displaying the several different IR’s in Soot, providing syn-
tax highlighting and a content outliner. The outliner is useful as the IR’s are often much
longer than the original source, presenting the need to easily navigate to particular meth-
ods. The IR editor also displays the results of analyses in visual ways.

The Attribute Handler is responsible for reading analysis results from Soot, orga-
nizing them, and displaying them in a visual way. When triggered, it reads an XML
file which Soot has produced containing all the analysis results. The information must
then be organized according to which parts of the code it applies to, so that it can be
displayed in the appropriate places. The Attribute Handler then displays the analysis
information in the code using popup tooltips, colour highlighting, popup link menus,
and icons.

Figure 3 provides a screenshot showing a typical use of the integrated toolkit. In
the foreground (upper left), one can see the Soot dialog box which is used for setting
the options for running Soot. In this case, the user is setting the Output Options. As



Fig. 3. Soot-Eclipse Screenshot

the user moves the cursor over the various output options, a tooltip is displayed which
documents the option. In this case, the mouse is over the option for Jimple File, and so
the appropriate descriptive tooltip is given.

In the background, one can see the typical Eclipse display. On the left side is the
Package Explorer listing the files in the current project, including some .jimple files
generated by Soot. On the right side is the Intermediate Representations Editor with
syntax highlighting editing a Jimple file, which was produced by running Soot with
a parity analysis enabled. As described further in Section 5.1, the compiler developer
simply tags the variables in the IR with Colour Tags based on the results from the anal-
ysis, and the integrated toolkit highlights the variables in the code with different colours
representing results of the analysis. The icons in the left margin labelled SA indicate
lines of code for which analysis information is available. Finally, the Soot Output view
appears in the bottom right corner, showing the output of the last execution of Soot.

3 Visualization Primitives

One of the key requirements in the design of Soot’s visualization framework was that
it be general enough to display the results of many kinds of analyses, including ones
that we have not yet thought of. This is important for several reasons. First, Soot is
not only a compiler, but rather a compiler framework. While it includes many standard
analyses, it is mainly valuable as a tool to help compiler researchers easily implement
their own analyses. Therefore, the visualization framework that we design today must



be adaptable to analyses that will be designed tomorrow by other researchers. Second,
one of the most important uses of Soot is in teaching program analysis, both at McGill
and at other institutions, and the visualization framework is one way in which we are
improving Soot for teaching. In the compiler course at McGill, one assignment requires
students to implement a dataflow analysis of their choice within Soot. The students
should be able to display the results of their analysis as they are developing it using the
visualization framework. Therefore, the framework must be able to support the arbitrary
analyses that the students may choose to implement.

To make the visualization framework general with respect to different analyses, we
identified three visualization primitives to convey the different kinds of information
likely to be generated by analyses. The primitives are intended to be general enough
so that any analysis information can be presented with them. In Section 5, we describe
several example analyses whose results are displayed with these primitives. Should we
encounter an analysis for which these three primitives are insufficient, we would con-
sider adding a new primitive, but we would again look for a general primitive that could
be used to display the results of many different analyses.

For each visualization primitive, Soot includes a type of abstract tag, which is used
to store the information to be displayed. These tags can be attached to arbitrary classes,
methods, fields, statements, and values in any of the Soot intermediate representations.
The analysis developer needs only to choose the visualization primitive, create a tag
containing the information to be displayed, and attach it to the appropriate object in the
intermediate representation.2 Soot’s annotation framework propagates the tags between
the intermediate representations. The visualization framework collects the tags, and
displays them in the appropriate way depending on which visualization primitive they
represent.

3.1 String Tags

The simplest way to present analysis information to the user is using an arbitrary string
of text. The String Tag visualization primitive allows arbitrary text to be associated
with an object in the intermediate representation. In previous versions of Soot, the only
way to output analysis results was to print them as comments in the intermediate rep-
resentation, often leading to a very cluttered output. Within Eclipse, however, this text
is not displayed as part of the intermediate representation itself, but as popup tooltips
that appear when the mouse is over the corresponding piece of code. The user can trace
through the analysis results by moving through the code with the mouse. An icon in the
margin indicates to the user which lines of code contain analysis information.

Almost any analysis information can be encoded using a String Tag, since almost
any information can be described using text. Even when displaying information that is
more conveniently displayed using one of the other tags, we encourage analysis devel-
opers to include String Tags explaining the analysis results to supplement these other
tags.

A String Tag is very easy for an analysis developer to create. Its constructor re-
quires only the string to be displayed. It is attached to a class, method, field, statement

2 A complete example of the code for attaching tags is given in Section 5.1.



or value with a single call to its addTag() method. For example to tag a method
m as not reachable, one could use m.addTag(new StringTag("Method not
reachable")); or assuming some flow analysis information has been computed
and stored in a map called analysisInfo, one could attach a textual representation
of the flow analysis information to a statement s, using s.addTag(new StringTag
(analysisInfo.getFlowBefore(s).toString()));.

3.2 Colour Tags

Many analyses assign one of a small collection of possible values to each small section
of the intermediate representation. For example, a live variable analysis assigns either
live or dead to each local variable at each program point. This type of information
can be conveniently displayed by highlighting the relevant section of the intermediate
representation with a colour representing the value. For example, each appearance of a
variable in the code could be coloured red if it is dead after the statement in which it
appears, and green if it is live.

To highlight a class, method, field, statement or value, the analysis developer needs
only to select a colour (either from a collection of pre-defined colours, or by specifying
an arbitrary triple of red, green, and blue values), create a Colour Tag of that colour,
and attach it with a call to addTag(). For example, to colour an unreachable method
m red, one could use m.addTag(new ColorTag(ColorTag.RED));.

3.3 Link Tags

Some analyses produce results which take the form of references to other portions of
the code. For example, a reaching definitions analysis produces, for each use of a vari-
able, the set of definitions reaching the use, where each definition is some statement
in the code defining the variable. This type of information is most naturally conveyed
using hyperlinks to the code being referenced. To allow the results of an analysis to
be presented as hyperlinks, the visualization framework includes a Link Tag primi-
tive. Each Link Tag requires a textual description and a target statement, method, or
field (which may be in the same or a different class); it can be attached to a statement,
method, or field. For example, to create a link between a use of a variable and its defin-
ing statement, one could use useStmt.addTag(new LinkTag("Definition
of "+variable, defStmt, className ));.

The same value, statement, field or method can be tagged with mutiple Link Tags.
For example, a statement may have multiple reaching definitions. The textual descrip-
tions of all Link Tags appearing at a given line are shown in a popup tooltip when the
mouse moves over the line. In order to select one of the links, the user clicks on the
SA icon in the margin to produce a popup menu of all the Link Tags with their tex-
tual descriptions. By clicking on a specific item in this menu, the user can follow one
of the links; the cursor is moved to the target of the link. Eclipse also provides for-
ward and back navigation buttons like a web browser. As shown later in our example in
Section 5.2, this functionality is very useful for navigating call graphs.



4 Communicating Analysis Information from Compiler to IDE

A compiler or compiler framework like Soot performs analyses and stores analysis
results on a low-level IR such as Jimple. However, the IDE does not have direct access
to this internal intermediate representation; it deals with a textual representation of the
program source, and perhaps a textual representation of the intermediate representation.
In this section, we describe how the analysis information is mapped from the internal
representation of the compiler to the textual representations managed by the IDE.

In earlier work [17], Soot was extended with a framework for encoding analysis re-
sults in its intermediate representation by attaching tags to objects of the representation.
This framework propagates the tags between the various intermediate representations
inside Soot, and originally, it was used to encode the analysis information in the class
files produced as output.

For the Eclipse visualization framework, we were able to leverage this annotation
framework. The key component that had to be added was a method to encode the tags
containing analysis information in such a way that Eclipse could read them, and match
them to the appropriate positions in the textual version of the intermediate represen-
tation. To achieve this, we modified Soot’s intermediate representation output code to
output, along with the text of the intermediate representation itself, an XML file con-
taining information from all the tags attached to the intermediate representation. The
output code encodes the line and column positions in the text of each object of the in-
termediate representation as well as encoding the appropriate position for each tag. The
Soot interface to Eclipse then needs only to parse the XML file to determine which tags
should be displayed at which line and column position of the intermediate representa-
tion.

Mapping analysis information back to the original source code is a more difficult
problem, compounded by the fact that traditionally, the input to Soot has been pre-
compiled Java bytecode, rather than the original source code. One way to do this is to
make use of information stored in Java bytecode attributes. The Java Virtual Machine
Specification [14] defines the LineNumberTable attribute, which maps each byte-
code instruction to the line of source code from which it was produced. Soot parses
this attribute and encodes the mapping as a source line number tag attached to each IR
instruction. Since these tags are propagated through the various intermediate represen-
tations, they are still present when Soot outputs analysis information into the XML file.
At this point, the statements of the intermediate representation have two types of tags
attached to them: tags containing the analysis information, and tags containing source
line number information. When Soot records the analysis information in the XML file,
it can add the source line number information with each tag. This makes it possible for
the Eclipse plugin to display the tag not only in the correct position in the intermediate
representation, but also with the correct line of the source code.

String Tags and Link Tags tend to be coarse-grained enough that it is usually suffi-
cient to display them with the correct line of the source code. However, Colour Tags are
often used to highlight a small part of a line, such as a single variable. Unfortunately, the
Java class files do not preserve such detailed information about the positions of variable
names in the source code. In order to have sufficient information to display Colour Tags
correctly in source, Soot must accept the original source code as its input, rather than



bytecode. We therefore constructed a Java source front-end for Soot, which converts
Java source code directly to the Jimple intermediate representation. The front-end is
based on Polyglot [16], a semantic analyzer for Java source, to which we added a Jim-
ple code generator back-end. For consistency with the rest of Soot, this Java-to-Jimple
compiler encodes the source line and column information for each object of Jimple us-
ing Soot tags. This means that Soot’s annotation framework automatically propagates
the information between intermediate representations, and it is available when the out-
put code is generating the XML file containing analysis information. The source line
and column information is encoded in the XML file along with the intermediate repre-
sentation line and column information, so the Eclipse plugin can display the analysis
information in the correct place in both the intermediate representation and the source
code.

5 Example Applications of the Integrated Framework

In this section, we present several examples of applications of the integrated framework.
The applications illustrate typical uses for teaching (Section 5.1), program understand-
ing (Sections 5.2 and 5.3) and more advanced research analysis (Section 5.4).

5.1 Parity Analysis

In the optimizing compiler course at McGill, students are asked to implement a dataflow
analysis of their choice in Soot. We also encourage the students to use the Eclipse plugin
to visualize the results of their analysis.

Parity analysis is one example of an analysis that students have chosen to imple-
ment. For each integer expression appearing in a method, the analysis computes whether
its value is always even, always odd, or could be either (top). Typically the amount of
code needed to visualize an analysis is very small and it is easy to write. The code
needed to visualize the results of parity analysis is given in Figure 4. The code iterates
through the statements in the method, and for each statement, it iterates through the
values defined and used. Each use is tagged with the analysis result before the state-
ment, and each definition is tagged with the analysis result after the statement.3 The
addTags() method actually encodes the results in tags. First, a String Tag is added
for each value indicating its parity in textual form. These String Tags will be automati-
cally displayed in Eclipse as tooltips. Then, depending on the parity, a colour is chosen
and a Colour Tag is added. These Colour Tags will cause the variables to be coloured
appropriately. Figure 3 showed the Jimple code with the Colour Tags indicating parity
information.

In general, we find that students find it easy to add the tagging information and the
resulting Eclipse displays aids in their understanding and debugging of the analysis, as
well as making the exercise more fun and rewarding.

3 For example, in a statement of the form x = x + y, the parity of the uses of x and y are
stored in flow information before the statement, whereas the parity of the definition of x is
stored in the flow information after the statement.



protected void internalTransform( Body b, String phaseName, Map options)
{ ParityAnalysis pa = new ParityAnalysis(new BriefUnitGraph( b )); // compute analysis

for( Iterator it = b.getUnits(); it.hasNext(); ) { // iterate over all stmts
Stmt stmt = (Stmt) it.next();
// Tag all definitions with flow information after statement.
addTags( stmt.getDefBoxes(), (Map) pa.getFlowAfter( stmt ) );
// Tag all uses with flow information before statement.
addTags( stmt.getUseBoxes(), (Map) pa.getFlowBefore( stmt ) );

}
}

private void addTags( Collection boxes, Map parityMap ) {
for( Iterator it = boxes.iterator(); it.hasNext(); ) { // iterate over all values

ValueBox box = (ValueBox) it.next();
Value value = box.getValue();
// get the flow information
String parity = (String) parityMap.get( value );
if( parity == null ) return; // No parity information for this value.

// (only computed for variables of int type)
// add a String Tag
box.addTag( new StringTag( value.toString()+“ is ”+parity+“.” ) );
// add a Color Tag
if( parity.equals( ParityAnalysis.EVEN ) )

box.addTag( new ColorTag( ColorTag.YELLOW ) );
else if( parity.equals( ParityAnalysis.ODD ) )

box.addTag( new ColorTag( ColorTag.BLUE ) );
else if( parity.equals( ParityAnalysis.TOP ) )

box.addTag( new ColorTag( ColorTag.RED ) );
else if( parity.equals( ParityAnalysis.BOTTOM ) )

box.addTag( new ColorTag( ColorTag.GREEN ) );
else throw new RuntimeException( “Unknown parity value ”+parity+“.” );

}
}

Fig. 4. Code to visualize parity analysis results

5.2 Call Graph and Parameter Alias Analysis

Soot includes a whole-program analysis framework for constructing call graphs and
performing points-to analysis [13, 21]. The information computed by this framework
can be particularly useful to help developers understand their code and find bugs in it.
In this section we demonstrate how the call graph and parameter alias visualizations
were used to find a bug in one of our benchmark programs, telecom. The telecom
program simulates phone calls taking place in a public telephone network, and it is an
extended, multi-threaded version of a benchmark distributed with AspectJ [1] that was
submitted as an example benchmark for an optimizing compilers course.

The call graph visualization presents the call graph computed by Soot using Link
Tags. This allows the developer to see the possible targets of call sites, including virtual
call sites, and easily navigate the call graph by following the links. Reverse links are also
included from each method to all the call sites from which it may be called. Although
most IDEs provide search features to help developers find specific methods, these are



often based only on a textual search, ignoring the semantics of the class hierarchy, or,
at best, are based on an imprecise call graph constructed using Class Hierarchy Analy-
sis [9]. On the other hand, the call graph constructed by Soot can be made much more
precise, using techniques such as Rapid Type Analysis [2], Variable Type Analysis [21],
or even more precise points-to analyses.

Soot’s points-to framework [13] can be used to compute may-alias information for
pointers. The parameter alias visualization presents a subset of this information. Specif-
ically, for each method with pointers as parameters, it indicates, using Colour Tags,
which pointer parameters may point to the same memory location when the method is
invoked. Parameters which may point to the same location are coloured with the same
colour, while parameters known to point to distinct locations are coloured with different
colours.

Figure 5(a) shows the Call Graph and Parameter Alias visualizations applied to
the Call() constructor from the telecom example. Notice that the two parameters,
caller and receiver are both the same colour, indicating that they may be aliased.4

This appears to be a possible error; in a telephone system, it should not be possible
for a caller to call himself. In order to determine if there really is an aliasing prob-
lem (and it is not due to imprecision of the analysis), we checked all the places where
this method is called. Also, notice the comment which states “This should really only
be called by Customer.call(..)”. We found all callers and verified that this comment
is obeyed using the call graph visualization, by clicking on the SA icon next to the
method signature. This pops up the two call graph links. The first link indicates that
the only place where this constructor is invoked is in Customer.call(), confirm-
ing the comment. The second link indicates that this constructor implicitly invokes the
constructor of java.lang.Object. By clicking the first link, we were taken to the
call site in Customer.call(), a very short method containing little of interest. We
followed another call graph link to the only call site calling Customer.call(), in
CallThread.run(). By looking through the code of this method (see Figure 5(b)),
we see that the caller and receiver are simply chosen at random from the list of cus-
tomers, with no code to ensure that they are distinct. We have indeed found a bug,
which we can observe at runtime in the output snippet in Figure 5(c), in which Cus-
tomer8 calls himself.

In general, we believe that by visualizing the call graph and aliasing computed by
the points-to analysis in Soot, we can provide more accurate information to the end user
in a way that enables them to browse and understand their program.

5.3 Unreachable Method Analysis

Another application of the call graph computed by Soot is flagging methods which are
unreachable through the call graph from the starting point of the program. These meth-
ods could be removed to reduce the size of the program, either for performance reasons,
or to make the program easier to understand. We highlight these methods in red using

4 Note that this aliasing information was computed using a fairly precise interprocedural points-
to analysis, which means that objects from the same allocation site may reach both of these
parameters.



(a) aliased parameters and call graph links

boolean foundFreeCaller = false;
do {

int index = Math.abs(r.nextInt())%(AbstractSimulation.customers.size());
caller = (Customer) AbstractSimulation.customers.get(index);
if (!caller.lineIsBusy())

foundFreeCaller = true;
}while(!foundFreeCaller);

boolean foundFreeReceiver = false;
do {

int index = Math.abs(r.nextInt())%(AbstractSimulation.customers.size());
receiver = (Customer) AbstractSimulation.customers.get(index);
if (!receiver.lineIsBusy())

foundFreeReceiver = true;
}while(!foundFreeReceiver);
...
Call c1 = caller.call(receiver);

(b) code extract for creating a telephone call between a caller and receiver

CURRENT TIME 10:55
Thread 2 Start

Customer8 calls Customer8
[new local connection from Customer8(514) to Customer8(514)]
Call length 17
Customer8 accepts call

connection completed
(c) program output extract illustrating bug

Fig. 5. Example of aliased parameters and call graph links



a Colour Tag, and also add a String Tag to indicate that the method is unreachable. By
taking advantage of the Spark [13] points-to analysis framework, Soot can produce call
graphs with different levels of precision, and this translates into different levels of preci-
sion in detecting unreachable methods. To demonstrate the effect of the precision gained
from Spark, we describe two (out of many) examples of unreachable methods that were
detected in benchmarks using a precise call graph built with Spark, but that cannot be
determined to be unreachable using a simpler call graph construction algorithm such as
Class Hierarchy Analysis (CHA) [9].

The Jess benchmark from the SPECjvm98 [20] suite contains a class called Lost-
Display. The code using this class is commented out, with a comment indicating that
it was commented out when the original Jess code was made into a SPEC benchmark.
However, a field of type LostDisplay remains, so the class is not entirely unused. A
different implementation of the same interface also exists (called NullDisplay) and
its methods are called by the benchmark. Therefore, the methods of LostDisplay
cannot be determined to be unreachable with a call graph based on CHA, but by using
a more precise analysis such Rapid Type Analysis [2], Soot is able to determine all but
one method of LostDisplay to be unreachable.

The SableCC [19] parser generator is another interesting example. Like many pro-
grams, it includes its own utility library with implementations of standard data struc-
tures such as lists and trees. As with most libraries, the application does not use all of
the library code. However, because the data structures are organized in a class hierarchy
as various implementations of general interfaces, and because the application is coded
to the interfaces rather than the implementations, a CHA-based call graph is insufficient
to determine which methods of which implementations are unused. By constructing the
call graph with the help of a Spark points-to analysis, Soot can flag many more of these
library methods as unreachable.

Thus, we can see that by exposing the more accurate analysis in Soot to the end
user, we can improve the tools that aid in program understanding or refactoring.

5.4 Array Analysis

In this final example, we present an application of our framework to a more advanced
analysis, more typical of a use in research. As part of our earlier research on array
bounds check removal, we implemented in Soot a comprehensive array bounds anal-
ysis [18], consisting of three related analyses: variable constraint analysis, array field
analysis, and rectangular array analysis. In that paper, we provided quantitative results
about the effectiveness of these analyses on various benchmarks, in terms of the number
of bounds checks eliminated and the speedup obtained. However, we are also interested
in qualitative results of the analysis, for a number of reasons, from the point of view of
both the programmer writing the benchmark, as well as the designer of the analysis.

For the programmer, it is very reassuring when an analysis determines that none
of the array accesses in the program will throw an ArrayIndexOutOfBounds-
Exception. It is even more important, however, for the analysis to provide sufficient
feedback when it cannot prove that an array access is safe, so that the programmer can
study the reasons why the analysis was unsuccessful, and determine whether it is due to



imprecision in the analysis, or an actual bug in the program. In addition, the program-
mer may be interested in the effect of specific optimizations on the performance of the
program. If the programmer is relying on the compiler to perform some optimization,
it is useful for the compiler to report whether it has enough information to perform the
optimization, and if it does not, what would need to be changed for the optimization to
be applicable.

While the array bounds check elimination was very effective on some benchmarks,
it was less effective on others. As compiler researchers, we want to know why it failed
on these other benchmarks, and what could be done to fix it. Like many compiler opti-
mizations, the array bounds check elimination is dependent on the three interdependent
analyses, which in turn depend on other information that the compiler has computed,
such as the call graph. Therefore, even for the developer of the analyses, it is difficult to
determine only by examining the benchmark code the results that the various analyses
will produce, and whether the optimization will be applied. However, by visualizing
the results of each analysis on the benchmark code, the analysis developer can quickly
see which analyses are failing to deduce the results needed by dependent analyses and
optimizations.

To visualize the results of the array bounds check elimination, we used four colours
of Colour Tags to highlight the array index expression, to indicating one of the four
possible combinations of the upper and lower bound being safe or unsafe. In addition,
for multi-dimensional array expressions, we used one of two colours to indicate whether
the array had been determined to be rectangular. Finally, when studying why certain
arrays known to be rectangular were not found to be rectangular by the analysis, we
found it convenient to also generate the call graph Link Tags, since the rectangular
array analysis is interprocedural and dependent on the call graph. These visualizations
were very helpful in determining why the analysis failed on certain benchmarks, and
has helped us identify ways to improve the analysis.

Overall, we believe that appropriate visualizations will aid compiler researchers to
quickly view the results of their analyses, to identify places where they expect the anal-
ysis to be more precise, and to help browse the program to identify where the analysis
became imprecise.

6 Related Work

Several projects have attempted to visually display the data structures inside compil-
ers for teaching and for debugging compiler optimizations. Xvpodb [7] displays the
intermediate representation at various stages in a static optimizer. The Feedback Com-
piler [4] shows animations of the transformations performed on an intermediate rep-
resentation in the lcc [11] compiler. The Visual Simple-SUIF Compiler [12] displays
the intermediate representation, as well as control flow graphs, data dependence graphs,
and register interference graphs. Vegdahl [24] presents a visualizer intended primarily
for teaching, which shows the data structures in the front-end, rather than back-end, of
a compiler.

A number of tools in early stages of development present interprocedural informa-
tion such as the call graph to Java programmers. These include JAnalyzer [6], a tool



based on Soot for browsing call graphs, and the Gnosis framework [3], another call
graph construction toolkit. Chang, Jo, and Her [8] have developed a tool for visualizing
the interprocedural control flow due to exceptions in Java programs.

More broadly, a large research community exists with entire conferences devoted
to software visualization and program comprehension [10, 15]. Most of this work fo-
cuses on high-level visualization of the overall structure of large pieces of software, in
contrast with our work, which focuses on showing information gained from analyzing
the code statement by statement. On the other extreme, a large body of work exists on
using program slicing [5, 22] to help programmers understand the effects of individual
statements.

An interesting point of our work is that we are providing a toolkit which makes it
easy to integrate the power of an optimizing compiler into an existing IDE. By imple-
menting it as an Eclipse plugin, it can be widely used (anybody using Eclipse can easily
add the plugin) and the resulting integrated tool is useful for both compiler developers
and end users.

7 Conclusions and Future Work

We have integrated the Soot compiler infrastructure into the Eclipse IDE. We identi-
fied three major challenges to providing such an integrated toolkit and described how
we tackled these challenges and described our approach for designing the Soot plugin
to Eclipse. An important part of our solution is a generic visualization framework for
conveying analysis results from the compiler to the user. This provides a rich environ-
ment for programmers seeking to better understand their code, students learning about
compiler analyses, and compiler researchers studying new analyses. We have shown
the significance of several visualizations already implemented in the framework, and
we plan to implement other visualizations in the future.

Another potential area of future work is construction of a step-through analysis
debugger. The idea is to develop a debugger-like interface that allows the user to step
through a data flow analysis as it is being performed, and visualize the information
being propagated. This would be a welcome tool both for students learning about data
flow analyses, and for experienced researchers debugging complicated analyses.

Some of the output produced by Soot takes the form of graphs, such as control flow
graphs and call graphs. Our current preferred method of drawing these graphs is by
producing input to the dot graph drawing tool. It would be useful to integrate such a
graph drawing tool into Eclipse, to make it possible to view these graphs in Eclipse.
The graphs could even be animated (to step through a data flow analysis on a control
flow graph, for example) or interactive.
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