
eclipse Technology eXchange Preliminary Version

Visualizing Program Analysis with the
Soot-Eclipse Plugin 1

Jennifer Lhoták and Ondřej Lhoták

Sable Research Group, McGill University, Montreal, Canada
{jlhotak,olhotak}@sable.mcgill.ca

Abstract

Our integration of the Soot bytecode manipulation framework into the Eclipse IDE
forms a powerful tool for graphically visualizing both the progress and output of
program analyses. We demonstrate several examples of the visualizations that we
have developed, and explain how they are useful for both compiler research and
teaching.

Key words: program analysis, visualization

1 Introduction and Motivation

Soot 2 [3] was developed as a bytecode analysis and transformation toolkit that
performs both intra- and inter-procedural static analyses and transformations.
It has been used extensively by researchers both within the Sable Research
Group and elsewhere to experiment with their new analyses, and provides a
common framework for comparison of empirical results. In addition, Soot is
used regularly for teaching optimizing compiler courses at McGill and other
universities, forming a base for student assignments and projects.

In integrating Soot into the Eclipse IDE, our goals were to make Soot more
accessible to students and researchers, and to make possible greater interaction
between Soot and its users. We have focused on providing a set of graphical
tools to control the behaviour of Soot and for Soot to report information
back to users. The key parts of the Soot-Eclipse plugin are a Soot launcher,
which allows the user to configure Soot’s many options and launch Soot, an
intermediate representation (IR) editor for viewing and editing Soot’s IRs,
and a visualization component which displays program analysis results in the

1 This work was supported in part by NSERC and an IBM Eclipse Innovation Grant.
2 The Soot package including the Soot-Eclipse plugin is freely available from the Soot
homepage: http://www.sable.mcgill.ca/soot

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://www.sable.mcgill.ca/soot


Lhoták

IR and source editors. A common theme in the development of Soot, and of
the Eclipse plugin in particular, has been the effort to make it as generic as
possible, making it a suitable framework for the development of new analyses
and transformations, rather than just a collection of existing ones.

Both main uses of the Soot framework, compiler research and teaching,
benefit from the program analysis visualizations. For researchers, being able to
see the progress and results of an analysis makes it easier to develop new, com-
plicated analyses. In teaching, the visualizations can be used for instructor-led
demonstration of analysis algorithms, as well as by students to better under-
stand and debug program analyses that they implement.

2 Visualizing Program Analysis Results

Soot includes a generic annotation framework [1] for encoding the results of
analyses in tags attached to parts of the IR (expressions, statements, methods,
fields and classes). The annotation framework propagates the tags between
the various IRs in Soot, and can also encode them in class file attributes for
use by other tools. The Soot-Eclipse plugin reads the tags as the source of
information to be visualized. This means that a user wanting to visualize the
results of a new analysis need only encode them using the standard annotation
framework tags, and they will immediately become visible in Eclipse.

For visualizing different types of results, we have introduced three new
types of tags. The information stored in these tags is read into Eclipse and
displayed with any of the IRs or original source code. String tags encode
textual information, and are displayed as tooltips when the mouse is moved
over the associated piece of code. Colour tags are used to highlight sections of
code (such as variables or expressions) in colour. Link tags encode connections
between different statements, and show up as lists of links with which one can
navigate to another piece of code.

Fig. 1. Analysis results for array bounds check analysis

Figure 1 shows the visualization of the result of one example analysis,
array bounds check analysis [2]. For each array access, there are four possible
analysis results: each of the upper and lower bounds is either safe or potentially
unsafe. We encode each possible outcome using one of four colours, and add

2



Lhoták

colour tags to the array accesses, which causes them to be highlighted with
the appropriate colour in the IR and source code. In addition, the analysis
results are encoded in textual form using string tags. The text appears in a
tooltip when the mouse is moved over each array expression.

3 Visualizing Progress of Dataflow Analysis

Soot includes a generic fixed-point dataflow analysis framework. To imple-
ment a dataflow analysis, a user of the framework implements the relevant
flow equations, and the framework performs the fixed-point computation. The
dataflow framework is intended for Soot users to implement their own analy-
ses, but it also underlies many of Soot’s internal analyses. In the optimizing
compiler course at McGill, students are required to implement an analysis of
their choice using the framework.

Fig. 2. Fixed point dataflow analysis for live variables

The Soot-Eclipse plugin makes it possible to visualize the progress of any
analysis implemented using the fixed-point framework. As shown in Figure 2,
the plugin displays a graphical representation of the control flow graph of

3



Lhoták

the method being analyzed. As the fixed-point computation proceeds, the
dataflow facts being computed by the analysis are successively displayed at
the nodes of the graph. In this case, we are visualizing a live variable analysis,
so the sets of live variables are displayed. However, the progress of an arbitrary
analysis can be traced as long as appropriate methods are provided to convert
the dataflow facts to strings. A button in the user interface allows the user
to single-step through the analysis, performing the computation one node at
a time. A back button is also provided to undo each computation and move
backward in the analysis progress.

Although Soot started as a framework mainly for research, its use for
teaching has become increasingly important, and we expect the visualization
tools to make it even more suitable for this purpose. In a typical optimizing
compiler course, the instructor teaches dataflow analysis by tracing through
an example analysis on a control flow graph on the blackboard. The same
tracing can now be done using the plugin using the actual analysis, making
it possible for students to trace through analyses of their choice at their own
pace. One of the biggest difficulties that students face when they implement
and debug their own dataflow analysis is understanding what is happening as
their analysis proceeds. Being able to trace through the analysis that they
have implemented one step at a time, and even going backwards, will hopefully
help them to gain a better understanding of dataflow analysis, and make the
task of implementing and debugging them easier and more enjoyable.

4 Summary

We have briefly demonstrated the program analysis visualization tools im-
plemented in the Soot-Eclipse plugin. We hope researchers, instructors, and
students alike will find them helpful for implementing and understanding their
own program analyses.

References

[1] Pominville, P., F. Qian, R. Vallée-Rai, L. Hendren and C. Verbrugge, A
framework for optimizing Java using attributes, in: Compiler Construction, 10th
International Conference (CC 2001), LNCS 2027, 2001, pp. 334–554.

[2] Qian, F., L. Hendren and C. Verbrugge, A comprehensive approach to array
bounds check elimination for Java, in: Compiler Construction, 11th International
Conference, LNCS 2304, 2002, pp. 325–341.

[3] Vallée-Rai, R., E. Gagnon, L. J. Hendren, P. Lam, P. Pominville and
V. Sundaresan, Optimizing Java bytecode using the Soot framework: is it
feasible?, in: Compiler Construction, 9th International Conference (CC 2000),
LNCS 1781, 2000, pp. 18–34.

4


	Introduction and Motivation
	Visualizing Program Analysis Results
	Visualizing Progress of Dataflow Analysis 
	Summary
	References

