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Motivation

= Points-to analysis

= requires representing many large, often

similar sets

= Binary decision diagrams (BDDs)

= provide compact representation of large
sets with similarities

? BDD




Background

= Points-to analysis

B [Landi 92] [Andersen 94] [Emami 94] [Wilson 95]

[ Steensgaard 96] [Shapiro 97] [Aiken 98] [Fahndrich 98]
(Ghiya 98] [Choi 99] [Das 00] [Hind 00] [Ruf 00]

'Sundaresan 00] [Tip 00] [Heintze 01] [Liang 01] [Rountev 01]
Vivien 01] [Milanova 02] [Su 02] [Whaley 02] [Lhotak 03]

and more...

= BDDs

® [Bryant 92] [Burch 94] and many, many more. ..

= Program analysis using BDDs
B [Sias 00] [Manevich 02] [Ball 03]

—p. 3/53



Talk Outline

= [ntroduction
= Points-to analysis
= BDDs

= BDD-PTA algorithm

= Performance tuning
= Bit ordering
= [Incrementalization

= Overall performance
= Conclusions and future work




Overview

= Designed a subset-based Java points-to
algorithm using BDDs

= Implemented it using BuDDy BDD library

= Compared performance of BDD-based solver
with hand-tuned Spark solver on identical
Input constraints

= Spark solver is very efficient compared to
other Java points-to solvers [cc 03]

BuDDy: provided by Jagrn Lind-Nielsen at
http://wwv. itu. dk/research/ buddy




Simple points-to analysis example

X a = new ();
Y. b = new ();
Z. ¢ = new ();
a = b;
b = a;
C = b;

Points-to set:

{ }




Simple points-to analysis example

X a = new ();
Y. b = new ();
Z. ¢ = new ();
a = b;
b = a;
C = b;

Points-to set:
{ (@X) (bY) (c,2) }




Simple points-to analysis example

X a = new ();
Y. b = new ();
Z. ¢ = new ();
a = b;
b = a;
C = b;

Points-to set:
{ (@X) (b)Y) (c,2) (&) }




Simple points-to analysis example

X a = new ();
Y. b = new ();
Z. ¢ = new ();
a = b;
b = a;
C = b;

Points-to set:
{ (@X) (b)) (c,2) (&) (b,X) }




Simple points-to analysis example

new Q() ;
new ) ;
new () ;

O T oD
1

o
JRANs]

OT B NIX
=

Points-to set:
{ (@X) (b)Y) (c,2) (a,Y) (b,X) (c,X) (c,Y) }




BDD representation

= A BDD Is a compact representation of a set
of bit strings

= We encode our analysis using bit strings:

a— 00 X—=00
b—-01 Y—-01
c—10 Z—10

Domains: V H

UV1Ug hl h()

(a,Y) — 00 01




BDD representation

alX — 00
b/Y — 01
c/Z — 10

V H

v1Uoh1 ho
(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10




BDD representation

alX — 00
b/Y — 01
c/Z — 10

V H

v1voh1ho
(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10




BDD representation

alX — 00
b/Y — 01
c/Z — 10

V H

v1Uoh1 ho
(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10




BDD representation

alX — 00
b/Y — 01
c/Z — 10

vV H

v1Voh1hg
(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10




BDD representation

alX — 00
b/Y — 01
c/Z — 10

V H

v1Voh1hg
(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10




BDD representation

alX — 00
b/Y — 01
c/Z — 10

V H

v1Voh1hg
(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10




Reduced BDD representation

alX — 00
b/Y — 01
c/Z — 10

V H

v1Voh1hg
(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10




BDD operations

= Set operations (U,N, \,...)

= Relational product
({(a,c) | 3b.(a,b) € X A (b,c) € Y)})

5 mr
_[b]c
= Replace —

changing bit order in a specific BDD

B [c] -~ [Ec

= Cost of operations proportional to number of
nodes in BDD, not size of set represented




Propagating points-to sets

N < X
O T oD

new Q() ;
new () ;
new () ;

(a,X)
(b,Y)
(C.2)

(b — a)
(a — b)
(b — c)

T o
TRNTI
e

o2

Domains

Points-to

Edges

New points-to

V1
V2
H1

a b c

XY Z

b a b
a b c




Propagating points-to sets

N < X
O T oD

new Q() ;
new () ;
new () ;

(a,X)
(b,Y)
(C.2)

(b — a)
(a — b)
(b — c)

T o
TRNTI
e

o2

relprod

Domains

Points-to

Edges

New points-to

V1
V2
H1

a b c

XY Z

b a b
a b c




Propagating points-to sets

X a =new (); a = b;
Y. b = new (); b = a;
Z. ¢ = new (); c = b;
(a,X) (b — a)
(b,Y) (a — b)
(c,Z2) (b — c) relprod

Domains | Points-to | Edges | New points-to

V1 a b c|b ab
V2 a b c
H1 XY Z X

@3




Propagating points-to sets

X a =new (); a = b;
Y. b = new (); b = a;
Z. ¢ = new (); c = b;
(a,X) (b — a)
(b,Y) (a — b)
(c,Z2) (b — c) relprod

Domains | Points-to | Edges | New points-to

V1 a b c b ab
V2 a b c
H1 XY Z X

@y




Propagating points-to sets

X a =new (); a = b;
Y. b = new (); b = a;
Z. ¢ = new (); c = b;
(a,X) (b — a)
(b,Y) (a — b)
(c,Z2) (b — c) relprod

Domains | Points-to | Edges | New points-to

V1 a b c|b aob
V2 a b c
H1 XY Z X

@)




Propagating points-to sets

X a =new (); a = b;
Y. b = new (); b = a;
Z. ¢ = new (); c = b;
(a,X) (b — a)
(b,Y) (a — b)
(c,Z2) (b — c) relprod

Domains | Points-to | Edges | New points-to

V1 a b c|b aob
V2 a b c|lb a c
H1 XY Z XY Y




Propagating points-to sets

N < X
O T oD

new Q() ;
new () ;
new () ;

(a,X)
(b,Y)
(C.2)

(b — a)
(a — b)
(b — c)

T o
TRNTI
e

o2

Domains

Points-to

Edges

New points-to

V1
V2
H1

a b c

XY Z

b a b
a b c

b a c
XYY




Propagating points-to sets

X a =new (); a = b;
Y. b = new (); b = a;
Z. ¢ = new (); c = b;
(a,X) (b — a)
(b,Y) (a — b)
(c,2) (b — ©) replace

Domains | Points-to | Edges | New points-to

V1 a b c b ab
V2 ab c/b a c
H1 XY Z XYY




Propagating points-to sets

X a =new (); a = b;
Y. b = new (); b = a;
Z. ¢ = new (); c = b;
(a,X) (b — a)
(b,Y) (a — b)
(c,2) (b — ©) replace

Domains | Points-to | Edges | New points-to

V1 a b c /b ab|/b a c
V2 a b c
H1 XY Z XYY




Propagating points-to sets

N < X
O T oD

new Q() ;
new () ;
new () ;

(a,X)
(b,Y)
(C.2)

(b — a)
(a — b)
(b — c)

T o
TRNTI
e

o2

Domains

Points-to

Edges

New points-to

V1
V2
H1

a b c

XY Z

b a b
a b c

b a c

XYY




Propagating points-to sets

X a =new (); a = b;
Y. b = new (); b = a;
Z. ¢ = new (); c = b;
(a,X) (b — a)
(b,Y) (a — b)
(c,Z) (b — ) union

Domains | Points-to | Edges | New points-to

V1 a b c /b ab|/b a c
V2 a b c
H1 XY Z XYY




Propagating points-to sets

X a =new (); a = b;
Y. b = new (); b = a;
Z. ¢ = new (); cC = b;
(a,X) (b — a)
(b,Y) (a—Db)
(c,Z) (b —c) union
Domains Points-to Edges | New
V1 a b c b ac/b awb
V2 a b c
H1 XY Z XYY




Talk Outline

= [ntroduction
= Points-to analysis
= BDDs

= BDD-PTA algorithm

= Performance tuning
= Bit ordering
= [Incrementalization

= Overall performance
= Conclusions and future work




BDDs used

= edgeset C V1 x V2 = pointsTo C V1 x HI
simple assignments points-to relation for

(l2 = 1) variables
s stores C (I points to o)
V1x (V2x FD) s fieldPt C
field stores (H1 x FD) x H2
(lo.f = 1) points-to relation for
2 loads C object fields
(V1 ><_FD) % /2 (01.f points to o0y)
fleld loads
(lg .= llf)

= 5 domains needed: V1,V2 H1,H2, FD




Overall algorithm

Initiallze
r epeat
r epeat
(1) process sinmple assignnents
unti | no change
(2) process field stores
(3) process field | oads
unti |l no change

—p. 30/53



Simple assignments (Is := [;)

(1)
newPt 1:

newPt 2:

[1 -1l o€ pt(ll)
0 € pi(ls)
[V2xH1] =

rel prod( edgeSet: [VixVv2],
poi nt sTo: [VixH1],

V1 );
[VixH1] =
repl ace( newPt 1: [V2xH1],
V2ToV1l );

poi Nt STo: [VixH1] =

uni on( poi Nt sTo: [VixH1],
newPt 2.  [V1xH1] );




Field stores (¢.f :=1)

0o € pt(l) | —q.f o1 € pt(q)
02 € pt(o1.f)
t mpRel 1: [(V2xFD)xH1] =
rel prod( stores: [Vix(V2xFD)],

poi nt sTo: [V1xH1],
V1 );

(2)

t mpRel 2: [(VIXFD)xH2] =
repl ace( tnpRel 1. [(V2xFD)xH1],
V2ToV1&H1ToH?2) ;
f1 el dPt: [(HIXFD)xH2] =
rel prod( tnpRel 2: [(VIXFD)xH2],
poi nt sTo: [VixH1],
V1 );




Field loads (I :=p.f)

p.f =1 o1 €pt(p) o9 € pt(o1.f)

(3)

09 C pt(l)
t mpRel 3: [((HIXFD)xV2] =
rel prod( | oads: [(VIXFD)xV2],
poil nt sTo: [V1xH1],
V1 );
newPt 4. [V2xH2] =

rel prod( tnpRel 3: [(H1xFD)xVv2],
f1eldPt: [(H1xFD)xH2],
HLXFD ) ;

newPt 5: [VixH1] =
repl ace( newPt4: [v2xH2],
V2ToV1&H2ToHlL) ;
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Bit ordering matters

a/lX — 00
b/lY — 01
c/Z — 10
v1V0h1 I
(a,X) 0000
(a,Y) 0001
(b,X) 0100
(b,Y) 0101
(c,X) 1000
(c,Y) 1001
(c,Z) 1010




Bit ordering matters

a/lX — 00
b/Y — 10
c/Z — 01
hovohivy
(a,X) 0000
(a,Y) 1000
(b,X) 0100
(b,Y) 1100
(c,X) 0001
(c,Y) 1001
(c,Z) 0011




How to find a good ordering?

= BuDDy default is to interleave bits:

= Good heuristic for state machines in model
checking

= Bad for points-to analysis: much too slow!




How to find a good ordering?

Where Is most of the time spent?

Z1 — 12 0 & pt(ll)
0 € pt(lg)

newPt 1. [V2xH1] =
rel prod( edgeSet: [Vixv2],
pol nt sTo: [V1xH1],
V1 );

(1)

newPt 2:  [ViIxH1] =
repl ace( newPt 1: [Vv2xH1],
V2ToV1 );

V1, V2, H1 make a difference; H2, FD do not.




How to find a good ordering?

= |[dea:

= H1 represents points-to sets (large,
regular)

= Put It at the end = big speedup!

= What about V1 and V2?

= Interleaving them is usually a bit faster
than one before the other




Performance of different orderings

Seconds

10000

1000 }

100

10

. = Hﬂ .
"
y
y
e ©
@
~ U v
compress javac sablecc jedit

1 (V1V2H1)
1H1 (V1V2)
| (VIV2) H1
| vi v2 H1

*0S50
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Effect of ordering on edgeSet

70000 ; I I I I I
V1 V2
V2 V1
60000 T (VIV2) oo
50000 ¢ .
é 40000 r | Total sizes
g 30000 - ] 487 582
494 222
20000 - | 379 877
10000 r .
0 : <
0 5 10 15 20 25 30 35
BDD level
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Effect of ordering on pointsTo

Nodes

450000
400000
350000
300000
250000
200000
150000
100000
50000
0

e
1

LA
*3
*N,

t.' "
1

I ",

!
L
=
<
=

| Total sizes
171 055
303 694
12156 747

5

10 15 20
BDD level

25 30

35
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Incrementalization

= All sets are re-propagated in each iteration

= Could we propagate only the new elements
of each set?

= We found this to work well for Spark
= How well would it work in BDDs?




Incrementalization

newPt 1:

newPt 2:

pol nt sTo:

[V2xH1] =
rel prod( edgeSet:

[V1xV2],

pol nt sTo: [V1xH1],

[VixH1] =
repl ace( newpt 1:

[VixH1] =

V1);

[V2xH1],
V2ToVL );

uni on( poi Nt sTo: [VixH1],

newPt 2:

[VixH1] ) ;




Incrementalization

newPt 1. [V2xH1] =
rel prod( edgeSet: [vixVv2],
newPol nt : [VixH1],
V1 );
newPt 2:  [VIxH1] =
repl ace( newPt 1l: [Vv2xH1],
V2ToV1 );
newPol nt : [VIxH1] =
setm nus( newPt 2. [VixH1],
pol nt sTo: [V1xH1] ) ;
pol Nt STo: [VIxH1] =
uni on( poi Nt sTo: [VixH1],
newPol nt : [VixH1] ) ;




Incrementalization

Seconds

120

100

80

60

40

20

"
i " "
"u
y
compress javac  sablecc jedit

non-inc
INnc

"u
)
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Experiment setup

Spec JVM 98
Spec JBB
Java bytecode | Soot
SableCC
JEdit
[ Spark ]
Y
‘ Constraints |
4 ) 4 )
Spark solver BDD solver
Java C/C++

- J - J




Overall performance (time)

Seconds

20 T T T T T T
® BDD ®
Spark @
"
15 | .
"n
= = FD (V1V2) H1 H2
10 - MM oM o o g
@ 00 o
5 L .
O ] ] ] ] ] ]

300 320 340 360 380 400
Constraints (x 103)

420 440
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0
300 320 340 360 380 400
Constraints (x 103)

Overall performance (space)
180 —
® BDD "y
160 r {Spark @
140 -
120 .
n
£ 100 | ® &P | FD_(V1V2) H1_H2
O
5 5| @9 :
=
60 | :
40 | :
=N . o
20 - WS M -
420 440
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Solving without declared types

= [n Java, use declared types of variables to
keep points-to sets small

= Without declared types, large sets, traditional
solvers do not scale

= May not have declared types (IR does not
support them; language dynamically typed)

= Surprisingly, BDD-based solver scales well
even without declared types

Set size | BDD size
eg. Javac: | with types 21M 31MB
no types 366M 40MB




Conclusions

T

= BDDs are a good fit for points-to analysis

= BDDs give reasonably efficient solvers with
relatively little effort

= BDDs make It easy to experiment with
variations of set-based problems

= Bit ordering is crucial (and we found a good
one for points-to analysis)




Future Work

= More heuristics for BDD program analysis
= Library for program analysis using BDDs

= Variations on the points-to analysis
= Context-sensitivity

= Compute other whole-program information
= Call graph
= [nterprocedural side-effect analysis
= ...(suggestions?)
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