
Scaling Java Points-To
Analysis Using SPARK

(Soot Pointer Analysis Research Kit)

Ondřej Lhoták and Laurie Hendren
Sable Research Group

McGill University
April 8th, 2003

– p. 1/53



Problems

Implementing a points-to analysis to handle
the details of Java

is a lot of work.
is difficult to do correctly.

Research done on disparate implementations
is often incomparable.

– p. 2/53



Objectives

Develop a flexible, efficient framework for
experimenting with variations in Java
points-to analyses

Demonstrate its usefulness with an empirical
comparison of precision and efficiency of
some of these variations

– p. 3/53



Outline

Spark overview

Empirical study

Overall performance

Uses of Spark

Conclusion

– p. 4/53



Spark overview

Part of Soot bytecode transformation and
annotation framework [CC 00] [CC 01]

Initial representation is Soot’s Jimple
Typed [SAS 00]

Three-address (only simple operations)

Spark internal representation is Pointer
Assignment Graph (PAG)

Nodes for variables, allocation sites, field
references
Edges representing subset constraints

– p. 5/53



Spark overview

Spark proceeds in three steps:

Jimple
Construct

PAG

Simplify

PAG

Propagate

Points-to Sets

Analysis variations expressed by building
different PAGs for the same code

This talk concentrates on flow-insensitive,
subset-based variations

– p. 6/53



Empirical study

Factors affecting precision
Enforcing declared types
Field reference representation
Call graph construction

Factors affecting only efficiency
Pointer assignment graph simplification
Set implementation
Propagation algorithms

– p. 7/53



Declared types: ignore

Hierarchy
A

B C

A x, z;
B y;
x = new A();
y = new B();
y = (B) x;
z = y;

x : A

A

y : B

A B

z : A

A B

– p. 8/53



Declared types: ignore

Hierarchy
A

B C

A x, z;
B y;
x = new A();
y = new B();
y = (B) x;
z = y;

x : A
A

y : B

A

B

z : A

A B

– p. 8/53



Declared types: ignore

Hierarchy
A

B C

A x, z;
B y;
x = new A();
y = new B();
y = (B) x;
z = y;

x : A
A

y : B
A B

z : A
A B

– p. 8/53



Declared types: enforce after analysis
[OOPSLA 00] [Rountev,Milanova,Ryder 01]

Hierarchy
A

B C

A x, z;
B y;
x = new A();
y = new B();
y = (B) x;
z = y;

x : A
A

y : B
A B

z : A
A B

– p. 9/53



Declared types: enforce during analysis

Hierarchy
A

B C

A x, z;
B y;
x = new A();
y = new B();
y = (B) x;
z = y;

x : A
A

y : B
A B

z : A
A B

– p. 10/53



Enforcing declared types

ignoring types produces many large sets
(> 1000 elements) of spurious points-to
relationships

in practice, enforcing types after analysis
almost as precise as during analysis

enforcing types during analysis prevents
blowup during the analysis

ignore slow less precise
after analysis slow more precise

during analysis fast more precise

– p. 11/53



Empirical study

Factors affecting precision
Enforcing declared types
Field reference representation
Call graph construction

Factors affecting only efficiency
Pointer assignment graph simplification
Set implementation
Propagation algorithms

– p. 12/53



Field representation

Field references can be represented in
different ways:

field-sensitive distinguishes fields of
different objects
field-based ignores the base object,
grouping all objects having the field
together

– p. 13/53



Field-sensitive representation

A x, y, z;
B u, v, w;

l1: x = new A();
y = x;

l2: z = new A();
u = new B();
x.f = u;
v = y.f;
w = z.f;

x
A1

y
A1

z
A2

u
B

A1.f
B

v
B

A2.f w

– p. 14/53



Field-based representation

A x, y, z;
B u, v, w;

l1: x = new A();
y = x;

l2: z = new A();
u = new B();
x.f = u;
v = y.f;
w = z.f;

x
A1

y
A1

z
A2

u
B

A.f
B

v
B

w
B

– p. 15/53



Field representation

Field-sensitive requires iterating

Field-based less precise, but possible in a
single iteration

Clever propagation algorithm can make
speed difference very small

field-based very fast less precise
field-sensitive almost as fast more precise

– p. 16/53



Empirical study

Factors affecting precision
Enforcing declared types
Field reference representation
Call graph construction

Factors affecting only efficiency
Pointer assignment graph simplification
Set implementation
Propagation algorithms

– p. 17/53



Call graph construction

An approximation of the call graph is required
for points-to analysis

It can be built
ahead-of-time using an analysis such as
Class Hierarchy Analysis
on-the-fly during the analysis as actual
types of receivers are computed

– p. 18/53



Call graph construction: CHA

Hierarchy
A

B C

class B
{ foo() { . . . } }
class C
{ foo() { . . . } }
A x = new B();
A y = x.foo();

x
B

B.foo()

this

return

y

C.foo()

this

return

– p. 19/53



Call graph construction: on-the-fly

Hierarchy
A

B C

class B
{ foo() { . . . } }
class C
{ foo() { . . . } }
A x = new B();
A y = x.foo();

x
B

B.foo()

this

return

y

C.foo()

this

return

– p. 20/53



Call graph construction: on-the-fly

Hierarchy
A

B C

class B
{ foo() { . . . } }
class C
{ foo() { . . . } }
A x = new B();
A y = x.foo();

x
B

B.foo()

this

return

y

C.foo()

this

return

– p. 21/53



Call graph construction

Building call graph on-the-fly requires adding
edges during propagation

requires more iteration
reduces simplification opportunities before
propagation

CHA call graph includes more spurious,
unreachable methods than on-the-fly

CHA fast less precise
on-the-fly slow more precise

– p. 22/53



Empirical study

Factors affecting precision
Enforcing declared types
Field reference representation
Call graph construction

Factors affecting only efficiency
Pointer assignment graph simplification
Set implementation
Propagation algorithms

– p. 23/53



Pointer assignment graph simplification

Groups of nodes can be merged
[Rountev,Chandra 00]

strongly-connected components
single-entry subgraphs

a

b
c d

e

f

a

bcde

f

a

b

c d

e f g

h i

a

bcdefg

h i

– p. 24/53



Pointer assignment graph simplification

Groups of nodes can be merged
[Rountev,Chandra 00]

strongly-connected components
single-entry subgraphs

a

b
c d

e

f

a

bcde

f

a

b

c d

e f g

h i

a

bcdefg

h i

– p. 24/53



Pointer assignment graph simplification

Groups of nodes can be merged
[Rountev,Chandra 00]

strongly-connected components
single-entry subgraphs

a

b
c d

e

f

a

bcde

f

a

b

c d

e f g

h i

a

bcdefg

h i

– p. 24/53



Pointer assignment graph simplification

Groups of nodes can be merged
[Rountev,Chandra 00]

strongly-connected components
single-entry subgraphs

a

b
c d

e

f

a

bcde

f

a

b

c d

e f g

h i

a

bcdefg

h i

– p. 24/53



Pointer assignment graph simplification

Factors limiting simplification opportunities
Enforcing declared types changes
points-to sets
On-the-fly call graph eliminates edges
from initial pointer assignment graph

– p. 25/53



Pointer assignment graph simplification

– p. 26/53



Empirical study

Factors affecting precision
Enforcing declared types
Field reference representation
Call graph construction

Factors affecting only efficiency
Pointer assignment graph simplification
Set implementation
Propagation algorithms

– p. 27/53



Set implementation

hash Using java.util.HashSet

array Sorted array, binary search
a b d

bit Bit vector
a b c d e f g h i j . . . x y z

1 1 0 1 0 0 0 0 0 0 . . . 0 0 0

hybrid
Array for small sets
Bit vector for large sets

– p. 28/53



Set implementation

hash slow large
array slow small

bit fast large
hybrid fast small

In the above table,
slow is up to 100 times slower than fast
large is up to 3 times larger than small

Set implementation is very important

– p. 29/53



Empirical study

Factors affecting precision
Enforcing declared types
Field reference representation
Call graph construction

Factors affecting only efficiency
Pointer assignment graph simplification
Set implementation
Propagation algorithms

– p. 30/53



Propagation algorithms: iterative

repeat
for each edge e

propagate along e;
end for

until no change

Slightly more complicated to handle
field references
on-the-fly call graph

– p. 31/53



Propagation algorithms: worklist

while worklist not empty do
remove node n from worklist;
for each edge e starting at n

propagate along e;
add all affected nodes to worklist;

end for
end while

With field references, difficult to determine
affected nodes

Very costly to determine all affected nodes
due to of aliasing

– p. 32/53



Propagation algorithms: worklist

while worklist not empty do
remove node n from worklist;
for each edge e starting at n

propagate along e;
add all affected nodes to worklist;

end for
end while

With field references, difficult to determine
affected nodes

Very costly to determine all affected nodes
due to of aliasing

– p. 32/53



Propagation algorithms: worklist

repeat
while worklist not empty do

remove node n from worklist;
for each edge e starting at n

propagate along e;
add most affected nodes to worklist;

end for
end while
propagate along all field reference edges;

until no change

Solution: find most affected nodes, and add
outer loop to handle missed nodes

– p. 33/53



Propagation algorithms: incremental worklist

x
A B C D y

– p. 34/53



Propagation algorithms: incremental worklist

x
A B C D

y
A B C D

1st iteration: propagate { A , B , C , D }

– p. 35/53



Propagation algorithms: incremental worklist

x
A B C D E

y
A B C D

1st iteration: propagate { A , B , C , D }

add E to x

– p. 36/53



Propagation algorithms: incremental worklist

x
A B C D E

y
A B C D E

1st iteration: propagate { A , B , C , D }

add E to x

2nd iteration: propagate { A , B , C , D , E }

– p. 37/53



Propagation algorithms: incremental worklist

Idea: split sets into new and old part

x
old new

A B C D

y
old new

– p. 38/53



Propagation algorithms: incremental worklist

Idea: split sets into new and old part

x
old new

A B C D

y
old new

A B C D

1st iteration: propagate { A , B , C , D }

– p. 39/53



Propagation algorithms: incremental worklist

Idea: split sets into new and old part

x
old new
A B C D

y
old new
A B C D

1st iteration: propagate { A , B , C , D }

flush new to old

– p. 40/53



Propagation algorithms: incremental worklist

Idea: split sets into new and old part

x
old new
A B C D E

y
old new
A B C D

1st iteration: propagate { A , B , C , D }

flush new to old

add E to x

– p. 41/53



Propagation algorithms: incremental worklist

Idea: split sets into new and old part

x
old new
A B C D E

y
old new
A B C D E

1st iteration: propagate { A , B , C , D }

flush new to old

add E to x

2nd iteration: propagate { E }

– p. 42/53



Propagation algorithms: incremental worklist

Idea: split sets into new and old part

x
old new
A B C D E

y
old new
A B C D E

1st iteration: propagate { A , B , C , D }

flush new to old

add E to x

2nd iteration: propagate { E }

flush new to old

– p. 43/53



Propagation algorithms

When to use worklist?
Always, about twice as fast as iterative

When to use incremental worklist?
Always, except with CHA call graph
field-based analysis, in which there is not
enough iteration

– p. 44/53



Summary of findings

Declared types should be enforced during
propagation for a scalable analysis

Hybrid set implementation much faster than
others, up to 2 orders of magnitude, with
reasonable memory consumption

Field-based can be done in one iteration, but
field-sensitive with worklist algorithm is
almost as fast and slightly more precise

Tradeoff: On-the-fly call graph slower but
more precise than ahead-of-time CHA call
graph

– p. 45/53



Outline

Spark overview

Empirical study

Overall performance

Uses of Spark

Conclusion

– p. 46/53



Related studies

Rountev, Milanova, Ryder [OOPSLA 01]

360 MHz SPARC, solver written in ML
version 1.1.8 library (150 KLOC)

Whaley, Lam [SAS 02]

2 GHz Pentium, solver written in Java
version 1.3.1 library (500 KLOC)
optimistic call graph (potentially unsafe)

(Spark) Lhoták, Hendren [CC 03]

1.67 GHz Athlon, solver written in Java
version 1.3.1 library (500 KLOC)

Common metric: number of methods analyzed

– p. 47/53



Overall performance: time

– p. 48/53



Overall performance: space

– p. 49/53



Outline

Spark overview

Empirical study

Overall performance

Uses of Spark

Conclusion

– p. 50/53



Uses of Spark

Use points-to and side-effect information in
Soot analyses

Encode in attributes
for use in JITs
for use in program understanding

Experiment with points-to algorithms
using Spark command-line switches
by implementing new algorithms within
Spark

– p. 51/53



Conclusions

Spark is a flexible and efficient framework for
experimenting with variations in Java
points-to analyses

We have demonstrated its usefulness in an
empirical study of some of these variations

Ongoing work

BDD-based solvers [PLDI 03]

Object-sensitivity [Milanova,Rountev,Ryder 02]

On-the-fly cycle detection [Heintze,Tardieu 01]

Shared bit-vector [Heintze,Tardieu 01]

– p. 52/53



Obtaining Spark

Spark is part of Soot since version 1.2.4

Soot is available under the LGPL
http://www.sable.mcgill.ca/soot

Future plans for Soot
Major update (version 2.0) in June 2003
Tutorial at PLDI

– p. 53/53


	Problems
	Objectives
	Outline
	Spark overview
	Spark overview
	Empirical study
	Declared types: {�lue ignore}
	Declared types: {�lue ignore}
	Declared types: {�lue ignore}

	Declared types: enforce {�lue after} analysis
put [r](1.1,-.5){cit
{OOPSLA 00} cit {Rountev,Milanova,Ryder 01}}
	Declared types: enforce {�lue during} analysis
	Enforcing declared types
	Empirical study
	Field representation
	{�lue Field-sensitive} representation
	{�lue Field-based} representation
	Field representation
	Empirical study
	Call graph construction
	Call graph construction: {�lue CHA}
	Call graph construction: {�lue on-the-fly}
	Call graph construction: {�lue on-the-fly}
	Call graph construction
	Empirical study
	Pointer assignment graph simplification
	Pointer assignment graph simplification
	Pointer assignment graph simplification
	Pointer assignment graph simplification

	Pointer assignment graph simplification
	Pointer assignment graph simplification
	Empirical study
	Set implementation
	Set implementation
	Empirical study
	Propagation algorithms: {�lue iterative}
	Propagation algorithms: {�lue worklist}
	Propagation algorithms: {�lue worklist}

	Propagation algorithms: {�lue worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms: {�lue incremental worklist}
	Propagation algorithms
	Summary of findings
	Outline
	Related studies
	Overall performance: time
	Overall performance: space
	Outline
	Uses of Spark
	Conclusions
	Obtaining Spark

