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ABSTRACT

This paper introduces an adaptive, region-based allocator
for Java. The basic idea is to allocate non-escaping objects
in local regions, which are allocated and freed in conjunction
with their associated stack frames. By releasing memory as-
sociated with these stack frames, the burden on the garbage
collector is reduced, possibly resulting in fewer collections.

The novelty of our approach is that it does not require
static escape analysis, programmer annotations, or special
type systems. The approach is transparent to the Java pro-
grammer and relatively simple to add to an existing JVM.
The system starts by assuming that all allocated objects
are local to their stack region, and then catches escaping
objects via write barriers. When an object is caught escap-
ing, its associated allocation site is marked as a non-local
site, so that subsequent allocations will be put directly in
the global region. Thus, as execution proceeds, only those
allocation sites that are likely to produce non-escaping ob-
jects are allocated to their local stack region.

The paper presents the overall idea, and then provides
details of a specific design and implementation. In partic-
ular, we present a region-based allocator and the necessary
modifications of the Jikes RVM baseline JIT and a copying
collector. Our experimental study evaluates the idea using
the SPEC JVM98 benchmarks, plus one other large bench-
mark. We show that a region-based allocator is a reasonable
choice, that overheads can be kept low, and that the adap-
tive system is successful at finding local regions that contain
no escaping objects.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

General Terms
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1. INTRODUCTION

The Java [2] programming language implicitly uses a gar-
bage collector as its memory manager. Garbage collection
has the advantage of freeing memory safely and often pre-
cisely. However, tracing and collecting objects adds over-
head to the program, so reducing the frequency of garbage
collection can be beneficial. Stack-allocation of objects is
one promising approach to reduce the work of a garbage
collector [8]. If an object does not escape a method, it can
be created on the stack frame instead of in the heap. Ob-
jects on the stack can be reclaimed without intervention by
the garbage collector.

There are several potential obstacles to performing object
stack-allocation in a JVM. Existing stack-allocation tech-
niques require a static escape analysis [5, 4, 16], which usu-
ally requires a whole program analysis and is not easily
amenable to a JVM with dynamic class loading and JIT
compilation. Further, as discussed by Gay and Steensgaard
[8], there are several restrictions on the kinds of objects that
can be created on the stack. Objects with non-trivial final-
ize methods are not easily placed on the stack, arrays may
be too large, and objects created in a loop with overlapping
lifetimes are not stackable.

To address these issues in a JVM, we suggest an adaptive
region-based allocator. In our approach we treat local re-
gions as extensions of stack frames. Thus, stackable objects
can be created in regions instead of stack frames without the
above restrictions. If a region contains only non-escaping ob-
jects, then when its associated stack frame is popped, the
region can be deallocated by returning its associated pages
to the free list of the heap.

Since we wish to avoid potentially expensive static analy-
ses, we instead take the approach of an adaptive strategy
which dynamically categorizes allocation sites as local and
non-local. Initially objects are assumed to be local and the
VM relies on write barriers to detect escaping objects. When
an object escapes, two actions are taken. First, the corre-
sponding region is marked as dirty. Second, the allocation
site of the escaping object is categorized as non-local, so that
subsequent allocations from that site will be put directly in
a global region. A dirty region is deallocated by appending
the pages associated with that region to the global region
waiting for the next garbage collection, while the pages of
a clean region can be reclaimed immediately. As execution
proceeds, more allocation sites creating escaping objects are
marked as non-local, so that local regions are more likely to
stay clean.

Our approach requires a region-based allocator as its ba-



sis. In general, heaps organized as pages/chunks provide
a flexible way to divide memory into regions for different
purposes, for example, regions [14, 13, 6] or thread-specific
heaps [12]. However, the maintenance of regions and unused
space on pages can lead to extra costs and overheads when
compared to a flat heap organization. Thus, we first out-
line the design of a region-based allocator and we show the
behavior of Java programs on page-based heaps (i.e., heaps
consisting of a set of chunks/pages). Our study shows that
most allocations can be satisfied with inexpensive operations
and that the correct choice of page size leads to little wasted
space. This suggests that the page-based heap organization
is feasible for Java VMs.

We then show how to build the adaptive system for cate-
gorizing allocations into those which should be allocated in
local regions associated with stack frames, and those that
should be directly allocated in the global region. In the
design we carefully consider the overheads, both in space
and extra write barrier overhead, and we propose various
approaches for keeping these overheads reasonably small.

This paper makes the following contributions:

1. We quantitatively studied the allocation behaviors of
Java programs in a region-based allocator. This study
indicates that dividing heap into special regions is fea-
sible for Java programs.

2. In contrast to previous work, our memory manager
does not require expensive static analysis, programmer
directives, or special type systems. It is completely
transparent to the Java programmer, and requires rel-
atively few modifications to the JIT compiler.

3. Our method focuses on the allocation of new objects
and can work as an optimization in conjunction with
other GC algorithms - we have implemented it in con-
junction with an extant type-accurate copying collec-
tor. Our method also works on Java in its full general-
ity, including multiple threads, dynamic class loading
and the JNI.

4. We have carefully analyzed the overheads of our ap-
proach and we suggest several mechanisms for reduc-
ing this overhead. We use lazy region allocation to
reduce the number of region allocations and dealloca-
tions. Further, even though our method requires some
extra state in the object header, we show how to imple-
ment this in a standard two-word header with a small
tradeoff in the performance of thin locks.

We have implemented the proposed approach in the Jikes
RVM! [1] and have performed our initial study using its
baseline compiler. This allows us to evaluate the approach’s
behavior and potential. We are currently working on extend-
ing the implementation to the optimizing compiler where we
can evaluate further runtime speedups.

The paper is organized as follows. In Section 2, we in-
troduce the overall structure of the system. The design and
implementation of the allocator are presented in Section 3.
Sections 4 and 5 describe the required modifications to the
JVM and collector to utilize the new functionalities provided
by the allocator. In Section 6, we present experimental re-
sults that focus on the behavior of the approach. Finally,

formerly known as the Japapefio Virtual Machine.

we discuss the related work in Section 7 and conclusions and
future improvements in Section 8.

2. OVERVIEW

The whole system consists of three parts: the allocator
manages regions and allocates space for objects; the JIT
compiler inserts instructions for acquiring and releasing a
region in each compiled method; and the collector performs
garbage collection when no more heap space is available.

In a region system, the heap space is divided into pages.
The pages can be fixed-size or variable-size. In our system,
we use fixed-size pages for fast computation of page numbers
from addresses. The allocator is also a region manager. It
manages a limited number of tokens. Each token is a small
integer number identifying a region. Two regions, GLOBAL
and FREE, exist throughout the execution of a program.
Other, local regions, exist for shorter durations. They are
assigned to and released by methods dynamically.

A high-level view of our memory organization is given in
Figure 1. A more detailed description of the implementation
is given in Section 3.

A region token points to a list of pages in the heap. The
region space is expanded by inserting free pages at the head
of the list. The GLOBAL region contains objects created by
non-local allocation sites and pages containing objects that
have escaped out of local regions. The GLOBAL region space
can only be reclaimed by the collector. The system uses bit
maps to keep track of free pages in the heap. The pages
of a local region can be appended to the GLOBAL region or
reclaimed by resetting their entries in the bit map.

A method activation obtains a region token by either ac-
quiring an available token from the region manager or by
inheriting its caller’s token. The region identified by the
token acts as an extension of the activation’s stack frame.
Before exiting, the activation releases the region if it was
not inherited. It is clear that the lifetime of a local region
is bounded by the lifetime of its host stack frame. There is
a many-to-one mapping between stack frames and regions.

An object can be created in the region of the top stack
frame or in the GLOBAL region. For the remainder of the
discussion we need to define what we mean by an object
escaping from a region, and a non-local allocation site.

DEFINITION 1. An object escapes its allocation region if
and only if it becomes pointed to by an object in another
region.

DEFINITION 2. An allocation site becomes non-local when
an object created by that site escapes.

Given this definition of escape, there are only three Java
bytecode instructions, putstatic, putfield, and aastore,
that can lead to an object escaping. Therefore, it is sufficient
to insert write barriers before these instructions to detect the
escape of an object.

There is one additional situation that must be considered.
When a method returns an object, the object may escape its
allocation region via stack frames. However, this kind of es-
cape can be prevented by either: (1) inserting write barriers
before all areturn byte codes, or (2) requiring all methods
returning objects to inherit their caller’s region. In our im-
plementation we have taken the second approach. It should
be noted that objects passed to the callee as parameters are
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Figure 1: Memory organization of page-based heaps with regions

not a problem since the lifetime of the callee’s stack frame
is bounded by the caller’s.

For an assignment such as lhs.f = rhs, the write barrier
checks if the rhs is in the same region as the lhs object.
When they are in different regions, the region containing the
rhs object is marked as dirty. Since static fields are much
like global variables, we assume that a putstatic always leads
to the rhs object escaping, and the region associated with
this object is marked as dirty.

It is worth pointing out that a region cannot contain an
object reachable from other regions without being marked
as dirty. If there is a path which causes an object o; of a
region Ry to be reached from objects in other regions, there
must be an object, say o;, in R1 which is on the path and
is directly pointed to by another object not in Ri, and the
assignment of this pointer must have been captured by write
barriers. Hence, R; must be marked as dirty when such a
path exists.

Each allocation site in a compiled method is uniquely in-
dexed, and each object has a field in its header for recording
the index of its allocation site (see Section 4 for a discussion
of how this is accomplished without increasing the object
header size). The allocator maintains a bit vector to record
the states of the allocation sites. Besides marking the region
dirty, the write barrier also marks an escaping object’s al-
location site as non-local. The allocator allocates objects in
local regions only for local allocation sites. By not allocating
objects for non-local sites in the local region, future activa-
tions of the method are very likely to have a local region
containing only non-escaping objects.

The system is quite straightforward and we have imple-
mented it in the Jikes RVM [1]. The Jikes RVM is written
in Java. It has a baseline compiler which generates machine
code simulating a stack machine. It also has an optimizing
compiler which uses many sophisticated optimizations. The
prototype of the allocator is implemented with the baseline
compiler only. When we present the VM-related part in Sec-
tion 4, the stack frame layout refers to the conventions of
the baseline compiler.

3. ALLOCATOR
3.1 Heap organization

Various garbage collection techniques have different heap
organizations. For example, mark-and-swap collectors use a
single space, copying collectors divide space into two semi-
spaces, and generational collectors divide the heap into sev-

eral aging areas. In this paper, the heap we are discussing
refers to the space where new objects are allocated.

A region memory manager organizes a heap as pages.
Without loss of generality, the heap in our system is orga-
nized as contiguous pages with a fixed size which is a power
of 2. The starting address of the heap is aligned to the page
size. Therefore, computing the page number for an address
requires only subtraction and bit shifting. Some systems do
not allocate the large objects from regions, and do not allow
an object to straddle two pages. In order to get a full picture
of allocation behaviors, our system does not use a separate
space for large objects and attempts to allocate objects on
contiguous pages whenever it can.

Figure 1 gives a high-level overview of the memory orga-
nization that we use for our implementation of regions. A
page descriptor encodes page status, region identification,
allocation point, and the index of next page. A region de-
scriptor contains region status, and the first page index of
the region.

This organization provides sufficient information for region-
based allocation. When allocating space in a region, the al-
locator first checks the free bytes of the first page. When
there is not enough space left there, a free page is taken
from the free list and inserted in the page list as the first
page. Allocating space for large objects involves searching
for contiguous free pages. We have measured the overhead
for these allocations for our benchmarks, and as shown in
Section 6, the frequency of expensive searches is quite low,
indicating that this is a reasonable design.

3.2 Services

The internal heap organization is transparent to the JVM.
The allocator provides a set of services to the JVM and
collector. We describe these functions here.

There are two services for region operations as shown in
Figure 2. Internally, free region tokens are managed by a
stack. The NEWREGION service pops a region token from the
stack, and pre-allocates one free page for it (pre-allocation
is only used with lazy region allocation, to be explained in
Section 4). If no token is currently available, the GLOBAL
one is returned. The FREEREGION operation has to check the
Dirty field in the region descriptor. Only when the region
is clean, can pages be reclaimed by adding them to the free
list. Otherwise, pages are appended to the page list of the
GLOBAL region.

As outlined in Figure 3, the allocator provides two services
for write barriers. The CHECKWRITE service is called before



NEWREGION: int
if the rid_stack is empty
return GLOBAL;
else
rid = rid_stack.pop;
pre_allocate_page(rid);
return rid;

FREEREGION (int rid)
if the region is dirty
append pages to the GLOBAL region;
else
add pages to the free list;

rid_stack.push(rid);

Figure 2: Services for regions

putfield and aastore byte codes. The addresses lhs and rhs
point to the left hand side and right hand side objects. The
operation filters out null pointers and escaped objects first,
then computes page indexes from object addresses and tests
equality. Region IDs are retrieved from page descriptors and
compared if the objects are not in the same page. The rhs
object is marked as escaped if it is not in the region of the
lhs object.

The write barrier for putstatic calls MARKESCAPED directly.
As we explained in Section 2, the allocator uses a bit vector
to record the states of allocation sites. Both services not
only mark the region as dirty, but also set the state of the
allocation site to non-local. In the object header, a bit in
the status word is used to mark an object as escaped.

CHECKWRITE (ADDRESS lhs, rhs): boolean
if rhs is null

return TRUE; // case 1
if rhs is escaped
return FALSE; // case 2

if rhs and lhs are in the same page
return TRUE; // case 3

if rhs and lhs are in the same region

return TRUE; // case 4
mark rhs as escaped,
return FALSE; // case 5

MARKESCAPED (ADDRESS rhs): boolean
if rhs is null

return TRUE; // case 1
if rhs is escaped

return FALSE; // case 2
mark rhs as escaped,
return FALSE; // case 3

Figure 3: Services for barriers

The main function of the allocator is to allocate space for
an object. With regions, the allocation of space is somewhat
complicated. The allocation process ALLOC is illustrated in
figure 4. Here, we present only a high-level abstraction of
the service. The allocation method first checks the state of

the allocation site. Only local sites are eligible for allocation
from local regions. The internal method _getHeapSpace al-
locates space in the first page if the free space is larger than
the required size. If the first attempt fails, it looks at pages
following the current page. If the request cannot be satis-
fied from these pages, it then looks for contiguous pages by
scanning the bit maps. This is the most expensive operation
in a region-based allocator.

ALLOC (int rid, int size): ADDRESS
call _getHeapSpace(rid, size);

if failure
initiate a collection;

call _getHeapSpace(rid, size);
if failure
out of memory;
else
return the address;

_getHeapSpace (int rid, int size): ADDRESS
1. allocate space from the first page;

2. if failure, check if enough pages
following the first page are available;

3. if not, search contiguous pages
in the free list;

if both attempts fail
out of memory;

else
add free pages to the region;
return the starting address;

Figure 4: Allocating spaces

These services also provide the facilities required by the
garbage collector to perform collections. We discuss the col-
lection process in Section 5.

4. ADAPTIVE VM

To utilize regions, a JVM needs the following modifica-
tions:

1. Each allocation site is assigned a unique index at com-
pilation time.

2. The object header has a field for recording the index
of its allocation site.

3. The stack frame has a slot for the region ID at a fixed
offset from the frame pointer.

4. The method prologue and epilogue have additional in-
structions to deal with the region ID slot.

5. Write barriers are inserted before putstatic, putfield,
and aastore byte codes.

The allocation method has two more parameters than be-
fore: the index of an allocation site is a runtime constant,
and the region ID is fetched from the stack frame.

When deciding whether or not a method is eligible for a
new local region, our implementation uses following criteria:

e A native call is assigned the GLOBAL region id.
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e The <clinit> method always uses the GLOBAL region
since we know that it initializes static fields.

e The <init> method inherits the caller’s region because
it initializes the instance fields.

e A method returning an object is not eligible for a new
region. This rule eliminates the need for a write bar-
rier for the areturn byte code. More importantly, as
pointed out by [8], there are many methods just allo-
cating objects for the caller.

e A one-pass scan of the byte codes counts the allocation
sites of each method. If the number is lower than a
threshold, no local region is needed for this method.
We currently use a threshold of 1.

e The first executed method of the booting thread is
assigned the GLOBAL region ID.

In our initial development it became clear that making
newregion and freeregion calls on each activation is too ex-
pensive for the run time system since many activations may
have empty regions, either because their allocation sites have
become non-local or because no object is allocated. To elim-
inate these empty regions, we use lazy region allocation. An
eligible method first saves a special region ID, e.g. 0, in the
region ID slot, indicating the stack frame needs a dynamic
region, but it has not yet been allocated. The code for al-
location first checks the ID, and then calls newregion only
when necessary. The freeregion method is called only when
the region ID is a valid one. If a method inherits a region
from its caller, it must write back its current region ID to
the caller’s stack frame.

Another implementation issue is how to encode the allo-
cation site index in the object header. A two-word object
header is quite a popular design on most JVMs. One word
of the header is used as a status word. Our implementation
avoids growing the object header by storing the allocation
site index in space already used by the thin lock [3].

In the Jikes RVM, the thin lock uses 13 bits for recording
the ID of the locking thread, and 6 bits for counting locks.
Figure 5(a) shows the structure of the status word. Bit 31
is called the monitor shape bit which is 0 if the lock is thin
and 1 if it is fat.

As indicated in Figures 5 (b) and (c), we use bit 1 in the
status word to indicate if the object has escaped or not?. If

2Bt 1 is used for write barrier purpose in other types of GC.
In our prototype implementation in a copying collector, this
bit is used as the escaping bit.

the object is non-escaping, then we reuse the thread ID field
to store the allocation site (Figure 5(b)). This reuse of the
thread ID field necessitates some extra machinery for the
case where a lock operation is performed on a non-escaping
object. The thin lock mechanism first attempts to check the
monitor shape bit and the thread ID field in the status word.
In ordinary thin locks, the common case is that the monitor
shape bit and the thread ID are both zero. However, in our
scheme, a non-escaping object is using the thread ID field
and it will be non-zero. Thus, when a thin lock fails we
must check to see if it failed because a non-escaping object
is reusing the thread ID field. If the object is non-escaping,
we give back the field to the thin lock by clearing the thread
ID field, setting the escaping bit, and then attempting the
lock operation again.

By changing a non-escaping object to escaping, we do lose
some opportunities for finding local objects, but we do not
affect the behaviour of the thin locks. In Section 6.5 we
show that this effect is not too large. To ensure correctness
of this scheme, an escaped object must never become non-
escaping, and whenever an object is marked as escaped, the
associated region must be marked as dirty.

The system only adds a check on the uncommon path
of the thin lock and may need one check on the common
path in very few cases. The mechanism allows us to encode
allocation site numbers up to 2'® —1. For large applications,
it would be possible to use both the thread ID and lock
count to store a 19-bit allocation site index if their positions
were reversed (to ensure that small allocation site index still
produces a non-zero thread ID field).

There are some other issues related to Java semantics [10].
An exception may transfer control to the caller without go-
ing through the method epilogue. In this case, the excep-
tion mechanism must release the region before unwinding
the stack frame.

If an object has a non-trivial finalize method, the JVM has
to run the finalizer before the space is reused. The region-
based allocator organizes the list of objects with non-trivial
finalizers by region ID. When the pages of a region are about
to be reclaimed, the finalize methods of objects in the region
get called.

5. COLLECTOR

The collector must ensure that if an object escapes its
original region, that region is marked as dirty. One way of
ensuring this would be to introduce write barriers during
collections. However, this may sacrifice the efficiency of the
collector. There is a trade-off between precision and per-
formance. If all live objects are copied to dirty regions, no
barriers are needed. So, the second option is to copy all
live objects to the GLOBAL region of another space. This
does not violate the above rule since the global region never
gets released. This strategy has the same efficiency as a
normal copying collector. However, copying all objects to
the GLOBAL region may cause some objects created in the
next epoch to be treated as escaped, and their associated
allocation sites marked as non-local, unnecessarily.

Our current implementation keeps objects in their original
region as much as possible, and marks all live regions as dirty
after the collection. Now objects in the root set are divided
into subsets by their regions, with each live region corre-
sponding to a subset of the root set. The collector starts
with collecting all reachable objects from the subset belong-



ing to the GLOBAL region. In the next step, the collector
collects objects reachable from the subset corresponding to
each local region. All objects copied to the GLOBAL region
are marked as escaped to allow fast checks in barriers (the
states of the allocation sites are not changed). Although this
strategy makes some stackable objects in current live regions
unstackable, it does not require write barriers and will not
make allocation sites non-local unnecessarily. Currently, we
do not have experimental evidence to show which option is
better in reality.

6. RESULTS

We implemented a page-based heap and a prototype of a
region-based allocator in the Jikes RVM with the baseline
compiler. Porting of the system to the optimizing compiler
is in progress. The region-based allocator is implemented
in a semi-space copying collector using Cheney’s tracing al-
gorithm. The current implementation uses a uniprocessor
configuration. However, it can be implemented in existing
parallel collectors with little effort.

To understand the program behavior, we did detailed pro-
filing of the allocation behaviors, and report the experimen-
tal results of the following aspects:

e the allocation behavior of the region-based allocator;

e the percentage of space reclaimed by local regions, and
the reduction in collections due to local region alloca-
tion;

e the behavior of write barriers;
e the impact on thin locks; and

o the effect of adaptivity.

6.1 Benchmarks

We report experimental results on the SPEC JVM98 bench-
mark suite and soot-c [15]. The soot-c benchmark is
a Java byte code transformation framework that is quite
object-oriented, and which has several phases with poten-
tially different allocation behaviors.

We first provide some measurements to give some idea
of the allocations performed by each benchmark. Table 1
shows the profiles of allocation sites. The column labeled
Compiled gives the total number of allocation sites in com-
piled methods. It includes the allocation sites in the JVM,
libraries and benchmark code. The column labeled Used
lists the number and percentage of allocation sites which
created at least one object. On average 26% of the alloca-
tion sites create at least one object. The columns labeled
Non-local and Local show the fraction of used allocation sites
which are categorized as non-local and local. An allocation
site is categorized as local if it is never marked as non-local
by the adaptive algorithm. The last column, labeled Maz
RID, gives the maximum number of regions used by the
benchmark at the same time. This gives us some idea of
the number of region tokens required. Note that a program
(like javac) with deep recursion may use a large number of
regions.

In all of our experiments the total heap size is set to 50M,
from which the JVM uses about 1.5M as the boot area.
The JVM itself shares the same heap with applications. We
do not distinguish the objects created by the system or the
benchmarks. The heap is divided into two semi-spaces. A

25M heap is quite small for most of our benchmarks, which
forces the garbage collector to work.

6.2 Choice of Page Size

The choice of page size may affect utilization of heap
space. A larger page size will allow more allocations to be
satisfied in the first page. On the other hand, smaller page
size will reduce the amount of froth (unused pieces of the
heap due to the allocation of chunks/pages of memory?).
Table 2 shows the the effect of different page sizes on the
number of garbage collections needed and the froth rates.
The column labeled Base collections gives the number of
collections needed for the base semi-space copying garbage
collector, without the regions. The three columns labeled
cle give the collections required for the region-based allo-
cator, assuming page sizes of 256 bytes, 1K bytes and 4K
bytes.* Similarly, the columns labeled froth give the wasted
space for the three different page sizes (computed by un-
used_bytes/allocated_bytes). Note that a page size of 4K
leads to a large froth rate for several benchmarks, most no-
tably javac (130%), jack (27.5%) and soot-c (23.5%). The
very high froth rate for javac also seems to increase the
number of garbage collections, which is more than double
that of the base collector.

From the perspective of number of collections and froth,
the smaller pages seem better. However, this is not the
complete story. One must also consider the overhead for al-
locations. The cheapest form of allocation is when the newly
allocated object fits in the current page, the second cheap-
est is when the allocation can be allocated on the next page,
and the most expensive is when one must search the free list
for enough contiguous pages to meet the allocation request.
These overheads are summarized in Table 3. Considering
the three page size configurations: 256-byte, 1K, and 4K,
the allocations are categorized into three types, which re-
flect three possibilities in _getHeapSpace in Figure 3.

1. firstpage The space is available in region’s first page.

2. nextpages The region is expanded with immediately
contiguous pages.

3. searching Search for contiguous pages in the free list.

A large size (4K) allows most of allocations to be satis-
fied with cheap costs. But, as we demonstrated in Table
2, the froth rate may run out of control. From Table 3 we
see that there is not a large difference in the behavior of
allocations when comparing page sizes of 1K and 4K. How-
ever, even though a smaller page size (256 bytes) reduces
froth rates, the allocation distribution changes dramatically,
with many more allocations requiring expensive operations.
From these results we conclude that the trade-off between
page size and froth rate is worth considering when using a
page-based heap. For our remaining experiments we chose
a page size of 1K, which gives us both reasonable froth rate
and reasonable allocation overhead.

6.3 Region-reclaimed space

The next important measurement is to find out the per-
centage of space that is reclaimed from local regions. That
is, how much space can be reclaimed when using the region-
based approach. Recall that the region can be reclaimed

3This term was introduced by Steensgaard [12].
“We disabled System.gc() calls for both collectors.



Benchmark | Compiled Used | Non-local Local | Max RID
compress 2108 346(16%) | 115(33%) | 231(67%) 11
db 2117 358(16%) | 124(34%) 234(66%) 11
jack 2396 614(25%) | 204(33%) 410(67%) 16
javac 2871 895(31%) | 437(48%) 458(52%) 56
jess 2407 577(23%) | 276(47%) 301(53%) 9
mpegaudio 3266 1502(45%) | 157(10%) | 1345(90%) 12
mtrt 2228 497(22%) | 196(39%) 301(61%) 19
soot-c¢ 3030 1158(34%) | 551(52%) 507(48%) 14
Table 1: Allocation sites
Benchmark Base # 256 Bytes 1K Bytes 4K Bytes
collections || clc | froth || clc froth || clc froth
compress 7 7 | 0.03% 71 0.11% 7 0.47%
db 4 4 | 0.06% 4| 0.23% 4 1.05%
jack 9 71 1.29% 8| 5.97% 9| 27.52%
javac 12 12 | 4.96% || 15 | 29.41% || 25 | 130.42%
jess 12 11 | 0.13% 11 0.53% 11 2.19%
mpegaudio 0 0| 0.62% 0| 210% 0 9.05%
mtrt 7 1| 0.03% 1| 0.09% 1 0.38%
soot-c 15 13 | 1.09% || 13 | 4.89% || 15 | 23.49%

Table 2: Effect of page size on # of collections and froth

Benchmark | page | firstpage | nextpages | searching
size

compress 256 | 82.73% 16.23% 1.04%

1K | 94.96% 4.74% 0.30%

4K | 98.43% 1.44% 0.13%

db 256 | 92.24% 7.69% 0.07%

1K | 98.04% 1.92% 0.03%

4K | 99.49% 0.48% 0.03%

jack 256 | 91.64% 6.46% 1.91%

1K | 97.79% 1.59% 0.63%

4K | 99.48% 0.33% 0.19%

javac 256 | 89.56% 8.58% 1.85%

1K | 97.43% 2.00% 0.57%

4K | 99.41% 0.50% 0.09%

jess 256 | 86.75% 12.89% 0.36%

1K | 96.71% 3.27% 0.02%

4K | 99.16% 0.83% 0.01%

mpegaudio 256 | 84.97% 12.09% 2.94%

1K | 95.54% 3.52% 0.94%

4K | 98.59% 0.98% 0.43%

mtrt 256 | 96.04% 2.58% 1.39%

1K | 99.51% 0.38% 0.11%

4K | 99.88% 0.10% 0.02%

soot-c 256 | 88.28% 9.85% 1.88%

1K | 96.85% 2.66% 0.49%

4K | 99.21% 0.68% 0.11%

Table 3: Behaviors of allocations

when a stack activation is popped only when the dirty bit
has not been set (i.e. the region is clean). If any object in
the region has escaped, then the dirty bit will be set, and
this region must be added to the GLOBAL region which will
be collected by the garbage collector.

The table given in Figure 6(a) gives the bytes reclaimed
from clean regions and the percentage they represent of
total allocated bytes, when the page size is 1K. Different
page sizes give very similar numbers. The percentage of
region-reclaimed bytes varies between benchmarks. In the
best case, mtrt has 80 percent of total allocated memory re-
claimed by regions, with the number of collections reduced
from 7 to 1. In the worst case, db has less than 1% region-
reclaimed space, with no impact on the number of collec-
tions.

Another way to look at the behavior of the regions is to ex-
amine the number of bytes allocated from local regions over
the duration of the execution. Figure 6(b) shows the frac-
tion of bytes allocated that are allocated from local regions.
The x-axis is an abstraction of time, with each unit corre-
sponding to 1M bytes of allocations. The y-axis shows the
fraction of those 1M bytes that were allocated from a local
region. For example, the graph labeled mtrt indicates that
after an initial startup, about 90% of all allocated bytes are
allocated from local regions. In contrast, the graph labeled
jess shows that this benchmark quickly declines to less than
10% of all allocations from local regions. The graph labeled
soot-c shows a widely fluctuating rate as the program pro-
gresses. This is likely because soot-c is quite a complex
benchmark with many different phases. It is interesting to
note that if all the bytes allocated to local regions are also
region-released, then the area under the curves of Figure
6(b) should be equal to the region-reclaimed number shown
in Figure 6(a). This appears to be the case, as confirmed by
our measurements given in Section 6.6, showing that almost
all local regions are clean when released.

6.4 Write Barrier Behavior

Another important aspect of the collector we measured
is the behavior of write barriers, as summarized in Table
4. Opverall, a write barrier has bounded constant time as



Benchmark base total region-reclaimed | clc froth
collections | allocated
compress 7 116M 15.39M(13.27%) 71 0.11%
db 4 7™ 0.57M( 0.74%) 4| 0.23%
jack 9 223M 51.00M(22.87%) 8| 5.97%
javac 12 212M 18.65M( 8.80%) | 15 | 29.41%
jess 12 267M 17.36M( 6.50%) | 11 | 0.53%
mpegaudio 0 ™ 1.96M (28.00%) 0] 2.10%
mtrt 7 143M 115.15M(80.52%) 1| 0.09%
s00t-c 15 219M 40.72M(18.59%) | 13 | 4.89%

(a) Region-reclaimed space
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Figure 6: Behavior of Local Regions
BENCHMARK CHECKWRITE for putfield and aastore MARKESCAPED for putstatic
null quick | samepage | sameregion | escaped” null quick escaped
compress 15.07% | 83.64% 1.05% 0.17% 0.07% || 0.00% | 91.45% 8.55%
db 0.12% | 99.88% 0.00% 0.00% 0.00% || 0.00% | 90.48% 9.52%
jack 11.79% | 87.58% 0.62% 0.01% 0.00% || 0.00% | 91.00% 9.00%
javac 10.81% | 88.84% 0.32% 0.03% 0.00% || 2.90% | 89.63% 7.47%
jess 0.22% | 99.75% 0.02% 0.00% 0.00% || 1.88% | 85.63% 12.50%
mpegaudio 0.42% | 98.12% 0.08% 1.38% 0.00% || 3.20% | 83.56% 13.24%
mtrt 13.82% | 84.49% 1.66% 0.02% 0.00% || 0.00% | 86.44% 13.56%
soot-c 5.20% | 91.88% 2.71% 0.21% 0.00% || 0.00% | 93.48% 6.52%

*In this table, zero only means the rate is lower than 0.005%.

Table 4: Behaviors of write barriers




shown by the pseudo-code in Figure 3. However, it is still a
burden to the system. To get better idea of how to optimize
the barriers, we categorize the CHECKWRITE for putfield and
aastore into five types.

1. the right hand side is a null pointer,

2. the right hand side object is already marked as es-
caped,

3. both objects are in the same page,
4. both objects are in the same region, and
5. the LHS and RHS objects are not in the same region.

The first case checks if the right hand side reference is a
null pointer, and the second case checks the escaping bit,
which requires a load and a compare instruction. As shown
in Table 4, the majority of checks are filtered out by these
two cases, which indicates it is beneficial to separate these
two cases as a common path and inline them. The remaining
three cases can be processed by a method call. Similarly the
write barriers for putstatic are also categorized into three
types, with the first two cases benefiting from inlining.

Currently, we have not incorporated any static analysis
for removing write barriers. Certainly, such analyses will
reduce the runtime cost of the system. We will investigate
such algorithms in the future.

6.5 Impact on Thin Locks

We also profiled the impact of sharing bits with thin locks.
Table 5 shows the rate of failed locks because of sharing bits.
Compress and mpegaudio have only a few thousand locks in
a full run, so their results cannot represent the real effect of
sharing bits. On other benchmarks, the rate of spoiled locks
is no more than 5%.

Benchmark | thin locks spoiled locks
compress 1.6K 172(9.58%)
db 452M | 2915(0.01%)
jack 9.4M | 497016(5.00%)
javac 14.7M | 341585(2.26%)
jess 48M | 4881(0.10%)
mpegaudio 5.6K 497(8.15%)
mtrt 1.3M 25816(1.92%)
s00t-c 5.6M | 73204(1.30%)

Table 5: Impact on thin locks

6.6 Effect of Adapting

The last behavior that we studied was the effect of the
adaptive part of our algorithm. The basic idea of our ap-
proach was to mark allocation sites as non-local as soon as
they are found escaping the first time. The justification of
this decision was that this would prevent this allocation site
from spoiling clean regions in the future, and we expected
that this would lead to most local regions being clean at
release time. Figure 7(a) shows the number of local regions
that are clean at release time over the duration of the exe-
cution of the program. The x-axis is an abstraction of time,
with each point representing the release of 1000 local regions
(100 for jess). The y-axis shows the number of those local
regions that are clean at release time. Accompanying the
title of each graph is the number of clean regions and total

allocated regions. It is very clear that after a short startup
time, the system quickly adapts so that almost 100% of the
local regions are clean at release time. There is occasionally
a small dip, but then the system adjusts and it goes back
to almost 100%. So, it does appear that the system adapts
well.

In order to see what would happen without adapting, we
removed the part of the algorithm that marks an alloca-
tion site as non-local, so that all® allocations are placed
in the local regions. Figure 7(b) shows the result in this
case. First, note that many more regions are created, and
the scale on these graphs are now per 10000 local regions
(1000 for jess). However, we can also see some interesting
trends. The benchmark mtrt appears to create mostly non-
escaping objects, so for this benchmark it is not such a bad
idea to just put all objects in local regions. For benchmarks
javac and soot-c, we see that removing the adaption leads
to many more regions, and many of those regions are not
clean. In these cases the adaption works to cull those dirty
regions. For jess we see a very interesting behavior, in that
in the last two thirds of the execution, a lot of objects ap-
pear to be non-escaping, and the number of clean regions
stays quite high. With the adaption, we get a higher per-
centage of clean regions, but we don’t find nearly as many.
In this case we suspect that there are some allocation sites
which sometimes produce escaping objects, and sometimes
not. A more complicated prediction scheme appears to be
necessary for this kind of benchmark.

We also collected our overall measurements for the two
cases, with adaption and without adaption. These are sum-
marized in Table 6. Note that in some cases, most notably
javac, switching off the adaption drastically increases the
froth rate (589% instead of 29%) and number of garbage
collections (96 instead of 15). However, as we might have
predicted from the graph in Figure 7(b), the performance
for jess is much better without adaption. This is a clear
sign that we must look at other forms of adaption that are
more robust when the objects created from a site sometimes
escape, and sometimes do not. Overall, it seems that the
adaptive algorithm gives better performance and controls
excessive froth.

The third column of Table 6 gives the total size of escap-
ing objects which were captured by write barriers or reach-
able from escaping objects. Locked objects are also consid-
ered as escaping. The difference between the total allocated
size and the size of escaping objects gives us a rough upper
bound of the space that can be reclaimed by regions. We see
that there is a large space to improve the current prediction
scheme.

6.7 Summary

Our current implementation, using the baseline compiler,
was aimed at producing a prototype that could be used to
measure the behavior of the system, as we have presented in
this section. Our numbers show that: 1) page size is impor-
tant, but with the appropriate page size, the overhead for
froth and the frequency of expensive searches for free pages
is quite low; 2) for many benchmarks a significant percent-
age of allocated memory can be placed in local regions which
are still clean at release time; 3) appropriate choices for the
barrier operations can put the common cases on a low-cost

Sexcept native calls, < clinit>, and the first executed method
of the boot thread, see Section 4.
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With Adaption No Adaption
Benchmark total total | base region cle froth region cle froth
allocated | escaped clc reclaimed reclaimed
compress 116M 99M 7 15.39M (13.27%) 71 0.11% 14.75M (12.72%) 7 3.61%
db 7T™ 24M 4 0.57M ( 0.74%) 4| 0.23% 0.53M ( 0.68%) 4 5.77%
jack 223M 69M 9 51.00M (22.87%) 8| 5.97% 94.66M (42.45%) 7| 16.26%
javac 212M 112M 12 18.65M ( 8.80%) | 15 | 29.41% 24.41M (11.51%) | 96 | 589.09%
jess 267M 6M | 12| 17.36M (6.50%) | 11 | 0.53% | 224.92M (84.24%) | 2 | 9.04%
mpegaudio ™ 2M 0 1.96M (28.00%) 0| 2.10% 1.37TM (19.57%) 0| 128.43%
mtrt 143M 17™M 7 || 115.15M (80.52%) 1] 0.09% || 112.56M (78.71%) 6| 62.42%
soot-c 219M 89M 15 40.72M (18.59%) | 13 | 4.89% 7.82M ( 3.57%) | 57 | 276.54%

Table 6: Effect of Adaption

path; 4) the overhead for sharing space with thin locks seems
acceptable; 5) the adaptive part of the algorithm is impor-
tant for focusing the system on the allocation sites that are
likely not to escape; and 6) for many, but not all, bench-
marks the adaptive system finds more local regions than a
non-adaptive system.

We did try measuring runtime improvement using this
prototype, but it turned out that the overheads in our cur-
rent implementation are still too high, and this can lead to
an overall slow down. This is due to several factors, in-
cluding: 1) the cost of region management, 2) the cost of
write barriers, and 3) small helper methods used by region
and barrier implementation. Since many of these functions
are currently written in Java, using small methods, we ex-
pect that the optimizing compiler will inline aggressively
and optimize away much of the overhead. We are currently
working on this implementation in order to determine if the
overheads can be reduced to an acceptable level.

7. RELATED WORK

We have described a region-based allocator using page-
based heaps. Although we use the terminology region here,
the technique does not involve any region inference algo-
rithm [14]. The technique provides an alternative way to
allocate objects on stack in a JVM. There is much litera-
ture on garbage collection, region-based memory manage-
ment and object stack-allocation, thus we focus on those
systems most closely related to our work.

Tofte’s region inference system [14, 13] automatically in-
fers regions for objects. It achieves automatic memory man-
agement by compiler analyses. Gay and Aiken’s CQ [6] and
RC [7] provide language support for regions. CQ@ does not re-
quire an inference algorithm. It uses reference counting and
stack scans to determine the safety of reclaiming a region.
The main point of our work was to develop a system that
works for an existing language, Java, and that is transparent
to the Java programmer. Steensgaard [12] proposed thread-
specific heaps for multi-threaded programs. Both systems
require the heap to be organized as pages/chunks. We stud-
ied the allocation behaviors of Java programs on page-based
heaps. The preliminary results suggest that Java programs
are sensitive to the page size.

Escape analyses [5, 4, 16, 8] for Java determine whether
the objects created by an allocation site may escape cer-
tain scopes. Mainly the analysis results can be used in two
optimizations. Thread escape analysis results can be used
to remove unnecessary synchronizations, and escape analy-

sis to find method-bounded allocation sites can be used to
create objects on the local stack frames. However, the cost
of the analyses prevents them from being used at run time,
and Java semantics may pose restrictions on stackable ob-
jects. Our region-based allocator aims to reduce the work of
garbage collector by allocating objects in temporary regions.
The technique needs no analyses and may be suitable for a
run time system like a Java Virtual Machine.

McDowell [11] reported the number of potentially stack-
able objects in a set of Java benchmarks. Like other escape
analyses, McDowell also made the assumption that a com-
pile time algorithm must make a decision for all objects cre-
ated by an allocation site, although he was using dynamic
profiling information to conclude the results. Our system
does not require this limitation. An allocation site may cre-
ate objects in local regions before any of them is found to
be escaped. Extensions of our adaption algorithm may also
allow allocation sites to become local again, even after being
marked as non-local.

Hallenberg [9] introduced garbage collection into individ-
ual regions in Tofte’s region inference system for the ML
Kit. Although our collector has a similar name as his sys-
tem, the structures are quite different. In his system, the
region inference algorithm creates regions, and inside a re-
gion, a copying collector collects live objects. The backbone
of our system is a garbage collector, and the region is a nat-
ural way to extend stack frames. The region organization
serves as the basis of adaptive allocation. Interested readers
can find the design of Hallenberg’s system in [9], chapter
11.

8. CONCLUSIONS

We have presented an adaptive, region-based allocator for
Java Virtual Machines and studied the allocation behavior
of Java programs on page-based heaps. The main idea is
to detect on-the-fly these allocation sites that do not escape
their region, and then manage these allocations in local re-
gions that can be released when the associated stack frame
is popped.

We implemented the system using the Jikes RVM base-
line compiler and associated garbage collector, and we used
this prototype to study the behavior of a collection of Java
benchmarks, including the SPEC JVM98 benchmarks. This
study showed that the design of the system is crucial, includ-
ing an appropriate choice of page size, and techniques for
minimizing space overhead and region allocation/deallocation
overhead. We also studied the adaptive mechanism of our



system, and found that it quickly found regions from which
no object escaped.

Given our encouraging results so far, we are currently
pushing this work forward in several directions. First, we
are porting the system to the optimizing compiler, where
we hope that the overhead of region-management and write
barriers can be reduced due to aggressive inlining and other
compiler optimizations. This will allow us to provide mean-
ingful run-time speedups. Our quantitative measurements
of the behavior of the regions and barriers indicate that this
should be possible.

Our second major area of investigation is to look at a
wider range of adaptive mechanisms. Currently we mark an
allocation site as non-local as soon as one object allocated
from that site escapes. This scheme is a rather coarse and
naive prediction scheme. When we turn off the adaptation,
this corresponds to a predictor that always predicts that no
object will escape. Our experiments show that this second
method works well for those programs where, in fact, a large
portion of the objects do not escape. We would now like to
examine other more complex predictors. For example, we
could use more than 1 bit, and only mark an allocation site
as non-local after some number of objects escape. We could
also increase the granularity of the predictor by associating
dirty bits with pages within regions, rather than having 1
bit per region. Another possibility is to reset allocation sites
to being local at intervals, for example at collection time or
during phase shifts in the program. This may help in the
case where the same allocation site is sometimes local and
sometimes non-local. As part of this study we also would
like to measure the effect of the regions on memory locality.

Our final area of research is to examine the effect of our
system when coupled with different garbage collectors. As
we pointed out in Section 5, it should be relatively straight-
forward to incorporate our ideas in a variety of collectors.
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