Decompiling Java:

Problems, Traps, and Pitfalls

Jerome Miecznikowski and Laurie Hendren

Sable Research Group
School of Computer Science
McGill University, Montreal, Canada

http://www.sable.mcgill.ca

Overview

. Motivation

. Basic issues for typed statements
e Simple statements

e types

. Advanced issues for restructuring
e Multi-entry point loops
e labeled blocks and break statements

e exceptions & thread synchronization

. Putting it all together

. Conclusions

Motivation

The facts are ...

e Java bytecode is rich in type information,

and is much higher level than traditional
machine code

e Bytecode generated from javac follows spe-
cific code generation patterns

So shouldn’'t decompiling simply be a matter
of inverting javac's compilation strategy?

No!

What we found:

e Java bytecode is much more flexible that
what can be expressed in any structured
language

e Bytecode optimizers and compilers for other
languages will produce radically different
patterns in code generation. These pat-
terns can get very complex

e Typeinformation for locals has to be treated
carefully regardless of source

Conclusion: We want to show some interest-
ing problems in decompiling to Java, see how
other decompilers fare, and suggest our own
workable strategies

Background Questions

e What are these “other’ decompilers?

— Jasmine version 1.10, Jad version 1.5.8,
Wingdis version 2.16, and SourceAgain
version 1.1

e \What does Java bytecode look like?

1. uses an expression stack

2. has explicit control flow

3. supports exceptions

4. supports thread synchronization

Some bytecode (javap -cC)

Method int f(java.lang.Object, int)

O iconst_b5
1 istore_3

2 goto 32

5 aload_1

6 astore 4

8 aload 4

10 monitorenter

11 iload_3

12 iload_2

13 iinc

16 imul

17 istore_3

18 aload 4

20 monitorexit

21 goto 32

24 astore b5

26 aload 4

28 monitorexit

29 aload 5

31 athrow

32 iload_2

33 bipush 10

35 if_icmplt 5

38 iload_3

39 ireturn

Exception table:

from to target type

11 24 24 any

Basic Issues for
Typed Statements

1. Simple Statements

The Java virtual machine uses an
expression stack

javac compilation pattern: the expression
stack will be empty after every program
statement

Even simple optimizations can leave values
on the stack after a “program statement”
(example is given in paper)

All other tested decompilers were confused
by this and produced incorrect output.

(dropped statements, lost locals, error messages in code, etc.)

-

Our working solution is to ...

1. represent stack positions as locals

2. split locals by using U-D webs

3. build 3-address code using the locals

4. aggregate expressions of 3-address code

See Raja Valée-Rai's Master’s Thesis:

Soot: A Java Bytecode Optimization Framework

2. Types

In bytecode, fields have types but locals don’t

L interface: Drawable

class: Circle class: Rectangle

class. Object

public static void f(short i)
{ <unknown> c; <unknown> r; <unknown> d;

<unknown> is_fat;

if (i>10)

{ r = new Rectangle(i, i);
is_fat = r.isFat();
d = r;

}

else

{ ¢ = new Circle(i);
is_fat = c.isFat();
d = c;

}

if (is_fat == 0) d.draw();

Problem: Given the following class hierarchy,
how to determine the type of “d" 7

Solution:

1) Create a type constraint graph based on
the class hierarchy, local assignments,

and local uses

2) Prune and collapse the graph to get precise

types

Circle

See Gagnon, et.al. from SAS2000:

Object

Circle

Drawable
d
i

Rectangle

[

Efficient Inference of Static Types for Java Bytecode

10

All other decompilers failed in both:

e Handling simple statement creation on stack
optimized code

e Correctly finding that d is of type Drawable

The following 5 slides show all tested decom-
pilers’ output on this example.

1. The class was first compiled with javac

2. Then it was optimized by a simple peephole
optimizer

11

Output for: Jasmine

public static void f(short s)
{ Object object;
if (s <= 10) goto 24 else 6;
expression new Rectangle
dup 1 over O
expression s
dup 1 over O
invoke Rectangle.<init>
dup 1 over O
invoke isFat
swap
pop object
expression new Circle(s)
dup 1 over O
invoke isFat
swap
pop object
if !'= goto 47
object.draw() ;

Output for: Wingdis

public static void f(short shortO)
{ if ((((byte)short0) <= 10)7?
(Circle circlel= new Circle(short0)):
(Rectangle rectanl=
new Rectangle(
((short)short0), ((short)short0)))
== false)
{ Drawable.draw();
}

13

Output for: Jad

public static void f(short wordO)
{ Rectangle rectangle;
if (word0 <= 10)
break MISSING_BLOCK_LABEL_24;
rectangle =
new Rectangle(word0, wordO) ;
rectangle.isFat();
Object obj;
obj = rectangle;
break MISSING_BLOCK_LABEL_38;
Circle circle =
new Circle(wordO);
circle.isFat();
obj = circle;
JVM INSTR ifne 47;
goto _L1 _L2
_L1:
break MISSING_BLOCK_LABEL_41;
_L2:
break MISSING_BLOCK_LABEL_47;
((Drawable) (obj)).draw();

}

14

Output for: SourceAgain

public static void f(short si)
{ Object obj;

Object tobj;

Object tobjil;

if(si > 10)
{ Object tobj2;
tobj = new Rectangle(si, si);
tobj2 = ((Rectangle) tobj).isFat();
obj = new Rectangle(si, si);
}
else
{ tobj = new Circle(si);
tobjl = ((Circle) tobj).isFat();
obj = new Circle(si);
}
if(tobjl == 0)
((Drawable) obj).draw();

15

Qutput from our decompiler:

public static void f(short sO)
boolean $z0;
Drawable rO;
Rectangle $ri;
Circle $r2;

{

if (s0 <= 10)

Circle(s0);
.isFat();

Rectangle(sO, s0);
.isFat();

{ $r2 = new
$z0 = $r2
r0 = $r2;

}

else

{ $r1 = new
$z0 = $r1
r0 = $ri;

}

if ($z0 == false)
rO.draw() ;
return;

16

Advanced Issues for
Restructuring

1. Multi-entry point loops

e Problem: Loops in the control flow graph
may have more than one entry point

e T wo solutions: both perform a transform
on the control flow graph

o _ artificial entry point
origina graph versioning solution solution

(@) (® @2@
w0 o e Je
o G <‘<@ 2

17

1. No other decompiler produced correct
output, they generally ignore this possibil-

ity

2. We chose to use the artificial entry point
solution due to scaling issue.

3. Artificial entry point problem: One entry
point is selected as natural and the other
are treated as the product of gotos. Which
do we select as natural?

18

(2)
N

\W4

b is chosen as c is chosen as

original graph natural entry point natural entry point
(1 target of back—edges) (2 targets of back—edges)

1. For each entry point, do a DFS

2. Select the entry point that yields the min-
imum number of targets of back-edges

19

2. Labeled blocks and break
statements

A combination of labeled blocks and break state-
ments can act like a limited goto!

po

if (a) {
if (b)
break L1;
}
else {
if (c¢)
break L1;

Q. W

20

Any control flow DAG can be represented in
pure Java.

1. Topologically sort the DAG

2. Place labeled blocks around the statements
of the DAG

3. Represent all control flow with break state-
ments

abcde ...
{a} bcde ...

{{a} b} cd e ...
{{{a} v} c} d e ...
{{{{a} b} c} d} e ...

21

3. EXxceptions

Problems:

e Areas of protection may overlap, but not
nest

e An area of protection may have several en-
try points

e Several areas might share the same handler
statement

e Their handlers may reside in the area of
protection itself!

e Any combination of the above all at once.

22

public void m()

{

mException rO;
java.lang.RuntimeException rl;
java.lang.Throwable r2;
r0 := @this;

label_a:
java.lang.System.out.println("a");
goto label_c;

label_b:
rl := Qcaughtexception;
java.lang.System.out.println("b");

label_c:
java.lang.System.out.println("c");
goto label_e;

label_d:
r2 := Qcaughtexception;
java.lang.System.out.println("d");

label_e:
java.lang.System.out.println("e");

label_f£:

java.lang.System.out.println("£f");

catch java.lang.RuntimeException from label_a to label_d with label_b;
catch java.lang.Throwable from label_b to label_f with label_d;

23

Control flow graph

Throwable handler

normal control flow exceptional control flow

24

Solution: Version the control flow graph

25

4. Thread Synchronization

Problems:

e Object lock releases may be unstructured

e Critical sections may intersect but not nest

e Multiple entry points, etc.

Solution:

e Restructure only nice candidates

e Use a fallback mechanism for all other cases

Fallback mechanism: Replace monitor in-
structions with static method calls to a class
that implements monitors in pure Java.

26

Example of fallback mechanism

monitorenter a; synchronized (a) {

monitorenter b; Monitor.v() .enter(b);
monitorexit a; }
monitorexit b; Monitor.v() .exit(b);

27

Putting it All Together

Problem: Since it is difficult to resolve these
Issues singly, solving them simultaneously would
likely be extremely difficult, maybe impossible

Solution: Deal with issues one at a time

Our decompiler uses an ordering of phases that
allows us to tackle each problem on it's own.

For example, all Java loops are found in a sin-
gle phase. The benefit is that once we have
completed this phase, we know we have solved
all the potential restructuring problems caused
by multi-entry point loops.

See Miecznikowski et.al. from WCRE2001:

Decompiling Java using Staged Encapsulation

28

The ordering of phases in Dava:

10.

. Find simple statements

Perform local typing

Create a control flow graph of typed simple state-
ments

Modify control flow graph to accommodate excep-
tional problems

Find loops

Find if and switch statements

Find exceptions

Find synchronized statements and their fallbacks

Determine if we need labeled blocks and break state-
ments

Emit Java source

29

Conclusions

The Java bytecode specification is much
more flexible than the Java language spec-
ification

T here are plenty more problems thatI haven't
SNOWN (throws declarations, spurious try block removal,

class literals, package and class resolution, etc.)

Even bytecode that comes from javac can
pose difficulties

Many sources can produce bytecode which
doesn't follow javac’'s code production pat-
terns

All these problems have been solved in our
decompiler!

30

If you'ld like to try it out

e Our website:
http://www.sable.mcgill.ca

e My public directory:
http://www.sable.mcgill.ca/~ jerome/public/

Thank you!

31

