A Comprehensive Approach to Array
Bounds Check Elimination for Java

Feng Qian, Laurie Hendren, Clark Verbrugge

! b
i e %

\ by £

\ AT L .
24,

McG11ll1l

Sable Research Group
School of Computer Science, McGill University
Montreal, CANADA

http://www.sable.mcgill.ca

Introduction

e Array bounds checks are required by the semantics
of the Java programming language.

e Runtime checks can slow down the program exe-
cution significantly.

e [his paper presents an algorithm for proving which
array references are safe (do not need bounds checks).

T he Problem

o ArraylIndexOutOfBoundsException.

e Precise exception requirements limit code motion
and loop transformations.

e A multi-dimensional array is an array of arrays (can
be ragged).

e [he lower bound check comes free with the upper
bound check on most modern architectures.

Overview

e Intra-procedural, flow-sensitive analysis: Variable
Constraint Analysis (VCA).

e [WO extensions:

1. class level analysis: array field analysis.

2. inter-procedural analysis: rectangular array anal-
VSIS.

Difference Constraints

Bounds checks for ali]: 0 <i¢ < a.length—1 7

From a program text, a static analysis is able to
collect a set of inequalities.

T he system of difference constraints is represented
as a constraint graph.

The shortest path of the graph answers above
query.

Variable Constraint Graphs

e Nodes: int type locals, array type locals, the con-
stant O node.

e Edges: e(u,v) = w represents the difference con-
straint v — u < w.

e Ordering of edge weights: L C mimint C ... C c C
c+1Cc+2C...CmaxintC T

An Example of VCG

so:t=7J+2
s1:ali] =---; ,
sz 1= foo(---); @%@
. _—
sz ralj] =---; -2
(a) a basic block (b) vcg after sg

(D=1 OO

EI)\Z@ o (lo;

(c) vcg after sq (d) vcg after so

VCGQG Properties

e Weighted directed edges.
e Inequalities are transitive.
e [he shortest path gives the tightest constraint.

e But, it cannot represent multiplication and divi-
sion.

Array-Related Liveness Analysis

e Specialized live variable analysis focusing on only
variables related to array references.

e Computes accurate node sets for VCGs at inter-
esting program points.

EXpr Cond Gen | Kill
alil] a, |
a =new T]J[i] | a i a

|l =J]+ C i J i

Variable Constraint Analysis (1)

Forward, flow-sensitive, optimistic analysis.

Break basic blocks at statements with array refer-
ences.

The analysis approximates VCG edge weights.

At a join point, merging two graphs by choosing
the MAX weight for each edge, then widening the
edge weights, if necessary.

Variable Constraint Analysis (2)

e [he flow function for a basic block:

INPUT : the VCG at the entry of block.

OUTPUT : the VCG after taking the effect of statements
of the block.

e Edge weights at the entry point are initialized to T, others
are set to L.

e Take conditions of branches into account (for if (i<n): i—n <
—1 on true path, n—17 < 0 on false path.

10

Tune The Analysis

e Limit the size of constraint graphs by pre-computing
the set of array-related live variables.

e Widen edge weights at the confluence points.

e Enforce a good ordering in the work list:

— the loop body is visited before the loop exit;

— inner loops reach a fixed point before outer loops.

11

Int[] init_array(int n)

Int[] a=new int[n];
for Elntl =0; 1<n; |++){

1] =1,
}
return a;

}

Step 1: order CFG nodes

Step 2: array-related live
variable analysis

START
(n} |

@ a = new Iint[n];
I =0;

return a,;

'

END

12

Step 3: Variable Constraint
Analysis

START
in}

@ a =new int[n];
| =0;

return a;

Y
END

After @ a 0 n

Before@ | %O

a9 .q

Before@ /
_ 0

== -0

After@ Oj/
1

i _‘:»10

13

Step 3: Variable Constraint
Analysis

START
in} |

@ a=new int[n];
| =0;

return a;

Y

END

a 0 n
0 /
'Y
| 0 0
2. widen with (')
a 0 n
0 /
VST
| 0 0

14

Step 3: Variable Constraint
Analysis

START
in},

@ a = new int[n];
| =0;

return a;

Y
END

O =

m Q)
N N

-1

Extension 1: Array Field Analysis

e Example: final int[]] m={2,4,7,9...};

e Observation : a final or private field can only be
assigned a value in the declaring class.

e Find all possible array lengths using DU/UD chains.
e Identify those array fields with constant lengths.

e T he constant array length is used by the intra-
procedural analysis.

16

Extension 2: Rectangular Array Analysis
e Array Type Graph:

— a = multianewarray T[i][i] : TRUE — a;
— alil = c¢c: FALSE — a;

—a=>Db: a+—0.

e A variable 'a’ has a rectangular shape if TRUE ~ a and
FALSE + a.

e A special node in VCG for the length of subarrys: al.

17

Experimental Approach

e Used as ahead-of-time analyses in the Soot frame-
work.

e Analysis results encoded in class files as attributes.

e Modified Kaffe JIT and IBM HPCJ take advantage
of such attributes.

KaffeVM

Soot with JIT
lass
.class H analyses,—% -Cl: J<
[annotations +attributes AO IBM HPCJ

18

Characteristics of The Algorithm

Graph size Blocks | NonZero Iter

(avg) | (max) Blocks | (avg)

db 3.17 6 280 89 | 1.28
jack 2.5 6 2076 1892 | 1.04
javac 2.45 6 3347 1631 1.27
mpegaudio 3.42 10 6987 6670 | 1.10
raytrace 2.56 6 626 476 | 1.31
scimark? 5.8 12 388 301 1.79
LCS 9 13 59 55 2.8
MCO 4.6 11 98 95 2.0

19

Analysis Results

100%

O Safe lower bound
80% | @ Safe upper bound

B Safe both bounds
60% _ [

40% 1]]

0% ‘ ‘

db jack javac mpegaudio raytrace FFT LU SOR LCS MCO

(a) Results of the intra-procedural analysis

OVCA

80% 1O VCA+Field
60% | |2 VCA+Rect _
W All

100%

40%

20% I [
00/0 = T T . T T T T T T T
db jack javac mpegaudio raytrace FFT LU SOR LCS MCO

(b) Improvements due to field and shape analysis

20

Speedups in KaffeVM and HPCJ

60% O No checks
50% 1+ .
25% O No checks 40%% | |@With attributes
20% —|> E With attributes 30% —
15% 20% -
10% 10% -
5% | E 0% 7 |
. -10%
0% -20%
-5% mpegaudio FFT LU SOR LCS MCO
mpegaudio FFT LU SOR LCS MCO (21s) (17s) (22s) (12s) (52s) (17s)
(a) Kaffe VM (b) HPCJ (other optimiza-
tions on)

21

Related Work (1): ABCD (PLDI'00)

ABCD (R. Bodik et. al.) is based on an extended SSA form,
and uses one constraint graph for a method; VCA is based on
CFG, and computes small program-point specific constraint
graphs.

ABCD proves safe bounds on demand; VCA analyzes all ref-
erences at once.

ABCD is capable of catching partial redundant bounds checks;
VCA is not.

VCA analyzes lower and upper bounds at the same time, and
the results can be improved by two extended analyses.

22

Related Work (2): Detect Array
Memory Leaks (CC’00)

e R. Shaham et. al. used very similar representations
as VCG to detect live ranges of array reference.

e [he algorithm works on supergraphs of particular
library classes (Vector).

e VCA focuses on intra-procedural analysis and uses
various techniques to reduce the cost of data-flow

analysis.

23

Conclusions
e We presented a collection of analyses for eliminating array
bounds checks in Java.

— Variable Constraint Analysis
— Array Field Analysis

— Rectangular Array Analysis

e Techniques reduce the cost of the data-flow analysis.

e The algorithm is effective for proving safe array references.

24

