Practical Virtual Method Resolution for Java

Vijay Sundaresan
Laurie Hendren, Chrislain Razafimahefa,
Raja Vallée-Rai, Patrick Lam,
Etienne Gagnon and Charles Godin
(Winghong Felix Kwok)

Sable Research Group, McGill University
Montreal, Canada

www.sable.mcgill.ca

(AN S A S S i
Mc G111l

Sable Research Group (1)

Outline

e What is Virtual Method Resolution? Why?

e The Soot Framework

e Simple Existing Techniques (CHA and RTA)

e The Quest: better accuracy with only one iteration
e Solution: Variable Type Analysis

e Experimental Results

e Related Work and Conclusions

Sable Research Group (2)

Virtual Method Resolution

Which methods might be called at run-time?

{ int al, a2, ..., an;

o.mal, a2,...,an)

Sable Research Group

rpublic class A {

> public void m(int p1, ... I nt pn)
{ System out. prlntln(p1+ ..+pn); }
|}
(public class B {
\\~pu?lic v?id m (int pl, i nt pn)
|}
Kgsblic class C {
I nt pn)

pu?lic v?id m (int pl,

(3)

Benefits of resolving virtual method calls

'publ ic class A {

{ int a1, a2, ..., an; > public void m(int pl1, ..., 1int pn)
{ Systemout.println(pl+...+pn); }

o.m(al, a2,...,an);

- | }
}

Devirtualize
rpubl ic class A {
{ int al, a2, ..., an; > public static void (int pl,...,pn)
/ { Systemout.println(pl+...+pn); }

mal, a2,...,an); e

. | |
}

Inline

{ int al, a2, ..., an;

Systemout.println(al+...+an);

}
Sable Research Group (4)

A Conservative Call Graph

| |
) 0 [/OK
| NN

S O

C] Method

—— Call edge

Entry Points

O Potentially Polymorphic Call Site

Sable Research Group (5)

Improving the call graph

Entry Points

. Reachable Method . Unreachable Method

— Necessary call edge O Potentially polymorphic call site

—— Call edge that may be eliminated

Sable Research Group (6)

Pruned Call Graph
Entry Points

Good Call Graph

Minimize:

O Number of
reachable
methods

O Number of call

edges
O Number of
- Reachable Method potentially
polymorphic
— Necessary call edge call sites
O Potentially Polymorphic Call Site L i

Sable Research Group (7)

Implemented using the Soot framework
(see www.sable.mcgill.ca/soot and OOPSLA posters)

Java
source

'

javac

SML

source

'

Scheme Eiffel

source

'

source

Produce Jimple 3-address IR

Analyze and Optimize

'

Generate Bytecode

/

MLJ KAWA SmallEiffel
\cﬁss fi I(;s//
| SO00T
Y

'

Optimized class files

- v,

Interpreter

JIT

Adaptive Engine

Ahead-of-Time

Compiler

Sable Research Group

(8)

The Jimple Typed 3-adc

e there is no expression stac

ress Representation

K5

e each statement has a simp|
e variables are split by U/D

e cach variable has a declare

inferred from the bytecode (Gagnon and Hendren,

SAS 2000).

Sable Research Group

le three-address form;
- D/U webs; and

d type that has been

(9)

Existing Simple Methods for Virtual Method Call Resolution

{ int al, a2, ..., an;

What do we know
about the type of
receiver 0???

Sable Research Group

rpublic class A {
21, public void m(int p1, ... I nt pn)
{ System out. prlntln(p1+ ..+pn); }
|}
2 (,
‘ |public class B {
\\~pu?lic v?id m (int pl, i nt pn)
|}
Kgsblic class C {
I nt pn)

pu?lic v?id m (int pl,

(10)

Using the declared type: Class Hierarchy Analysis
Dean, Grove and Chambers (1995), Fernandez (1995)

{ int al, a2, ..., an;
C o;
o.n(al,az2,...,an)

}

Sable Research Group

rpublic class A {

public void m(int pl1, ...,
{ Systemout.println(pl+...+pn); }

rpublic class B {
pu?lic v?id m(int pl, ...,

r

\stlic class C {
public void m(int pl1, ...,

(11)

Class Hierarchy Analysis (CHA) (Example 2)

{ int al, a2,
D o;

o.n(al, az, ...

an,

, an)

Sable Research Group

rpublic class A {

> public void m(int pl1, ... i nt pn)
{ System out. pr|ntln(p1+ . +pn); }
|}
rpublic class B {
\pu?lic v_?id m (int pl, I nt pn)
|}
rpublic class C {
I nt pn)

pul{olic v?id m (int pl,

(12)

Using the types of allocated objects: Rapid Type Analysis (RTA)

{ int al, a2,
D o;

Objects Allocated
{ Object, A, C}

Sable Research Group

Bacon and Sweeney (1996)

rpublic class A {

an; 5 public void m(int p1, ..., int pn)
{ Systemout.println(pl+...+pn); }
|}
(public class B {
\\~pu?lic v?id m(int pl, ..., int pn)
|}
rpublic class C {
I nt pn)

pu?lic v?id m(int pl, ...,

(13)

Quest: Improve upon RTA, restrict the analysis to one iteration
e RTA assumes that all allocated objects can reach a receiver.
e Want to provide a more accurate approximation;

e by tracking assignments from allocation sites, to method

invocations.

public class A {

public void f (C &) {
; [X m)

}
}

public class B

- class B
public void f {
M)

}
}

Sable Research Group (14)

Solution: Variable Type Analysis (VTA)

public class A {

DUW{
; [l X m()
}
}

public class B

public void f {
; [l X . m)

}

Initial Type Propagation Graph Final Type Propagation Graph

Sable Research Group (15)

Three Steps in VTA

1. Form initial conservative call graph (CHA, RTA,
VTA).

2. Build type propagation graph.

3. Solve type propagation graph in one iteration.

Sable Research Group (16)

Building the Type Propagation Graph

Assuming, statement is in class C, method m;

a = b;
ali] = b,
a = b[i];

Assuming field f is declared in class A:

If either left or right side is Object or Array type:

a = b; (Cma>—Cmb>

Sable Research Group (17)

Building the Type Propagation Graph - method calls

Assuming the initial call graph of:

ol

[class X {

—> D f (Aa)

q =_o.f(p);

)
il

Sable Research Group

)

Ve

return(r);
| Y
Y (,{A a)
b En):
}

(18)

Propagating Types

1. For each statement of the form x = new A(Q);,
initialize the node for x with the type A.

2. Collapse strongly connected components, forming a
DAG.

3. Propagate types on resulting DAG in one topological
sweep.

Sable Research Group (19)

Building the Type Propagation Graph

A al, a2, a3;
B bl, b2, b3;

c e /N

al = new A(); <— @
a2 = new A();

bl new B() ; <

b2

c = new (();

al = az;

a3 = al; @

a3 = b3;

b3 = (B) a3;

bl = b2: (b) Nodes and Edges
bl = c;

(a) Program

Sable Research Group (20)

al
a2
bl
b2
cC =

new A();
new A();
new B();
new B();

new C();

{B}

{C}

{B}

(c) Initial Types

Sable Research Group

Propagating Types

N
'<

(B} B -

{C}

(d) Strongly-connected components

{A}

{B,C}

{C}

{A}

{B}

/_ JR—

(e) final solution

(21)

A Coarser Approximation: Declared Type Analysis

A al, a2, a3;

A OO ORMONOZ0

{A} {B} {C}
al = new A();
a2 = new A();
bl = new B(); (b) Nodes and Edges (c) Initial Types
b2 = new B();

c = new C();

| ,\ | | ,\ \I
I I

at = a2 IOROLORBHIORO20
| I | I

a3 =al; | |- x¥ ___ . {C} ____________ v {C}
a3 = b3; {A,B} {A,B,C}

b3 = (B) a3;

bl = b2; (d) Strongly-connected components (e) final solution
bl = c;

(a) Program

Sable Research Group (22)

Tradeoffs to ensure one iteration and reasonably sized
graph

e Simple solution to aliasing problem.

e No killing based on casts or declared type during
propagation. However, filtering based on declared
type is performed after propagation.

e Pessimistic because it starts with a conservative call
graph. We can start with a CHA- or RTA-based call
graph, or we can run VTA twice, using the first run
to compute a better call graph.

Sable Research Group (23)

Experimental Results

e Measure Benchmarks

— Amount of code, division between library and user
(benchmark) code.

— Characteristics of conservative call graph (built using CHA)
e Static Improvements in the Conservative Call Graph by

applying RTA,DTA and VTA

— Percent nodes removed.

— Percent edges removed.

— Percent of potentially polymorphic call sites

resolved /eliminated.

e Dynamic Study of Monomorphic Virtual Calls

Sable Research Group (24)

Benchmark Characteristics

Total Benchmark Only
Stmts. | # Stmts # Classes # Interfaces
raytrace || 49239 5347 34 1
jack 55107 11215 62 5
javac 69585 25304 177 5
sablecc 68575 24621 298 13
soot 63506 33396 497 34
pizza 73130 42805 207 11

Sable Research Group

(25)

Conservative Call Graph Characteristics (CHA)

Total Benchmark Only

Nodes || # Nodes # Call Sites (% Poly.)
raytrace 1729 207 2049 (0.6%)
jack 1857 337 3068 (12.9%)
javac 2821 1188 6781 (12.5%)
sablecc 3737 1955 6809 (13.1%)
soot 2828 2001 10615 (14.6%)
pizza 2660 1756 11692 (4.9%)

Sable Research Group

(26)

Percentage Methods Removed From Conservative Call Graph
(Whole Application)

70 -
60
50 -
a0 B RTA
% CODTA
30 -
BVTA
20 -
b o
0 + ol
"/ N < < g 2>
¢ C > o o 7%
«° P & 0\0 &° Q{l'
) S >
& o

Sable Research Group (27)

Percentage Edges Removed From Conservative Call Graph
(whole application)

60

50

40 -

B RTA
% 30 - CDTA
20 - EVTA

Sable Research Group (28)

Percentage Methods Removed From Conservative Call Graph
(Benchmark only)

9 _
8
7 _
: ’ HRTA
% . EDTA
3 | EVTA
2 |
1 _
0
"] o < < g 2>
< < > < (Y v
7 ¥ N & % &
) S >
& %

Sable Research Group (29)

25
20
15

%
10

Percentage Edges Removed From Conservative Call Graph
(Benchmark Only)

B RTA

CDTA

EVTA

Sable Research Group (30)

Percentage Potentially Polymorphic Calls Resolved from
Conservative Call Graph (Benchmark only)

100
90
80
70 -
60

HRTA

v 50 EDTA
40 | HVTA
30 | [1VTA(2)

Ta [} - |

jack javac sablecc soot pizza

Sable Research Group (31)

Percentage Virtual Method Calls that resolve to Exactly One
Method at Run-time (Benchmark only)

100

- EHCHA
B RTA
- HVTA
[1 Profile

% 50

Sable Research Group (32)

Related Work

e Many more expensive techniques.

e Inexpensive techniques include:
— Diwan, Moss and McKinley (OOPSLA 96);

— DeFouw, Grove and Chambers (POPL 98)
(merge nodes after visiting n times);

— Tip and Palsberg (OOPSLA 00)
(restrict number of sets to be approximated); and

— Ishizaki, Kawahito, Yasue, Komatsu and Nakatani
(OOPSLA 00) (devirtualization in JITs).

Sable Research Group (33)

Conclusions

e Variable Type Analysis (VTA) builds a type
propagation graph and solves it in one pass, no
iteration.

e VTA resolves (to one method) significantly more
potentially polymorphic call sites than RTA.

e VTA is available in the newest release of Soot. Soot
is a publically-available framework available from

www.sable.mcgill.ca/soot

Sable Research Group (34)

