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Outline

e What is Virtual Method Resolution? Why?

e The Soot Framework

e Simple Existing Techniques (CHA and RTA)

e The Quest: better accuracy with only one iteration
e Solution: Variable Type Analysis

e Experimental Results

e Related Work and Conclusions
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Virtual Method Resolution

Which methods might be called at run-time?

{ int al, a2, ..., an;

o.mal, a2,...,an)
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rpublic class A {

> public void m(int p1, ... I nt pn)
{ System out. prlntln(p1+ ..+pn); }
|}
(public class B {
\\~pu?lic v?id m (int pl, i nt pn)
|}
Kgsblic class C {
I nt pn)

pu?lic v?id m (int pl,
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Benefits of resolving virtual method calls

'publ ic class A {

{ int a1, a2, ..., an; > public void m(int pl1, ..., 1int pn)
{ Systemout.println(pl+...+pn); }

o.m(al, a2,...,an);

- | }
}

Devirtualize
rpubl ic class A {
{ int al, a2, ..., an; > public static void (int pl,...,pn)
/ { Systemout.println(pl+...+pn); }

mal, a2,...,an); e

. | |
}

Inline

{ int al, a2, ..., an;

Systemout.println(al+...+an);

}
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A Conservative Call Graph
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Improving the call graph

Entry Points

. Reachable Method . Unreachable Method

— Necessary call edge O Potentially polymorphic call site

—— Call edge that may be eliminated
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Pruned Call Graph
Entry Points

Good Call Graph

Minimize:

O Number of
reachable
methods

O Number of call

edges
O Number of
- Reachable Method potentially
polymorphic
— Necessary call edge call sites
O Potentially Polymorphic Call Site L i
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Implemented using the Soot framework
(see www.sable.mcgill.ca/soot and OOPSLA posters)

Java
source

'

javac

SML

source

'

Scheme Eiffel

source

'

source

Produce Jimple 3-address IR

Analyze and Optimize

'

Generate Bytecode
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The Jimple Typed 3-adc

e there is no expression stac

ress Representation

K5

e each statement has a simp|
e variables are split by U/D

e cach variable has a declare

inferred from the bytecode (Gagnon and Hendren,

SAS 2000).
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le three-address form;
- D/U webs; and

d type that has been
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Existing Simple Methods for Virtual Method Call Resolution

{ int al, a2, ..., an;

What do we know
about the type of
receiver 0???
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rpublic class A {
21, public void m(int p1, ... I nt pn)
{ System out. prlntln(p1+ ..+pn); }
|}
2 ( ,
‘ |public class B {
\\~pu?lic v?id m (int pl, i nt pn)
|}
Kgsblic class C {
I nt pn)

pu?lic v?id m (int pl,
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Using the declared type: Class Hierarchy Analysis
Dean, Grove and Chambers (1995), Fernandez (1995)

{ int al, a2, ..., an;
C o;
o.n(al,az2,...,an)

}
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rpublic class A {

public void m(int pl1, ...,
{ Systemout.println(pl+...+pn); }

rpublic class B {
pu?lic v?id m(int pl, ...,

r

\stlic class C {
public void m(int pl1, ...,
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Class Hierarchy Analysis (CHA) (Example 2)

{ int al, a2,
D o;

o.n(al, az, ...

an,

, an)
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rpublic class A {

> public void m(int pl1, ... i nt pn)
{ System out. pr|ntln(p1+ . +pn); }
|}
rpublic class B {
\pu?lic v_?id m (int pl, I nt pn)
|}
rpublic class C {
I nt pn)

pul{olic v?id m (int pl,
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Using the types of allocated objects: Rapid Type Analysis (RTA)

{ int al, a2,
D o;

Objects Allocated
{ Object, A, C}
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Bacon and Sweeney (1996)

rpublic class A {

an; 5 public void m(int p1, ..., int pn)
{ Systemout.println(pl+...+pn); }
|}
(public class B {
\\~pu?lic v?id m(int pl, ..., int pn)
|}
rpublic class C {
I nt pn)

pu?lic v?id m(int pl, ...,
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Quest: Improve upon RTA, restrict the analysis to one iteration
e RTA assumes that all allocated objects can reach a receiver.
e Want to provide a more accurate approximation;

e by tracking assignments from allocation sites, to method

invocations.

public class A {

public void f (C &) {
; [ X m)

}
}

public class B

- class B
public void f {
M)

}
}
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Solution: Variable Type Analysis (VTA)

public class A {

DUW{
; [l X m()
}
}

public class B

public void f {
; [l X . m)

}

Initial Type Propagation Graph Final Type Propagation Graph
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Three Steps in VTA

1. Form initial conservative call graph (CHA, RTA,
VTA).

2. Build type propagation graph.

3. Solve type propagation graph in one iteration.
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Building the Type Propagation Graph

Assuming, statement is in class C, method m;

a = b;
ali] = b,
a = b[i];

Assuming field f is declared in class A:

If either left or right side is Object or Array type:

a = b; (Cma>—Cmb>
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Building the Type Propagation Graph - method calls

Assuming the initial call graph of:

ol

[ class X {

—> D f (Aa)

q =_o.f(p);

)
il
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return(r);
| Y
Y (,{A a)
b En):
}
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Propagating Types

1. For each statement of the form x = new A(Q);,
initialize the node for x with the type A.

2. Collapse strongly connected components, forming a
DAG.

3. Propagate types on resulting DAG in one topological
sweep.
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Building the Type Propagation Graph

A al, a2, a3;
B bl, b2, b3;

c e /N

al = new A(); <— @
a2 = new A();

bl new B() ; <

b2

c = new (();

al = az;

a3 = al; @

a3 = b3;

b3 = (B) a3;

bl = b2: (b) Nodes and Edges
bl = c;

(a) Program
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al
a2
bl
b2
cC =

new A();
new A();
new B();
new B();

new C();

{B}

{C}

{B}

(c) Initial Types
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Propagating Types
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(B} B -

{C}

(d) Strongly-connected components

{A}

{B,C}

{C}

{A}

{B}

/_ JR—

_______

(e) final solution
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A Coarser Approximation: Declared Type Analysis

A al, a2, a3;

A OO ORMONOZ0

{A} {B} {C}
al = new A();
a2 = new A();
bl = new B(); (b) Nodes and Edges (c) Initial Types
b2 = new B();

c = new C();

| ,\ | | ,\ \I
I I

at = a2 IOROLORBHIORO20
| I | I

a3 =al; | |- x¥ ___ . {C} ____________ v {C}
a3 = b3; {A,B} {A,B,C}

b3 = (B) a3;

bl = b2; (d) Strongly-connected components (e) final solution
bl = c;

(a) Program
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Tradeoffs to ensure one iteration and reasonably sized
graph

e Simple solution to aliasing problem.

e No killing based on casts or declared type during
propagation. However, filtering based on declared
type is performed after propagation.

e Pessimistic because it starts with a conservative call
graph. We can start with a CHA- or RTA-based call
graph, or we can run VTA twice, using the first run
to compute a better call graph.
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Experimental Results

e Measure Benchmarks

— Amount of code, division between library and user
(benchmark) code.

— Characteristics of conservative call graph (built using CHA)
e Static Improvements in the Conservative Call Graph by

applying RTA,DTA and VTA

— Percent nodes removed.

— Percent edges removed.

— Percent of potentially polymorphic call sites

resolved /eliminated.

e Dynamic Study of Monomorphic Virtual Calls
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Benchmark Characteristics

Total Benchmark Only
# Stmts. | # Stmts # Classes # Interfaces
raytrace || 49239 5347 34 1
jack 55107 11215 62 5
javac 69585 25304 177 5
sablecc 68575 24621 298 13
soot 63506 33396 497 34
pizza 73130 42805 207 11
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Conservative Call Graph Characteristics (CHA)

Total Benchmark Only

# Nodes || # Nodes # Call Sites (% Poly.)
raytrace 1729 207 2049 (0.6%)
jack 1857 337 3068 (12.9%)
javac 2821 1188 6781 (12.5%)
sablecc 3737 1955 6809 (13.1%)
soot 2828 2001 10615 (14.6%)
pizza 2660 1756 11692 (4.9%)
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Percentage Methods Removed From Conservative Call Graph
(Whole Application)
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Percentage Edges Removed From Conservative Call Graph
(whole application)
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Percentage Methods Removed From Conservative Call Graph
(Benchmark only)
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Percentage Potentially Polymorphic Calls Resolved from
Conservative Call Graph (Benchmark only)
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Percentage Virtual Method Calls that resolve to Exactly One
Method at Run-time (Benchmark only)
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Related Work

e Many more expensive techniques.

e Inexpensive techniques include:
— Diwan, Moss and McKinley (OOPSLA 96);

— DeFouw, Grove and Chambers (POPL 98)
(merge nodes after visiting n times);

— Tip and Palsberg (OOPSLA 00)
(restrict number of sets to be approximated); and

— Ishizaki, Kawahito, Yasue, Komatsu and Nakatani
(OOPSLA 00) (devirtualization in JITs).
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Conclusions

e Variable Type Analysis (VTA) builds a type
propagation graph and solves it in one pass, no
iteration.

e VTA resolves (to one method) significantly more
potentially polymorphic call sites than RTA.

e VTA is available in the newest release of Soot. Soot
is a publically-available framework available from

www.sable.mcgill.ca/soot
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