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Introduction

Pascal's triangle has a seemingly endless list of fascinating properties.
One such property which has been extensively studied is the fact that the num-
ber of odd entries in the n'® row is equal to 2! where ¢ is the number of ones
in the base two representation of n (see [1], [2], and [3]).

Generalizations of this property seem surprisingly difficult. For a prime
modulus, Hexel & Sachs [4] obtain a rather involved expression for the number
of occurrences of each residue. Explicit formulas are obtained for p = 3 and
5. In particular, for a prime modulus p, the number of occurrences for a given
residue in row n depends only on the number of times each digit appears in the
base p representation of n. However, it is easily seen that composite moduli
do not satisfy this property. In this article we consider Pascal's triangle
modulo 4 and obtain explicit formulas for the number of occurrences of each
residue modulo 4.

Notation and Conventions

The letters 7, J, Kk, % will denote nonnegative integers. The letter »n will
typically refer to an arbitrary row of Pascal's triangle. We will need
detailed information on the base two representation of n. The following
definitions will be useful.

Let

k . k
n =13 a;2", where a; = 0 or 1, and B(n) = 3 a;.
=0 i=0

We also define

¢; =1 if and only if a;4+; = 1 and a; = 0, where a3, = 0.

We then define .
Cn) = 2: ci-
=0
Similarly, we define
k
di = (ai+1)(ai) and D(H) = 2: di'
=0

Clearly, B(n) is the number of "1"; C(n) is the number of "10"; and D(n) is the
number of "11" blocks, not necessarily disjoint, in the base two representation
of n.

For our purposes,

(n)=_1“_
J Jl(n - g
is defined for integer values of n and j; further,

(§)=Oifj<00rj>n.

1991] 79



PASCAL'S TRIANGLE MODULO &

We definen ) ) .
<j> = r if and only if (j) = r (mod 4).

Let ¥(n) = (a, b, ¢), where Ni(n) = a is the number of ones, N,(n) = b is the
number of twos, and N3(n) = ¢ is the number of threes in the nth row of Pascal's
triangle.

We will make use of several well-known results found in Singmaster [5].

Lemma 1: p¢

(;) if and only if the p-ary subtraction n - j has e borrows.

Lemma 2: The number of odd binomial coefficients in the nth level of Pascal's
triangle is 25(9,

We begin our work with an easy result which we prove for completeness.
Lemma 3: N(2%¥) = (2, 1, 0) when k > 1
Proof: Clearly
k k
(o) = G
so Nl(Zk) > 2. By Lemma 2,
Ny (25) + W32k =

So Ny(2k) = 2 and N3(2%) = 0. Further, for 0 < j < 2%k71, 2k — j will have at
least two borrows when performed in base two. Thus,

4|(i;); hence, <i?> = 0.

Similarly, for 2¥~1 < j < 2%, Noticing

<2k 1>

we conclude Ny(2%) = 1. 0O

Lemma 4: Let n = 2X + &, where 0 < & < 2k,

I
o

i ; k-1 n
(i) If & < gj < 2%71, then <j>
(ii) If & < j < 2%, then <§> =0 or 2.

Proof: In case (i), we must borrow at least twice in subtracting »n - j, and in
case (ii), at least one borrow must take place.

By Lemmas 3 and 4, it is clear that Pascal's triangle modulo 4 has the fol-
lowing form:

e —/ \A

F&gure 1
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The standard identity
+ 1
PEEVARCYRES

shows that any row in Figure 1 completely determines all subsequent rows. This
identity and Lemma 3 yield the following recursive relations.

Part 1: If n = 2% + ¢, where 0 < & < 2¥~! (see upper dashed line in Fig. 1):
@ & = <§> for 0 < j < 03
(ii) <;> = <§> -0 fFor & + 1 < § < 21,
(iii) <?> = 2<j _22;(_1> for 2kl < 7 < 2k-1 4 g,
(iv) <;> =0 for 281 4+ ¢ < 4 < 2%,
@ =G Ep)  for 2k sjsa
Part 2: 1If n = 2% 4+ &, where 2%"1 < ¢ < 2% (see lower dashed line in Fig. 1):
o) (5= (5 for 0 < § < 2%°1;
(vii) <?> = <§> + z<j _‘sz_1> for 2k71 < 7 < g
(viii) <?> = 2<j —sz'1> for & < j < 2k;
w0 (5 =205 ) +(Gh ) for2ksisa+ 2k
(%) <?> = <j f2k> for 271 + ¢ < 4 < n.

All of the expressions above are considered modulo 4.

We are now in a position to count the number of ones and threes modulo 4.
Recall that D(n) > 0 if and only if the base two representation of #» has a "11"
block.

Theorem 5: If D(n) = 0, then ¥;(n) = 28" and Wy(n) = 0.

Proof: We use induction on 7. The theorem is true for n < 3. Since D(n) = 0,
we know n = 2K + %, where & < 2%¥~! and D(&) = 0. Using (iii) of the recur-
sion, we have

<Z> = 2<j -sz‘l> (mod 4)

for 2k-1 < J < 2k, Thus, there are no threes in this section of the nth row of
Pascal's triangle. By (i) and (v), we see

<§> <§> for j < 2%71 and <§> = <j _Qék_1> for 7 > 2k,

Thus, N3(n) = 2N3(&). But by induction, N3(2) = 0. The theorem now follows
from Lemma 2. [J

Theorem 6: 1f D(n) > 0, then Ny(n) = Nz(n) = 280W-1,

Proof: The result is clear for n < 4.
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Case 1: n = 2k + %, where & < 2k~1_, C(Clearly, D(2) > 0. When considering (?),
by the recursion, we need only consider j < & or 2% < j. For 0 < j < 4, there
are as many ones and threes as in row %. By symmetry, there are as many for
2k < j. Thus, Nj(n) = 2N, (&) and N3(n) = 2N3(L), so the result holds by induc-
tion.

Case 2: n = 2k + 9, where 2k71 < g < 2%, Let & = 2! 4+ p». Consider the five
sections of row nm:

A. 0 < g < 2k-1;

B. 2k-1l <4 < g;

C. & < g < 2k;

D. 2k <4 <o+ 2k°1;
E. &+ 2k°1 < 4 < g + 2k =g,

By symmetry, A = E and B = D. 1In section C, by (viii),

N 2
Gy = 2( ey
and there are no ones or threes in C.
In section A,

<?> = <§> for 0 < j < 2k-1,

Since we are trying to count the number of times (§) = 1 or 3, by Lemma 4, we
need only consider j < r.
In section B,

Gy =+ 2 e

Now, by Lemma 1, (}) and <j_§k-1> are both odd or both even. We need only con-
sider the case when they are both odd. Thus,

2<j _Qék_1> =2 (modulo 4).

Observing x + 2 = 3x if « = 1 or 3 (modulo 4), we have

<Z> 3<§l> = 3<1 f J> (modulo 4).

Since we are in section B, 2k-1 < J ¥ %, and recalling that & = 2k'14-r, we see
that 0 < & - § < », that is, (1%j> is in section A.

This implies the number of ones in section A equals the number of threes in
section B and the number of threes in section A equals the number of ones in
section B. Hence, there are an equal number of ones and threes in the combined
sections of A and B; thus, N;(n) = Nz3(n). The theorem now follows from Lemma

2. 0O
Theorem 7: N,(n) = C(n)2BM-1,

Proof: Recall that

<?> = 2 if and only if 2

(7):
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which occurs if and only if n - j has exactly one borrow in base two. Thus, we
wish to count the number of j's such that n - j has exactly one borrow.
Suppose the borrow occurs from position ¢ + 1 to position <. If

k . k ,

2 a;2* and j = ) b.2°,

i=0 i=0

then a;4; = 1 and a; = 0, b;41 = 0 and b; = 1. Thus, if C(n) = 0, it follows
that N, (n) = 0.

So we assume (C(n) =2 1. To ensure no other borrow occurs, it must be the
case that by = 0 when aqy = 0 for & = 2. When ayg =1, & # 2 + 1, by may equal 0
or 1. So for each "10" in n's representation, there are 28(-1 j's for which
(7)Y = 2. Thus, Vy(n) = C(n)25M-1. [

n

To summarize, we have

(2B, c(n) 2B -1 () if D(n) = 0,
Nn) =

(2BM-1 C(n)2BMm=-1 2BM-1y  4f p(n) > 0.

Recurrences of the type used here are possible for other composite moduli, but
they become increasingly complex. A complete characterization of the residues
modulo 6 would be interesting, since 6 is not a prime power. Also, the
question of general results for arbitrary composite moduli remains open.
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