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1 Introduction

De�ne the integral convex hull (i.c.h. in short) of a
convex curve segment as the set of points with in-
tegral coordinates lying between the curve segment,
the x-axis, and the two vertical lines through the end-
points of the curve segment. In this paper, we shall
show that some transforms exist that leave invariant
Z
2 and the family of conics de�ned by:

f(x; y) 2 E2 j f(x; y) =
ax2 + bxy + cy2 + dx+ ey + f = 0g ; (1)

where a; b; c are coprime integers (gcd(a; b; c) = 1).
These transforms are then used to prove the peri-

odicity of the i.c.h. of the family of conics de�ned
above (Section 2). Next, Section 3 presents appli-
cations of the method, and we conclude in Section
4.

2 Transformations

We wish to study transforms that leave conics glob-
ally invariant, andZ2. Such transforms T satisfy the
two following conditions:

C1 (invariance) :

(x y) = (x0 y0)T ) f(x; y) = f(x0; y0)

C2 (unimodularity) :

the coe�cients of T are inZ, and det T = +1.
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Note that, if T is unimodular, so is T k; k 2Z. An-
other important property is that unimodular trans-
forms preserve convexity. The interested reader is
referred to [4] for more details on unimodular trans-
forms. We have the following general lemma:

Lemma 2.1 Let Q be the matrix representation of
a conic with f(x; y) de�ned as above (i.e., f(x; y) =
(xy1)Q(xy1)t), and T be a transform. T leaves f
invariant if and only if TQT t = Q

Proof Omitted. (See [2] for a detailed proof.)

2.1 The case of the parabola

Consider the parabola with equation (1), and � =
b2 � 4ac = 0: We wish to �nd an unimodular trans-
form T such that TQT t = Q, where Q is the corre-
sponding matrix. Let us suppose we work in homo-
geneous coordinates.
Thanks to the symmetry axis of the parabola, it is

possible to �nd an unimodular system of coordinates
in which the equation becomes:

Y =
AX2 + BX + C

M
A;B;C 2Z; M 2 N�;

and the matrix representation of the parabola is:

Q =

0
@ A 0 B=2

0 0 �M=2
B=2 �M=2 C

1
A :

In order to �nd the coe�cients, we use the fact

1



that the transform must leave the symmetry axis in-
variant. This leads to:

T� =

0
@ 1 2A� 0

0 1 0
M� AM�2 + B� 1

1
A

where � is an integer. (Note that T� = T �
1 .)

In conclusion, since we have found a matrix T�
such that: if (x; y; 1) is a vertex of the i.c.h., then
so is (x; y; 1)T� , we have just proven that the integral
convex hull of the parabola is periodic.

2.2 The case of the centered hyper-
bola

We shall �rst focus on the case of centered hyper-
bol�, and then return to the general case in the next
subsection. Starting from the matrix representation
of the centered hyperbola:

f(x; y) = ax2 + bxy + cy2 = m;

with m 2 R; � > 0;
p
� 62 N :

f(x; y) = (x y)Q(x y)t;

with Q =

�
a b

2
b

2
c

�

we compute the coe�cients of the unimodular trans-

form T =

�
A B
C D

�
, satisfying conditions C1 and

C2 above.
It is possible to show that computing the integral

coe�cients A; B; C; D is equivalent to solving two
Pell-Fermat equations with same discriminant � =
b2 � 4ac > 0 (see [4]). The value for each coe�cient
is shown to depend on the value of � mod 4, and
two mutually exclusive cases are considered. As a
consequence, thanks to the minimal solution (u; v) 2
N
2 of the above equations, we get

� � 0 mod 4)
u2 � �

4
v2 = 1; T =

�
u� b

2
v av

�cv u+ b

2
v

�

� � 1 mod 4)
u2 ��v2 = 4; T =

�
u�bv

2
av

�cv u+bv

2

�

Cases � � 2 or 3 mod 4 are impossible. All trans-
forms T k k 2Z, are unimodular and preserve the hy-
perbola. Conversely, all unimodular transforms leav-
ing unchanged the hyperbola and Z2 are powers of
T .
Remark: We could also consider extending Condi-
tion C2 to det = �1, which fully translates unimod-
ularity. However, in the case det = �1, Condition
C1 is lost (TQT t = �Q; ) f(x0; y0) = �f(x; y)).
Still, the knowledge of the initial i.c.h. sequence on
f(x; y) = m allows to �nd all the i.c.h. sequences on
f(x; y) = �m. The interested reader will �nd a more
detailed analysis in [2].

Special cases and extensions

Note that in the special case where � is a squared
integer (for example xy = 1), integral hulls have a
�nite number of vertices.
In the case of a non-centered hyperbola, the inte-

gral convex hull is not properly periodic, but only
quasi-periodic.

2.3 The case of the ellipse

In this case, the discrimant in equation (1) is strictly
negative. The transformation group is �nite (and
not in�nite as was the case for the parabola and
hyperbola), and the only transforms that may be
considered are the trivial ones. For instance, the
group of the ellipse de�ned by: x2 + xy + y2 = m
contains 12 transforms, and is generated by (say)

T =
�

0 1

�1 1

�
, of order 6 (i.e., T 6 � I), and the

symmetry S =
�

0 1

1 0

�
.

3 Applications and extensions

3.1 Construction of the i.c.h.

Using the previous results, the integral convex hull of
any parabola, or centered hyperbola is periodic: the
whole integral convex hull is a repetition of a minimal
\pattern", i.e., sequence of points.
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One goes from one point in the initial i.c.h. to
its equivalent in the next sequence by applying the
associated transform of Section 2, and so forth.

The last problem is to compute all the points in
the initial pattern. The outline of the method is as
follows: we follow the curve, starting from any point
on the i.c.h.. We compute the next point of the i.c.h.,
using a technique akin to the continued fraction ex-
pansion of a real number, but tailored for this speci�c
problem. And we repeat the process until we reach
a point that is the image of the initial point under
the associated transform. This process is detailed in
[3], in which we are concerned with the the integral
convex hull below straight-line segments and sections
of bi-convex curves. The algorithm presented there
may be extended to any convex body (cf. [2]).

3.2 Integral convex hulls and factor-
ization

Computing the integral convex hull for hyperbol� de-
�ned by xy = N; N 2 N yields the set of all integral
couples p; q such that pq = N , and hence all the
prime factors of N . In [3], the authors conjectured
(using experimental evidence) that the boundary of
the i.c.h. of the hyperbola contains about N0:36 inte-
gral points. Hence, we now have a factorization algo-
rithm with running time O(N0:36 logN ), i.e., slightly
faster than the well-known brute-force algorithm test-
ing all primes smaller than

p
N . In the case of a line

segment s, computing the integral convex hull and
counting the integer points on s both take O(logN )
time, i.e., a time proportional to the size of the data
(length of minimum side in rectangular triangle with
hypothenuse s). The algorithm for the construction
of the i.c.h. for hyperl� xy = N is optimal (relatively
to the output size). However, the algorithm that uses
the i.c.h. to count the integral vertices on the hyper-
bola is not polynomial in the size of the data (the ac-
tual number of vertices). But this is quite correct: if
a counting method existed that was polynomial in the
size of the data, it would yield a polynomial method
for factorization.

4 Conclusion

The algorithms we have presented in this paper have
been coded in Caml. Indeed, they require the use of
libraries for \big integers", as should be obvious from
the nature of the solutions.
It is natural to want to extend the research pre-

sented in this paper to higher dimensions. It does not
seem easy to generalize our results to quadrics. How-
ever, it may be possible to derive similar periodicity
properties for certain cubic implicit surfaces. Such
results are related to well-known number-theoretic
properties.
We are also currently extending the 2D algorithm

in [3] to compute 3D integer convex hulls.
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Figure 1: Hyperbol� f(x; y) = x2 � 3y2 = �. Cases � = 1 and � = 6. For � = 1, fPg is the initial
pattern, PT; PT 2 : : : 2 i :c:h: For � = 6; fS;Qg is the initial pattern.
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Figure 2: Parabola x2 + y2 � 2xy � y = 0, fPg is the initial pattern, PT�1; PT�2; : : : ; P; PT; PT 2; : : : 2
i.c.h. Shaded triangles show T in action.
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