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Abstract. Rendezvous with detection differs from the usual rendezvous problem in that two
mobile agents not only accomplish rendezvous whenever this is possible, but can also detect the
impossibility of rendezvous (e.g., due to symmetrical initial positions of the agents) in which case
they are able to halt. We study the problem of rendezvous with and without detection of two
anonymous mobile agents in a synchronous ring. The agents have constant memory and each of
them possess one or more tokens which may be left at some nodes of the ring and noticed later.
We derive sharp bounds for the case of at most two tokens per agent and also explore trade-
offs between the number of tokens available to the agents and the time needed to accomplish
rendezvous with detection.

1 Introduction

The mobile agent rendezvous problem is a search optimization problem that seeks an algorithm
specifying how should anonymous mobile agents move along the vertices of a network in order
to determine whether or not they can meet at some node of the network. The mobile agents
are autonomous entities that move along vertices of the network acting on the information
collected following a given protocol.

There are instances where the rendezvous problem is easy, e.g., if the nodes of the network
have distinct identities then the mobile agents can move to a node with a specific pre-assigned
identity. However, even in this case the problem becomes more difficult to solve if the agents
do not have enough memory to “remember” and distinguish identities. In general, solutions of
the rendezvous problem are challenging under certain conditions that delimit what the mobile
agents can do and/or know about the overall status of the network. We are interested in
designing rendezvous algorithms for two agents on a ring, assuming that agents have constant
memory. There is a variety of interesting scenarios under consideration that may involve 1)
(minimum) number of tokens used by the mobile agents, 2) knowledge of the status of the
network and presence of other mobile agents in the system (e.g., number of mobile agents
participating in the rendezvous problem under consideration, feasibility of rendezvous for a
given starting configuration), 3) knowledge of inter-agent distances at the start, etc.

In certain instances, if the rendezvous problem is impossible to solve the mobile agents
will be executing a rendezvous algorithm that may never terminate. It is therefore crucial for
accomplishing rendezvous what knowledge the mobile agents have about the network configu-
ration (e.g., size of the network, relation between start positions of the mobile agents). In this
paper we distinguish between two types of rendezvous problem: rendezvous without detection
(also simply rendezvous, abbreviated RV) and rendezvous with detection (abbreviated RD).



In the former case, the agents know that the rendezvous problem has a solution either for the
given system configuration or regardless of the system configuration and they just want to
accomplish rendezvous at a node of the ring in, say, minimum number of steps. (For example,
in a ring of size n the rendezvous problem is always solvable for m mobile agents if m and n
are relative primes). In the latter case, we are also interested in the decision problem which in
addition to rendezvous requires a solution of the halting problem for rendezvous. I.e., we look
for an algorithm that detects feasibility of a solution for all starting positions after a finite
number of steps (usually dependent either on their distance or the size of the network). Thus,
if rendezvous is possible then rendezvous is achieved, while if rendezvous is not possible then
all agents stop and know that rendezvous is not possible.

In principle, our main concern in this study will be to accomplish rendezvous under strict
constraints on the mobile agents that model their behavior. Of interest will be mobile agents
that have constant memory-space (independent of the size of the ring and the number of
mobile agents in the system) and thus are unable to remember either their past actions or
the current conditions of the system. Thus, the conditions for the mobile agents we consider
may include 1) constant memory-space and 2) a given number of tokens per mobile agent. In
addition, it is assumed that the tokens are indistinguishable from each other as well as from
the tokens of the other agent(s). In other words, when an agent finds a token that has been
released at a node in the ring neither can it distinguish it from its own token(s) nor from
the token(s) of the other mobile agents. We distinguish two cases: unidirectional ring, where
agents may move in a single, say counterclockwise, direction, and bidirectional ring - where
clockwise and counterclockwise moves are allowed.

1.1 Results and outline of the paper

The paper studies rendezvous with detection (RD) and explores trade-offs between the num-
ber of tokens available to the agents and the time needed to rendezvous with detection on
an n node ring. In more detail, Section 2 includes impossibility, as well as upper and lower
bound results for two mobile agents with constant memory and at most two tokens each.
Main results of Section 2 are summarized in Table 1. The first column depicts the number of

Conditions on Time Required for

Tokens # Dirs # RD RV
1 1 ∞ ∞
1 2 ∞ Θ(n2)

2 1 Θ(n2) Θ(n2)

2 2 Θ(n2) Θ(n2)

Table 1. Time bounds for two mobile agents with constant memory to detect if rendezvous is possible (RD)
and to rendezvous when input is asymmetric (RV) on an n node synchronous uni-, bi-directional ring with
one or two tokens.

tokens available per mobile agent, the second indicates the number of directions on the ring
(1 means unidirectional and 2 bidirectional), while the third and fourth columns indicate the
time required to solve the problem indicated. The memory required for all the algorithms
depicted is O(1). In Section 3 we show how the time complexity of RD algorithm may be
improved if more than two tokens per agent are allowed. In particular, we look at the case



where each mobile agent has t ≥ 3 tokens and memory O(log t). We give an O(mn) upper
bound for RD, where m is the smallest integer such that

(
m−1
t−2

)
≥ n− 1.

1.2 Mobile agent model

In this paper we consider an anonymous, synchronous, either unidirectional or bidirectional
ring network on n nodes. The nodes of the ring are identical and do not have distinct identities.
Two mobile agents are situated on the nodes of the ring. Each mobile agent owns a set of
tokens that it may release at any node of the ring. The tokens are indistinguishable from
each other. At any single time unit, the mobile agent occupies a node of the ring and may
1) stay at its current position, 2) move left or right from its current position, 3) detect the
presence of one or more tokens at the node it is occupying, and 4) release/remove one or
more tokens to/from any node it is occupying. Initially, a mobile agent may occupy any node
of the network and the start node of the mobile agent is also called its home node or home
base. Both agents start their algorithm at the same time. Mobile agents may communicate
and exchange information with each other only when they find themselves at the same node.
We say that one or more mobile agents rendezvous when either they meet at the same node
or else traverse the same edge in opposite directions. They can see, remove or add tokens,
and can also see each other if either they are crossing over an edge or arriving at a node at
the same time. The computation is synchronous and both agents work in lock-step.

Definition 1 (Finite automaton). More formally, the two agents holding t tokens each
are starting at their home bases which are located at different nodes of a ring of unknown
size n. In a bidirectional ring an agent is a finite automaton with k states represented by a
state-transition function σ : S × T × T → S × T × {L,R,W} where S = {1, 2, . . . , k} and
T = {1, 2, . . . , 2t}. Moreover, whenever σ(s, t1, t2) = (s′, t′1, d) it must hold t′1 ≤ t1 + t2. The
parameters mentioned above are to be interpreted as follows:

1. The set S represents the agents’ states, not including the number of tokens the agent holds.
2. t1 ∈ T is the number of tokens the agent holds when making the decision, and t2 ∈ T is the

number of tokens the agents see in the current node. t′1 is the new number of tokens the
agent holds after making a state transition. (Note that t1, t2, but also t1 + t2 are always
at most 2t, as the total number of tokens in the system is 2t. Moreover, as the agent can
pick up only the tokens it sees, the number of tokens it carries after the state transition is
bounded by t1 + t2.)

3. L,R,W represent the “movement” decision by the agent – either moving one position Left,
Right (according to the specified global orientation) or Wait. (For a unidirectional ring the
moves L,R,W have to be modified to M,W meaning either Move or Wait, respectively.)

We note that this definition of the automaton represents only a reference model and is meant
to be used only as a guide. In actual proofs we will avoid strict conformance to its specific
workings as it would lead to long and tedious constructions.

1.3 Related work

The rendezvous problem was first considered by the operations research community as a
search game for two or more players in various network topologies (see [1], [2]). In its current
algorithmic form with one token per agent the problem was first considered in [10] and more



extensively in the PhD thesis of [8]. The RD problem is mentioned in [7] and studied in
the case of the torus in [6] where also the power of tokens for rendezvous is investigated.
A related “whiteboard” model can be found in [3] whereby an agent is allowed to write
messages of certain size on a white board that can be read by the other agent. So, in a sense,
the token model presented here can be thought of as the “weakest possible” form of the white
board model. For additional information on algorithmics for mobile agent models the reader
is advised to consult [5]. General discussion of the relation of the rendezvous problem to P2P
networks can be found in the edited volume [9].

2 Mobile Agents with at Most Two Tokens

In this section we consider time upper bounds for rendezvous with detection in a ring when
the mobile agents have constant memory-space and at least one token each. We consider an
n-node ring and two mobile agents each having a number (same for both mobile agents) of
indistinguishable tokens. It goes without saying that the mobile agents cannot know the size
n of the ring since they have only constant size memory, independent of n (unless n itself is
a constant).

2.1 Upper bounds for rendezvous with detection

First consider the case where each mobile agent has a single token and the ring is bidirectional.
In this case the asymmetric rendezvous problem is solvable, as shown in the following theorem.

Theorem 1. In bidirectional rings, the rendezvous problem (RV) is solvable in O(n2) time
for two mobile agents having constant memory and one token each.

Proof. Consider the following pendulum-like algorithm for a mobile agent:

Algorithm 1 Algorithm One-Token.
1: Drop your token at your home base.
2: Go right until a token is found or you meet the other agent, counting (in your state) the value of x equal

to the distance traveled modulo three. Let this distance be x (remember it in your state).
3: if not met the other agent
4: repeat
5: Pick the token, reverse direction, move one step and drop the token there.
6: Continue in current direction until a token is found, counting the value of y equal to the distance

travelled mod3.
7: until y ≡ (x− 1) mod 3 or met the other agent
8: if did not meet the other agent.
9: Stop and wait for the other agent.

10: endif
11: endif

First, note that if the agents have different notion of which direction is right, they will
start moving towards each other and will meet in O(n) time. Hence, it is sufficient to consider
the case where the agents have the same sense of direction. Let us call the agents A and
B and the initial distances between them be d and n − d, respectively. (see Figure 1). Let
t1, t2, t3, . . . be the times when the agent A finds a token (i.e. ti is the time when i-th iteration
of the loop begins). Let t′1, t

′
2, t

′
3, . . . be those times for the agent B. Without loss of generality



assume that d < n − d and set δ = (n − d) − d. Note that d = t1 ≡ xA mod 3 and n − d =
t′1 ≡ xB mod 3. Observe that as long as ti+1 < t′i, the agent B will move a token before
the agent A arrives to it, and A will find the distance between the tokens has not changed.

n−d

A B

d

Fig. 1. Determining the ren-
dezvous time of two mobile
agents at distance d from each
other.

However, as t1 6= t′1, it is easy to prove by induction that
the value of t′i − ti, which is the difference between the times
when both agents start their i-th iteration, increases by δ, i.e.
t′i− ti = iδ. That means that after dt1/δe iterations ti+1 ≥ t′i.
If ti+1 = t′i, the agents meet over the token. Otherwise, agent
A arrives to the token before B had moved it, i.e. A traveled
distance t1 − 1 ≡ xA − 1 mod 3. At that moment, A will
stop and start waiting for B. As B has so far measured only
equal distances, it will continue and eventually arrive at the
place where A is waiting. Since there are t1/δ iterations of
t1 steps each, plus final time at most t′1 for the agent B to
arrive to the meeting place, the rendezvous will happen in
time O((t1/δ)t1 + t′1). Since δ ≥ 1, t1 < n/2 and t′1 = t1 + δ <
n, the resulting time is O(n2). This completes the proof of
Theorem 1.

Algorithm One-Token solves RV but not RD, as it will run forever if the agents are
initially in a symmetric configuration. Next we show that rendezvous with detection can be
solved if we endow each agent with two tokens, even in unidirectional rings.

Theorem 2. Rendezvous with detection (RD) is solvable in a unidirectional ring for two
mobile agents with constant memory and two tokens each, in time O(n2).

Proof. We present an algorithm that at the cost of using two tokens per mobile agent detects
the possibility of rendezvous and can eventually rendezvous when possible. Formally we have
the following algorithm. Each mobile agent leaves one token at its home node and the other

Algorithm 2 Algorithm Two-Tokens.
1: Drop first token at your home base and second token to node located to the right.
2: repeat
3: Travel right and move every second token you meet one position to the right.
4: until agent detects two tokens on top of each other.
5: if two tokens are found on top of each other go around and check if other two tokens are also on top

of each other.
6: if yes then rendezvous is not possible else agent waits at last position.
7: endif
8: endif

token at the neighboring node located to its right. Then it travels right and moves every
second token one position to the right (note that this will keep the home node tokens at
their original locations). The process is repeated until the agent detects two tokens at the
same node. When this happens, the agent continues traveling to check whether the other two
tokens are also at a same node. If they are, then the home nodes were n/2 away, the whole
computation was symmetric and the agents can never rendezvous. If the other pair of tokens
are not at a same node, then the agent waits as the other agent will eventually come to meet
it. The running time of the algorithm is as claimed. This completes the proof of Theorem 2.



Observe that the unidirectional algorithm will trivially work (with the same bound on
running time) in a bidirectional ring: If the agents have the same sense of direction, they will
run it as in unidirectional case, otherwise, they will start moving towards each other and meet
in O(n) time.

2.2 Impossibility results

In this section we investigate conditions under which the rendezvous problem (RV) and the
rendezvous with detection (RD) are unsolvable.

As shown in Theorem 2, two tokens per agent and unidirectional ring are sufficient to solve
RD (and hence also RV). On the other hand, the one-token, bidirectional ring algorithm from
Theorem 1 fails to solve RD if the initial configuration is symmetric, as it will cycle forever.
Note, that RD is trivially solvable if agents possess Ω(log n) memory, i.e. if the number of
states exceeds the size n of the ring, even if the agents have only one token each and the ring
is unidirectional. In such a case, the agent leaves the token at its home base and counts in
states the distance to the token of the next agent, and checks whether this is equal to the
distance to the next (his own) token. (In fact O( log n

log log n) states are sufficient. See [7].) Hence,
the remaining interesting cases, addressed in this section, are agents with constant memory
and one token each, for either unidirectional or bidirectional rings.

Let us first introduce some tools that will be used in the impossibility and lower bound
proofs. Consider an agent moving through a tokenless path of the ring. On one hand, if the
agent carries no tokens, after at most k + 1 moves it will repeat a previously encountered
state and will continue moving in the same direction until a token is encountered. On the
other hand, if the agent carries a token, after at most 2k + 1 moves two identical states will
be repeated, which means that the agent has fallen into a cycle and will repeat its activity
until it encounters another token. (Note that it is not necessary for the agent to carry the
token the whole time – it may leave it momentarily and pick it up after a few steps and move
it, but all this process is cyclically repeated, the agent is in fact carrying the token.) If no
identical states with the agent carrying the token appear within the first k steps, the agent
will leave the token and then it will continue moving, carrying no token, until it arrives to
another token. (This idea can be extended to unidirectional rings and t tokens.) This leads
us to the following definition of the base of an agent.

Definition 2 (Agent’s Base). A base is a contiguous segment of the ring delimited by nodes
containing tokens or agents carrying a token.

– An initial base is formed when an agent leaves a token for the first time, and it consists
of the single node containing this token. As the agents start in the same state, this means
that initially there are two bases, at the same distance as the starting distance between the
agents.

– When an agent holding a token leaves a base, the base expands to contain that token if
and only if the agent has not entered a cyclic behavior that will make it carry the token
all the way to the opposite base. Otherwise, that token ceases to be part of the base and
the base shrinks to enclose its remaining tokens.

Note that if the agents have a single token and the bases are left tokenless according to the
above definition, the agents will start an infinite cycle carrying the tokens and chasing each
other. If the agents have two tokens and they start carrying a token to the other base, the



bases shrink to contain a single token and the algorithm effectively resets itself (if this happens
more then k times, the algorithm will cycle forever).

The next crucial parameter we need to define is important for the lower bound and im-
possibility proofs. It refers to the time shifts that occur in the interaction between the two
agents.

Definition 3 (Time shift). Let us denote by the increasing integer t1, t2, . . . the times when
agent A arrives to alternating bases. More precisely, t1 is the time when A arrives for the
first time to the base of B, t2 is the first time after t1 that A arrives to its own base, t3 is
the first time after t2 that A arrives to B’s base). Analogously, we define the time sequence
t′1, t

′
2, . . . for agent B. Let δi = |t′i − ti| and call it time shift of round i.

Let us denote by st
A and st

B the state (including the number of tokens being carried) of agents
A and B, respectively, at time t.

The following lemma forms the core of our impossibility and lower bound proofs. It states
that it is possible to choose the initial distances between the agents in a large enough ring in
such a way that the agents essentially arrive to the same state (but, possibly, time-shifted)
for long enough time. Note that the lemma does not assume unidirectional ring.

Lemma 1. Let the two initial distances between the agents on a ring be M and M + xk! for
some M ≥ k! and an arbitrary natural x. Then, as long as δr < M and the distance between
the bases is at least k + 1, it holds that ∀i < r,∀j ≤ min(ti+1 − ti, t

′
i+1 − t′i) : sti+j

A = s
t′i+j
B

(and those states would be the same for any other natural number x). Moreover, at time ti,
the base to which A arrived has exactly the same configuration as the base to which agent B
arrived at time t′i.

Proof. The proof is by induction on r. Initially, we have t0 = t′0 = 0, s0
a = s0

b and the initial
bases have the same configuration (single node with single token each), as the agents start at
the same state and at the same time. Induction step: Assume that δr < M and the distances
between the bases is at least k+1. Moreover, assume that the base of agent A at time tr−1 and
the base of agent B at time t′r−1 are in the same configuration. We will prove that the base of

A at time tr is in the same configuration as the base of B at time t′r and that s
tr−1+j
A = s

t′r−1+j

B

for all j ≤ min(tr − tr−1, t
′
r − t′r−1).

As at time tr−1 agent A arrives to a base, the configuration of the base captures its state
(and the same is true for agent B at time t′r−1). Since the base configurations are the same (by

induction hypothesis), that means that s
tr−1

A = s
t′r−1

B and the agents arrive to the same side of
the corresponding bases. The fact that the base configurations are the same also means that
the agents continue behaving the same as long as the environment they see is the same. As
the bases contain all tokens in the ring, the first moment when there is difference in what the
agents see is when one of them arrives to the opposite base, i.e. after min(tr − tr−1, t

′
r − t′r−1)

time steps. Note that up to that moment, the configurations of both bases stayed equal (as
the agents did the same modifications).

If x = 0, the situation is symmetric and both agents arrive to the bases at the same time
and in the same state and the lemma holds, Consider now the case x 6= 0. Without loss of
generality assume that agent A is the first one to arrive to the opposite base (at time tr).
Note that as the distance between the bases is at least k + 1, A must have been in a cycle
(of states), moving towards the opposite base. As up to this moment B behaved the same, B



must also be in such cycle, moving towards its opposite base. This means it cannot return to
the base to modify it, and the base configurations remain equal.

It remains to be shown that when agent B arrives to its opposite base at time t′r, it will be

in the same state (i.e. s
t′r
B = s

t′r−1+tr−tr−1

B = str
A ). From the fact that initial distances between

the bases differed by xk! and the base configurations remain the same, it follows that the
distances between the bases remain different by xk!, i.e. at time t′r−1 + tr − tr−1, B is at
distance xk! from its opposite base. We already know that at this moment B is moving in a
cycle of states of length at most k. Let l be the forward distance traveled by B in this cycle.
Obviously l ≤ k (it can be l < k if B zig-zags). However, that means that l divides xk!, i.e.
when B arrives to its opposite base, it will be in exactly the same state.

Lemma 1 will be used in both the unidirectional and bidirectional cases. First we consider
the case of unidirectional rings.

Theorem 3. Neither the rendezvous problem (RV) nor rendezvous with detection (RD) is
solvable for two identical mobile agents having constant memory and one token each in a
unidirectional ring.

Proof. Consider the two mobile agents with one token each in a unidirectional ring and
suppose they are represented by identical automata with k states. We will exhibit two different
configurations, one symmetric and one asymmetric, that the two agents cannot distinguish.
First, we consider a symmetric configuration whereby the two mobile agents start at distance
k! from each other in a ring of size 2k!. (see left image in Figure 2 with N = 0). As long as
the agents do not drop their tokens, they see the same environment (no tokens) and therefore
behave (state changes and moves performed) identically. Hence, in order to rendezvous or
detect that it is not possible, the agents will eventually drop their tokens, and they will be at
distance k! from each other at that moment.

Consider now two rings with agents starting k! apart, one symmetrical of size 2k!, the
other asymmetrical of size 3k!. Note that the conditions of Lemma 1 are satisfied, as the
first ring corresponds to M = k!, x = 0, while for the second M = k! and x = 1. Observe
that because the ring is unidirectional, we get ∀i : t2i = t′2i in both cases (even if distances
between the bases are not equal, each agent alternates between traversing the short and long
distance). That means that Lemma 1 holds for all r. In particular, ∀i : st2i

A = s
t′2i
B and those

states are the same for all x. What that means is that either the algorithm never terminates,
or, if it terminates, it produces the same output for a symmetric ring of 2k! nodes and for the
asymmetric ring of 3k! nodes, i.e. the algorithm is incorrect.

Next we consider the case of bidirectional rings. In view of Theorem 1 it is no longer true
that RV is unsolvable. However, it can be shown that RD remains unsolvable if we limit
ourselves to agents with one token and constant memory.

Theorem 4. Rendezvous with detection (RD) is not solvable for two identical mobile agents
having constant memory and one token each in a bidirectional ring.

Proof. The overall structure of the proof is similar to the proof of Theorem 3: we apply
Lemma 1 to two configurations (one symmetric and other asymmetric) and show that either
the algorithm does not terminate in the symmetric configuration, or produces wrong output in
the asymmetric case. The symmetric case is a ring of size n = 2N +2k! (corresponding to M =
N +k!, x = 0, where N is determined later), the asymmetric case uses the same M but x = 1.



N+k! N+k!

B

A

N+2k! N+k!

Fig. 2. Unsolvability of rendezvous with detection
in a unidirectional ring. Left image represents a ring
of size 2N+2k! and the right image of size 2N+3k!.

Assume that the algorithm correctly de-
cides in the symmetric ring, after r
rounds (r, cf. Lemma 1, corresponds
to how many times an agent switched
bases). Since the agents have k states,
we get that r must be at most k (other-
wise the algorithm would cycle forever).
We will define N in such a way that
Lemma 1 applies for at least k+1 rounds
(for the faster agent) in the asymmet-
ric case. That would ensure that in the
asymmetric execution the same deciding
state appears and the algorithm decides
incorrectly.

How much can δi grow in each
round? The only difference the agents experience is that the distances between the bases
differ by k!. In one round, each agent crosses this distance exactly once. Let c represent the
maximal time it takes an agent to travel one step (it can be more than one, as the agent can
zig-zag, but it is a constant as the agent has k states). Then, each round the time shift can
grow by at most ck! and after i rounds the time shift is at most ick!. Choosing N > ic(k +1)!
ensures that Lemma 1 applies for at least k + 1 rounds.

2.3 Lower bounds for rendezvous

In Section 2.1 we have shown O(n2) upper bounds for settings not excluded by the impossi-
bility results from Section 2.2. An obvious question to ask is whether these upper bounds are
tight. In this section we provide an affirmative answer by proving an Ω(n2) lower bound for
RV in bidirectional rings for agents with two tokens. This implies the same lower bound also
for RD, as well as for unidirectional rings and single-token agents. The main result of this
section is the following theorem.

Theorem 5. The rendezvous problem (RV) for two mobile agents having constant memory
and two tokens each require Ω(n2) time in a bidirectional ring of size n.

Proof. Consider a ring of size n = 2N + k! with the agents starting at distance N from each
other. Again, Lemma 1 applies while δr < N and the distance between the bases is at least
k +1. We show that (1) if δr < N/3 holds until the bases reach size N/3, then it takes Ω(N2)
time to increase the bases to size N/3, and (2) if the base sizes are at most N/3, then it takes
Ω(N2) time to increase δr to N/3. When combined with a choice of N ≥ k! this yields the
desired Ω(n2) lower bound.

Assume first that the bases reach size N/3 before δr exceeds N/3. Note that at the moment
a base has 2 tokens for the first time, the size of the base is at most k (otherwise an agent is
carrying the second token in a cycle and by definition it is not a part of the base). Moreover,
an agent can increase the size of the base by at most k before it enters a cyclic behavior –
which will either take it to the other base, or to the other end of the current base.

Let xj be the size of the base at the moment an agent is leaving the base’s endpoint in a
cycle for the j-th time (called quasi-round j). Let pj and p′j , respectively, be the times this
happens for the two bases. We get that xj+1 ≤ xj + k and pj+1 ≥ pj + xj : The base grows



either when an agent traverses it from one end to another (obviously taking xj time), or when
an agent moves from one base to another, yielding pj+1 ≥ p′j +(N−xj). As the time difference
is at most N/3 and xj ≤ N/3, we get pj+1 ≥ p′j +(N −xj) ≥ p′j +2N/3 ≥ pj +N/3 ≥ pj +xj .
As xj+1−xj ≤ k there must be at least N/3k quasi-rounds. Let f be the final quasi-round, i.e.
xf ≥ N/3. Summing over all rounds we get pf =

∑f
j=1 xj =

∑f−1
j=0 xf−j ≥

∑f−1
j=0 (N/3− jk) ∈

Ω(N2), as f ≥ N/3k and k is a constant.
Consider now the case that δr exceeds N/3 before the bases reach size N/3. Using the

same argument as in the proof of Theorem 4, we get that δi ≤ ick!, i.e. r ≥ N/3ck!. As the
base sizes are at most N/3, each round takes at least 2N/3 time steps (each round involves
traversing from one base to another, by definition of a round). Summing up over all r rounds
we get the lower bound N2(2/9)ck!, which is Ω(n2), since c and k are constants.

3 Mobile Agents with More than Two Tokens

Now that we have the complete picture for rendezvous with detection when each mobile agent
has at most two tokens we look for the more general case whereby each mobile agent has more
than two tokens.

3.1 Upper bounds for rendezvous with detection

The first theorem provides a trade-off between number t of tokens being used and time
required for RD. We consider the case of at least three tokens per mobile agent, i.e., t ≥ 3.

Theorem 6. Consider a synchronous, bidirectional ring with n nodes and two mobile agents
located at two of its nodes. Rendezvous with detection (RD) is solvable for two mobile agents
having t ≥ 3 tokens and O(log t) bits of memory each in time O(mn), where m is the smallest
integer such that

(
m−1
t−2

)
≥ n− 1.

Proof. A basic idea of the algorithm is to implement a counter Ct, that can count up to n.
The counter will be represented by a segment of nodes of the ring containing up to t tokens
at its nodes, delimited by two tokens at a maximum distance m, say, from each other. The
values that this counter takes are held within this segment of nodes of the ring; one of the
two tokens delimiting it is located at the home base of the agent while the other is the last
token that the mobile agent released at a node of the ring at distance m from its home base.

Assuming that such counter exists, we can proceed just like in the proof of Theorem 2.
The basic idea for RD is to have an agent go from its home base to the home base of the
other agent, while incrementing its counter by one once in each round. After the counter
reaches its maximum, the agent continues to go from its home base to the base of the other
agent but now decrementing its value by one once in each round. Notice that the counter can
be incremented/decremented in time O(m) per round. As with the algorithm of Theorem 2,
when the counter reaches 0 before encountering its own home base, the mobile agent goes to
the first base, and if the counter of the other mobile agent reaches exactly 0 at the second
base as well, then the situation is symmetric and rendezvous is impossible. Otherwise this
agent waits at the second base until the other agent comes there and the rendezvous is
accomplished. Therefore the algorithm whose idea has just been described not only reaches
rendezvous, whenever possible, but also detects when it is not possible within the same time
bound. The running time of the algorithm presented will be O(mn) since each round takes n
steps which is the size of the ring.



Clearly, the running time of the algorithm is directly proportional to how compact the
counter Ct can be, as the cost of moving is proportional to its size m, which is the distance
between the two tokens delimiting the counter Ct. Therefore for the given number t of tokens
it remains to determine m so that the mobile agent can implement a counter that can hold a
maximum value n. By assumption, each mobile agent has t tokens. One token is being used
to mark the mobile agent’s home base thus leaving t−1 tokens that can be used to implement
the counter. The technical part is how to implement the counter, with the remaining t − 1
tokens. The counter will be delimited by two tokens, located in nodes A,B, at distance m
apart. A token is located at the home base A, say, of an agent. This leaves t − 1 tokens
for marking positions at nodes of the network. Another token located at B increments the
range of the counter. Since the agent can count internally to t− 1 (since it has t− 1 tokens),
all possible combinations of t − 3 tokens between two fencing tokens at distance k can be
tried, and afterward increment k and repeat until the home base of the other mobile agent is
reached, where k ≤ m.

It remains to investigate what the size of the counter should be so as to guarantee that
it is able to count up to n. For given k, there are

(
k−2
t−3

)
possibilities (assuming no two tokens

can can be left at the same node, but appropriate combination numbers can be derived for
that as well). Summing up over all k ≤ m until the home base of the other agent is reached
results in at most

∑m
k=2

(
k−2
t−3

)
=

(
m−1
t−2

)
possibilities (see [4][page 56]). Since the position of

the home base of the other agent is at most n− 1 the counter Ct needs to count up to n− 1.
Therefore the value of m will never need to exceed the smallest m such that

(
m−1
t−2

)
≥ n− 1.

Further, notice that the two agents are required to have O(log t) bits of memory so that they
can count internally up to t and thus distinguish the two delimiters of the counter Ct. This
completes the proof of Theorem 6.

As a corollary of Theorem 6 we obtain the following result.

Corollary 1. Rendezvous with detection (RD) is solvable for two mobile agents having t > 2
tokens and memory O(log t) each, in time O(n

t−1
t−2 t) in a bidirectional ring. Moreover, if

t = log n then the algorithm works in time O(n log n).

3.2 Lower bounds for rendezvous in unidirectional rings

Very little is known concerning lower bounds for agents with more than two tokens. However,
for the case of unidirectional rings we can improve on the result of Theorem 5 thus relating
the rendezvous time with the number of tokens available to each agent.

Theorem 7. The rendezvous problem (RV) for two mobile agents having constant memory
and t tokens each requires Ω(n2/t) time in an unidirectional ring of size n. Moreover, there
is an algorithm achieving this bound.

Proof. This is similar to the proof of Theorem 5. As before, we take a ring of size n = 2N +k!,
with the agents starting at distance N . Because the ring is unidirectional, δ2i = 0 and δ2i+1 =
k!, as in two consecutive rounds each agent traverses the entire ring. Moreover, the quasi-
rounds correspond to the rounds from Lemma 1, as an agent cannot reverse direction and
traverse and increase the size of the base it have just crossed. An agent having t tokens can
increase the size of the base by at most (t−1)k: one token should remain to mark the beginning
of the base, so an agent carries at any moment at most t− 1 tokens. In the (t− 1)k + 1 steps



after the agent left the right endpoint of the former base, at least two agent configurations
(state, number of tokens held) repeat. By the definition of a base, the new base stops growing
when the agent starts cycling, i.e. xj+1 ≤ xj + (t− 1)k. That means that Lemma 1 holds for
at least N/(t− 1)k rounds. As two consecutive rounds last together n time steps, we get that
the algorithm cannot terminate before time nN/(2(t− 1)k ∈ O(n2/t).

The matching upper bound is simple. Each agent goes around and every round it increases
the base by t: skip first token of the base, then walk until the second token is found, pick it
up and keep picking up until you have t− 1 tokens in hand (if you cannot count up to t, just
have the tokens next to each other, the first empty space means end-of-base), and then just
lay them down one after another. While leaving the tokens of your base, verify if you fall onto
the other agent’s base.

4 Conclusion and open problems

In this paper we studied the rendezvous problem RV and rendezvous with detection RD for
two variants of a synchronous, anonymous ring: unidirectional and bidirectional. We consid-
ered two mobile agents with constant memory (i.e. unrelated to the size of the ring) and
derived several sharp upper and lower bounds when the agents have at most two tokens each
and also studied the case of multiple tokens. This enabled us to characterize the power of
tokens for rendezvous in such a setting. Several challenging problems remain. Some of them
concern closing gaps remaining in the trade-offs derived in this paper. Generally, we are lack-
ing general non-trivial lower bounds for t ≥ 3 tokens. E.g., can we derive sharp upper and
lower bounds for t tokens? Another problem is related to the case t = 3: are three tokens
really more powerful than two tokens (see Theorem 6)? It would also be interesting to look at
rendezvous with detection for more than two mobile agents, and also consider the case where
no synchrony is assumed.
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