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Abstract

We give an algorithm for constructing a spanner of a wireless net-
work modeled as a unit disk graph with nodes of irregular transmission
ranges, whereby for some parameter 0 < r < 1 the transmission range
of a node includes the entire disk around the node of radius at least
r and it does not include any node at distance more than one. The
construction of a spanner is distributed and local in the sense that
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nodes use only information at their vicinity, moreover for a given in-
teger k > 2 each node needs only consider all the nodes at distance at
most k£ hops from it. The resulting spanner has maximum degree at
most 3 + % + %21, when 0 < r < 1 (and at most five, when r = 1).
Furthermore it is shown that the spanner is planar provided that the
distance between any two nodes is at least /1 — r2. If the spanner is
planar then for k£ > 2 the sum of the Euclidean lengths of the edges of
the spanner is at most ],z:ﬂ times the sum of the Euclidean lengths of
the edges of a minimum weight Euclidean spanning tree.

1 Introduction

The problem of constructing spanners (e.g., minimum cost spanning trees, tri-
angulated spanners, planar spanners) for “various types” of geometric graphs
has been considered extensively in the current literature due to its many
applications ranging from VLSI design, to efficient communication in net-
works and medical imaging (see Eppstein [8]). A variety of optimization
results have been derived that considered tradeoffs among weight, diameter,
dilation, and max degree between the original graph and the resulting span-
ner. Nevertheless the majority of these results (e.g., Eppstein [8], Arya, Das,
Mount, Salowe, and Smid [1|, Arya and Smid [2], Narasimhan and Smid [18],
Bose, Gudmundsson and Smid [4]) consider only centralized, non-distributed
algorithms that do not take into account the dynamic changes taking place
in a communication network.

In recent years, the problem of producing efficiently a planar spanner has
been given new research impetus in communication networks due to its ap-
plicability in more dynamically changing environments consisting of wireless
interconnected nodes. In this case, in addition to considering the previously
mentioned parameters of weight, diameter, dilation, and max degree, a new
condition of locality of communication becomes important: nodes should take
into account information by consulting only other nodes within their “close”
geographic vicinity. In fact locality in wireless networking is a necessity im-
posed by the geographic limitations of the networking environment.

Moreover, there are two important issues in wireless networking. The first
one is to be able to perform locally and efficiently important communication
tasks, like routing. Ultimately, this is easily resolved if the underlying graph
is planar using face routing (see Kranakis, Singh, and Urrutia [11]). The



second one is a “local” construction of a “simple” planar spanner from the
given wireless network. In fact, Bose, Morin, Stojmenovic, and Urrutia [5]
address this problem for wireless networks corresponding to unit disk graphs
by constructing a planar spanner in a local and distributed manner using the
Gabriel test (see Gabriel and Sokal [9]).

In addition to the Gabriel test, there are known algorithms for construct-
ing locally and distributively a planar subgraph of bounded degree and con-
stant stretch factor for unit disk graphs. However the resulting degree is
rather high (more than 25), the constructions are relatively complicated,
and the cost of such graph can be much higher than the cost of a Minimum
cost Spanning Tree (MST) (e.g., see Li, Calinescu, and Wan [15|, Wang and
Li [20], Li and Wang [16]). In a recent paper Li, Wang, and Song [17] give an
algorithm for constructing a spanner from the relative neighborhood graph
[19] of a unit disk graph. This spanner has maximum degree at most six, and
its total weight is a constant multiple of the total weight of the MST, where
the weight of a graph is defined as the sum of Euclidean lengths of the edges.
In this paper we consider the problem of constructing a spanner of networks
which are more general than those represented by a unit disk graph.

A unit disk graph is a representation of a wireless network in which all
nodes have the same circular transmission range. Clearly, this is an idealized
representation and it does not need to correspond to actual situations. Typ-
ically, the nodes in a network are not exactly identical and some obstacles
in the terrain containing the nodes may result in the transmission ranges
of nodes to be irregular. In this paper we are taking into consideration the
fact that the transmission range of each node of a network could be irregular
to “some degree” (see Figure 1). We assume that in a given network there
is an additional parameter r, a positive real number less than or equal 1.
The transmission range of a node in the network is assumed to be a region
contained within the unit disk around the node, but this region contains all
points at distance less than r. Thus any two nodes at distance at most r
can communicate directly, but no nodes at distance more than 1 can com-
municate directly. Two nodes at distance more than r and at most 1 may
or may not communicate directly. An example of a transmission range of
node u is shown in Figure 1 as the darker area. We shall consider the static
case in which the irregularity of each node is fixed and does not change with
time. We call the geometric representation of such a network a unit disk
graph with wrreqularity r. This class of unit disk graphs with irregular trans-
mission ranges was first introduced by Barriére, Fraigniaud, Narayanan, and



Figure 1: The irregular transmission area of node wu.

Opatrny [3] in order to propose robust position-based routing. The problem
of constructing a spanner for unit disk graphs with irregular transmission
ranges is more complex, for example the usual planarization algorithms like
the Gabriel test or the relative neighborhood graph algorithm do not work
for them.

1.1 Results and outline of the paper

We give an algorithm for constructing a spanner of a connected unit disk
graph with irregularity r. The construction is local in the sense that nodes
use only information at their vicinity: given k& > 2, each node needs only
to consider all the nodes at distance at most k& hops from it, i.e., nodes
connected to it by paths of length at most k. The resulting spanner has
maximum degree at most 3 + > + =5 when 0 < 7 < 1 (and at most five,
when r = 1). Moreover, it is shown that the spanner is planar provided that
the distance between any two nodes is at least /1 — r2. For k > 2 the sum
of the euclidean lengths of the edges of the spanner is at most % times
the sum of the euclidean lengths of the edges of a minimum weight euclidean
spanning tree if the spanner is planar. The class of graphs whereby the
distance between any two nodes is at least A (in our graphs A = /1 — r?)
were first called civilized by Doyle and Snell [7][page 136] and have also
been referred to as A-precision by Hunt, Marathe, Radhakrishnan, Ravi,
Rosenkrantz, and Stearns [10], and Q(1)-constant by Kuhn, Wattenhofer,
and Zollinger [14] (see also Kuhn, Wattenhofer, Zhang, and Zollinger [13]).
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Our results extend work of Li, Wang, and Song [17] mentioned above
from the case r = 1 to arbitrary irregularity factor r. Note that even in
the special case r = 1, we obtain explicit bounds on degree and cost of the
spanner rather that asymptotic bounds. Also, our proofs use only elementary
techniques and do not rely on |[6].

An outline of the paper is as follows. Section 2 gives definitions needed
for the algorithm, the main one being a definition of a linear order of the
edges of the graph, while Section 3 gives the main result on constructing a
spanner and proves the correctness of our algorithm. In Section 4 we provide
several examples and compare our result to other constructions of spanners
in the literature.

2 Preliminaries

A graph G is geometric if it is embedded into the Euclidean plane and the
edges are straight line segments between the nodes. The edge selection in
our algorithms will depend on a linear order on edges of the input geometric
graph G.

2.1 Linear Order on Edges

Let |u,v| denote the Euclidean distance between nodes u and v. Intuitively,
we can define a linear order on the edges of G

e by first considering the FEuclidean length,

e if two edges have the same length, the one with rightmost, topmost
node is larger, and finally

e if two edges of same length share their rightmost, topmost node, then
their second endnode is considered; the edge with the right most, top
most second endnode is defined as larger.

Formally, we have the following definition.

Definition 1 (Compatible Linear Order.) Fach edge {u,v} is assigned a
5-tuple (|u, v|, x1,y1, T2,ys2), where x1,y1 and xs,yo are the coordinates of the
end-points of the edge with either x1 > x9 or x1 = x9 and y; > ys. Clearly
this gives a unique 5-tuple to any edge, and H-tuples assigned to any two



edges are distinct. The linear order < is defined by using the lexicographical
ordering of the assigned 5-tuples.

Notice that in the order <, we first consider the Euclidean length of edges
and the coordinates are used for ordering edges of the same length. The
input graph G may have many minimum cost spanning trees (MSTs) when
the Euclidean length of edges is the cost function. However, if we break
the ties by the linear order <, then G has a unique MST T~ which can be
computed for example by Kruskal’s algorithm.

Definition 2 For a given geometric graph H, define cost(H) as the sum of
FEuclidean lengths of the edges of H.

Definition 3 Given a graph G and a vertex v of G, we denote by Ni[v] the
distance k closed neighborhood of v, i.e. the nodes of G reachable from v by
a path with at most k edges. Note that v € Ni[v]. Sometimes, the graph
induced by vertices in Ny[v] will be denoted by the same symbol Ni[v].

3 Constructing a Spanner

This section is the core of our paper. Subsection 3.1 gives the main al-
gorithm for constructing spanners directly from a unit disk graph, while
Subsection 3.2 states the main theorem (Theorem 1) and its complete proof.

3.1 Spanner algorithm
Consider algorithm LocalMST}, for k£ > 2.



Algorithm: LocalMST

Input: A connected geometric graph G with the linear order <;
Output: Graph G}

Run the following algorithm at each node v of G-

1. Learn your distance k neighborhood Nj[v].
2. Construct locally the unique MST T} (v) of Ni[v].

3. Broadcast in NN;[v] the edges of N1]v which have been re-
tained in Ty (v) (i.e. Ni[v] N Tk(v)).

4. The output graph G is defined as follows: an edge is selected
into G if and only if it was retained by both of its incident
nodes.

Clearly, this is a distributed algorithm. To learn its distance k£ neighborhood,
v first broadcasts its coordinates to all its neighbors. After having learnt its
distance k neighborhood it broadcasts it to all its neighbours. It can then con-
struct the unique MST T} (v) (which is selected using Kruskal’s algorithm [12]
and the linear order <) of Nj[v] and broadcasts edges in N;[v] N T'(v) to all
nodes in N;[v]. The parameter k determines the desired locality of our algo-
rithm, and thus the resulting graph G;' is constructed “locally”, each node v
uses only knowledge of Ny[v] and the results of its neighbours.

3.2 Main result and proof of correctness

Let GG be a unit geometric graph with irregularity » and k£ > 2. We show that
the graph G} constructed by the above algorithm has interesting properties
summarized in the following theorem.

Theorem 1 If G is a connected unit geometric graph with irregqularity r and
k > 2, then the graph G5 has the following properties.

a) GF is connected;

b) if the distance between any two nodes of the network is at least /1 — 12,
then the graph G7° is planar;



5 if =1
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d) If G5} is planar and kr > 1, then cost(Gy) < L x cost(T~).

Proof. The proof of part a) follows from the following claim.
Claim 1 T~ C G}.

Proof. We argue by contradiction. Let the edge {u, v} be retained in 7', but
rejected in Gi. Without loss of generality we may assume it was rejected
in T (v). Since {u, v} was retained in 7', there is no other path in 7" joining
u and v. Since {u,v} was rejected by Tj(v), there exists a path, say p, in
Tk (v) joining u and v and using only edges smaller than {u,v}. Let {w,w'}

\W

Figure 2: Path p from u to v.

be an edge in p such that {w,w'} ¢ T (see Figure 3.2). It follows that
there is a path in 7" joining w and w’ and using only edges smaller than the
edge {w,w'}. As this argument applies to each such edge of p, there must
be a path in 7" joining v and v using only edges smaller then {u,v}. This
contradicts the fact that the edge {u,v} was retained in 7. O

To prove part b), assume by way of contradiction, that G is not planar
and let {u,v} and {w,t} be two crossing edges in Gj. Without loss of
generality we may assume that the angle /uwv is the largest angle in the
quadrilateral uwut (see Figure 3). Clearly, this angle is at least 7/2. Since
lu, v| <1 we have |u, w|* + |w,v|* < 1. Thus |u,w|* <1 — |w,v|* < r? since
|w,v| > +/1 —1? by our assumption. Therefore, {u,w} is an edge in G. The
same argument shows that {w,v} is an edge in G.

We will show that the diagonal {u,v} will not be selected into G} by
u. Assume u computes T;(u) using Kruskal’s algorithm. Either {u,w} is
retained in T} (u), or there already exists a path in T (u) consisting of smaller
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Figure 3: Two crossing edges in G} .

edges connecting v and w. Analogously, the same is true for {w,v}. This
means that at the moment {u, v} is considered by w for inclusion into Ty (u),
there already exists a path in T;(u) connecting v and v and hence {u,v}
will be rejected by u, which contradicts the fact that edge {u,v} is in Gf.
Note that from our assumption on distance between vertices of G and the

assumption that G is connected, we have v/1 — r2 < r and thus r > \/g

To prove part c), let u be any vertex of . Partition the unit circle
around v into six equal size sectors each with angle at u equal to 7/3. Figure
4 depicts such a sector by the dark shaded area. Since G is finite, we may
assume that the edges of these sectors do not pass through any neighbor of w.
Hence, for any two neighbors v and w of u inside any fixed sector, the angle
/wuv is less that 7/3. Then |v,w| < max{|u,v|, |u,w|}. If |v,w| < r, then
one of {u,v}, {u,w} would have been replaced in G; by {v,w}. Thus, we
conclude |v,w| > r. If r = 1, it follows that u can have at most one neighbor
inside of each sector. So u has at most six neighbors in G5. Suppose u has
six neighbors. However, this may only occur if u is in the center of a perfect
hexagon formed by its neighbors. However, in this case only two incident
edges will be retained, as four of the incident edges will be deleted as the
largest edges of an incident equilateral triangle. Hence u has at most five
neighbors as claimed.

Suppose now, r < 1. Consider a fixed sector S defined above. Draw a
circle of radius r/2 around every neighbor of v in this sector. It follows that
these circles are disjoint and all are inside the region determined by the union



of the circle of radius /2 centred at u, the sector of radius 1 + /2 centred
at u and containing the sector S, and two rectangles with sides 1 + r/2 and
r/2 (see Figure 4). Hence an upper bound on the number of neighbors of u

Figure 4: The light shaded area contains all disjoint circles of radius r/2
around all neighbors of v inside the dark shaded area.

in the sector S is the number of circles of radius r/2 that can be packed into
this area. This number is at most

a(r/2)? + T2 Lo r/2)r/2 1 1 41
< s+ — :
T2 2 7 672

r+1

Summing up through all six sectors, we obtain that » has at most 3+ % + 52

neighbors.

The following claim captures a crucial property of the graph G} that
helps to prove part d).

Claim 2 FEvery cycle C in G} has the Euclidean length greater than
max{(k + 1)r,kr + [}, where [ is the length of a longest edge in C.

Proof. Let C be a cycle in G and [ be the Euclidean length of the largest
edge, say {u, v}, of this cycle. Without loss of generality we may assume that
v is counterclockwise from u (see Figure 5). Since C' was retained in Gy, the
edge {u,v} must have been retained in Tj(u). However, this means that
there exists a node z € C such that z ¢ Ni[u|, otherwise u would have seen
the whole cycle C' and therefore rejected edge {u, v} as the largest edge of C.
Since z ¢ Ni[u], the path from u to z clockwise around C' contains a vertex
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Figure 5: Cycle C.

of N;[u] \ N;_1[u] for all 1 < i < k. Let w; be the furthest such a vertex in
N;[u]\ N;_1[u]. Similarly, also the path from u to z counter clockwise around
C' contains a vertex of N;[u] \ N;_i[u] for all 1 < i < k, and let z; be the
furthest such a vertex in N;[u] \ N;_1[u]. It follows that wy, ws, ..., wy are in
clockwise order around C' while z1, x5, ...,z are is counter clockwise order.

By definition, if & > 2 then the Euclidean distances |u,wsl, |u,zs],
|z, wi_1], |z, zk_1|, and for all 1 < i < k — 2 |w;, w;yo| and |z;, ;12| are
all greater than r. From the triangle inequality, we have.

If k£ is odd then the Euclidean length

ICl > |u, wp—1| + |wi—1, 2| + |u, Tp_1| + |Tr-1, 2

k-1 k-1
2 r4r+

= (k+ 1D,

>

r+r

or similarly

ICl > |u,wa| + |wa, we—1| + |wr—1, 2| + [, Tp_1| + [Tp-1, 2

11



k—3 k—1

> 1+ r+r+ 5

= kr+1,

r+r

If k is even then the Euclidean length

IC| > |wy, z1|e + |wi, we—1| + |wg—1, 2| + |21, Tp—1] + |TR-1, 2

k—2 k—2
r+r4

> Jwy, x| + r+r+r

= |wy,x1|c + kr
> kr+1,

where |wy, z1|c denotes the Euclidean length of the counterclockwise path
from w; to x; on the cycle C. To complete the proof it remains to show that
|wy, 1] > 7. Let w] be the clockwise successor of w; along C. By definition
of w; and the fact that z ¢ Ni[u], the vertex w] € Ni[u]. Let |wy,w]| = [5.
We have |wy,u|lc > r — € and |u, z1|c > 7 — € for some ¢; > 0 and e, > 0.
From the triangle inequality and the fact that w| & Ni[u], we get r —
€1 + 1y > r. From this and the fact that [ is the largest edge in C, we get
[ > 1y > €. Since v is reachable from u, we know that » — e; > [. Combining
with [ > €; we get €1 + €2 < r and thus |wy,z1|c >r—€ +r—e>r. O

Finally we prove that if G is planar, then cost(Gf) < ¥4l x cost(T).
Let Cy,Cy,...,Cy be the faces in Gj’. First note that the sum of the Eu-
clidean lengths of the faces is equal to twice the sum of the Euclidean lengths
of all edges. This implies that cost(Gy') is equal to half the sum of the Eu-
clidean lengths of the faces, which by Claim 2 is bounded from below by
(krf + Y0, 1,)/2 where ; is the longest edge in C;.

Since, T= C Gy, it follows from the well-known Euler’s formula that the
spanning tree 7~ can be obtained by deleting some f—1 edges ey, ey, ..., €51
from G}'. Therefore we obtain that cost(Gy) < cost(7) + Zf;ll lej|. We
want to upper bound the last sum by szzl ;. To do this, we need to as-
sign each edge e; to a unique face C; so that e; € C;. For this, con-
sider the bipartite graph H with partite sets X = {ej,eq,...,e7_1} and
Y = {C,Cy,...,Cy} in which a vertex in X is joined by an edge to the
two faces it is incident on. Consider a subset X’ C X. We claim that
IN(X")| > |X'|. Indeed, if for some X', the edges in X’ are incident only to
| X'| faces, then after removal of these edges we obtain a new planar graph
which will have the same number of nodes, will have |X’| less edges and
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| X’| — 1 less faces that G}, which is a contradiction with Euler’s formula. It
follows from the well-known Hall’s matching theorem that H has a matching
saturating X. Now, assign the edge e; to the face determined by the match-
ing. We may assume (after appropriate relabelling) that e; is assigned to C;
for j =1,...,f — 1. Since the length of a longest edge in C; is [;, we have
Zj-:ll le;| < Zj-:ll l;, and hence cost(G}) < cost(T~) + Zj-:ll l;. This implies
that

cost(T~) > krf/2—§li/2
> (krf - f+1)/2).

Notice that by the assumption, kr > 1 and hence the last expression is
positive. Consequently,

cost(Gy) cost(T=) + 3121 U

cost(T=) — cost(7T=)
f—1
< 14+ ——7-7
= 0 cost(T=)
f
< 1+
B (krf—f+1)/2
2
< 1
= kr —1
< kr+1
- kr—1
This completes the proof of the theorem. a

To see that G} is not necessarily planar, consider the example of a graph
G on Figure 6 for which any connected spanner must retain all edges.

Corollary 1 If G is a connected unit disk graph and k > 2, then the graph
G3 has the following properties.

a) Gy is connected;
b) Gi is planar;
c) A(Gy) <5;

13



Figure 6: Configuration of vertices that gives a non-planar spanner.

d) cost(Gy) < ¥ x cost(T).

Thus, this corollary give identical results as those of Li, Wang, and Song [17]
as far as the connectedness and the planarity is concerned, but it improves
the maximum degree to 5 and gives an explicit value of the cost factor of the
spanner.

4 Sharpness of Our Results

In this section, we look at the degree, cost, and connectivity of the result-
ing spanner on some examples of graphs, further illuminate the necessity of
choosing a linear order on the edges, and compare our results with the RNG
(Relative Neighborhood) [19] and GG (Gabriel) [9] graphs.

In RNG (respectively, GG), an edge between u and v exists if and only
if the intersection of the circles centered at u and v contains no other point
from the given pointset (respectively, the circle centered at “3* and radius
% contains no other point from the given pointset). It is easy to see that if
(G is a unit disk graph with irregularity r then a local computation of both,
RNG and GG can give a disconnected graph in some cases. We therefore
make a comparison for the case when G is a unit disk graph with irregularity
r=1.

It is known that both the RNG and GG contain a minimum spanning tree
and are contained in the Delaunay triangulation. Both RNG and GG have
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possibly unbounded degree and unbounded cost/cost(MST) as illustrated
below.

4.1 Unbounded degree of GG and RNG

Consider a wheel W,, with n spokes (see Wy in Figure 7). RNG and CG leave
it unchanged, resulting in an unbounded degree of these spanners, while our
algorithm leaves only one (the smallest) spoke.

Figure 7: A wheel Wg with 8 spokes.

4.2 Unbounded cost of GG and RNG

Concerning the unbounded cost, consider a 2 x n mesh with vertical edges
connecting points (i/k,0) and (i/k,1), for i = 1,...,n, which are k times
longer than horizontal ones. Both RNG and GG will retain all vertical edges.
However, our algorithm will leave only the smallest (leftmost) vertical edge.

—

Figure 8: Applying our algorithm to a 2 x n mesh.
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4.3 Lower bound on the degree

We should also mention that five is indeed a lower bound on the degree of the
resulting spanner. To see this, consider the star depicted in Figure 9 with a

Figure 9: A star with 5 spokes.

central node and five equally distributed satellite nodes located at the nodes
of a regular pentagon and at distance 1 from the center. If the nodes have
reachability radius 1 then all five links of the central node must be retained
in order to ensure the connectivity.

4.4 Necessity of using a linear order on edges

Observe that without the ordering on the edges of the geometric graph, the
algorithm to obtain GG does not work, because it could produce a disconnected
graph. A simple counterexample with four nodes is depicted in Figure 10.
It consists of four nodes vy, v9, v3, v4 such that the distance between any pair
of them, but one (say v; and v4) is equal to 1. Our nodes are the vertices
of two equilateral triangles with disjoint interiors that share an edge (in this
case {vq,v3}). Without a total ordering induced on the edges of this graph,
we can get a disconnected graph.

5 Conclusions

In this paper, we gave a new local, distributed algorithm for constructing a
planar spanner of a connected unit disk graph with nodes having irregular
transmission ranges, give bounds on the degree of the spanner, and a sufficient
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Figure 10: Two equilateral triangles.

condition on the graph to obtain a planar spanner. When the spanner is
planar, we give an explicit bound on the the cost factor of the spanner. It
would be interesting to derive a cost factor in case when the spanner is not
planar. Another interesting problem is to see whether our techniques can be
extended to obtain a distributed algorithm that constructs a low cost spanner
of a given geometric unit graph (possibly with irregular transmission range)
which in addition guarantee a low geometric stretch factor of edges.

References

[1] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean
spanners: Short, thin, and lanky. In Proceedings of the Twenty-Seventh
Annual ACM Symposium on the Theory of Computing, pages 489-498,
Las Vegas, Nevada, 29 May—1 June 1995.

[2] S. Arya and M. Smid. Efficient construction of a bounded degree spanner
with low weight. Algorithmica, 17:33-54, 1997.

[3] L. Barriére, P. Fraigniaud, L. Narayanan, and J. Opatrny. Robust
position-based routing in wireless ad-hoc networks with irregular trans-
mission ranges. Wireless Communications and Mobile Computing Jour-
nal, 2003.

17



4]

[5]

6]

7]

18]

9]

[10]

[11]

[12]

[13]

P. Bose, J. Gudmundsson, and M. Smid. Constructing plane spanners
of bounded degree and low weight. Algorithmica, to appear.

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaran-
teed delivery in ad hoc wireless networks. Wireless Networks, 7:609-616,
2001.

G. Das and G. N. J. Salowe. A new way to weigh malnourished eu-
clidean graphs. In Proceedings of the 6th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’95 (San Francisco, California,
January 22-24, 1995), pages 215-222, Philadelphia, PA, 1995. ACM
SIGACT, STAM, Society for Industrial and Applied Mathematics.

P. Doyle and J. Snell. Random Walks and Electric Networks. The Carus
Mathematical Monographs. The Mathematical Association of America,
1984.

D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry. Elsevier, 2000.

K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic
variation analysis. Systemic Zoology, 18:259-278, 1972.

H. H. III, M. Marathe, V. Radhakrishnan, S. Ravi, D. Rosenkrantz,
and R. Stearns. Nc-approximation schemes for np- and pspace-hard
problems for geometric graphs. J. Algorithms, 26(2):238y—274, 1998.

E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geomet-
ric networks. In Proc. of 11th Canadian Conference on Computational
Geometry, pages 51-54, August 1999.

J. B. Kruskal, Jr. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proc. Amer. Math. Soc., 7:48-50, 1956.

F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc
routing: of theory and practice. In Proceedings of the Twenty-Second
ACM Symposium on Principles of Distributed Computing (PODC 2003),
July 13-16, 2003, Boston, Massachusetts, USA. ACM, pages 63-T72.
ACM Press, 2003.

18



[14]

[15]

[16]

[17]

[18]

[19]

[20]

F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal
geometric mobile ad-hoc routing. In Proceedings of 6th International
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications (Dial-M), pages 24y-33. ACM Press, 2002.

X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed construction of pla-
nar spanner and routing for ad hoc wireless networks. In Proceedings
of the 21st Annual Joint Conference of the IEEE Computer and Com-
munications Society (INFOCOM-02), pages 1268-1277, Piscataway, NJ,
USA, June 23-27 2002.

X.-Y. Li and Y. Wang. Efficient construction of low weight bounded
degree planar spanner. In COCOON: Annual International Conference
on Computing and Combinatorics, 2003.

X.-Y. Li, Y. Wang, and W.-Z. Song. Applications of k-local mst for
topology control and broadcasting in wireless ad hoc networks. In Pro-
ceedings of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Society (INFOCOM-04), Piscataway, NJ, USA, Mar.
7-11 2004.

G. Narasimhan and M. Smid. Approximating the stretch factor of Eu-
clidean graphs. SIAM Journal on Computing, 30(3):978-989, June 2001.

G. T. Toussaint. The relative neighborhood graph of a finite set. Pattern
Recognition, 12:261-268, 1980.

Y. Wang and X.-Y. Li. Localized construction of bounded degree and
planar spanner for wireless ad hoc networks. In DialM: Proceedings of
the Discrete Algorithms and Methods for Mobile Computing & Commu-
nications, 2003.

19



