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Abstract. Recent results on the problem of mobile agent rendezvous on
distributed networks are surveyed with an emphasis on outlining the var-
ious approaches taken by researchers in the theoretical computer science
community.

1 Introduction

Consider the following problem original proposed by Alpern [1] (as quoted in
[3]):

Two astronauts land on a spherical body that is much larger than the
detection radius (within which they can see each other). The body does
not have fixed orientation in space, nor does it have an axis of rota-
tion, so that no common notion of position or direction is available to
the astronauts for coordination. Given unit walking speeds for both as-
tronauts, how should they move about so as to minimize the expected
meeting time T (before they come within the detection radius)?

This is just one version of a problem that has been studied under many guises
under most of which it is referred to as rendezvous. In all settings, a set of agents
are placed in a domain and are required to all meet at the same place and time
within the domain, i.e., rendezvous. The settings differ mainly in the types and
properties of the agents and the types and properties of domains. Besides the
astronaut example above, rendezvous has been studied in settings as various
as ships at sea, mother and child at a mall and autonomous robots on a hilly
terrain.

Recently the theoretical computer science community has taken up the chal-
lenge of the problem of rendezvous for autonomous software agents moving
through a distributed network. Requiring such agents to meet in order to syn-
chronize, share information, divide up duties, etc. would seem to be a natural
fundamental operation useful as a subroutine in more complicated applications
such as web-crawling, peer-to-peer lookup, meeting scheduling, etc. In this paper,
we provide a short (perhaps biased) survey of recent work done on this version
of the problem. The research done in other settings is extensive and many of



the solutions can be applied here. But it is often the case that the models used
and the concerns studied are sufficiently different as to require new approaches.
Having said that, one ignores the earlier work at one’s peril. For an excellent
discussion of mainly continuous domains with randomized agents see the book
by Alpern and Gal [3]. For work on robot rendezvous consider [26] and [28] as
possible starting points.

2 The Model

The definition of rendezvous must begin with establishing the properties of the
agents that will rendezvous and the domain in which rendezvous will occur. The
model below captures the essence of what has been termed the theory of mobile
agent computing.

2.1 Mobile agents

We are interested in modeling a set of software entities that act more or less
autonomously from their originator and have the ability to move from node to
node in a distributed network maintaining some sort of state with the nodes of
the network providing some amount of (possibly longterm) storage and compu-
tational support. Either explicitly or implicitly such a mobile (software) agent
has most often been modeled using a finite automaton consisting of a set of states
and a transition function. The transition function takes as input the agent’s cur-
rent state as well as possibly the state of the node it resides in and outputs a
new agent state, possible modifications to the current node’s state and a possible
move to another node. In some instances we consider probabilistic automaton
which have available a source of randomness that is used as part of their input.
Such agents are referred to as randomized agents.

An important property to consider is whether or not the agents are distin-
guishable, i.e., if they have distinct labels or identities. Agents without identities
are referred to as anonymous agents. Anonymous agents are limited to running
precisely the same program, i.e., they are identical finite automata. As the iden-
tity is assumed to be part of the starting state of the automaton, agents with
identities have the potential to run different programs.

The knowledge the agent has about the network it is on and about the other
agents can make a difference in the solvability and efficiency of rendezvous. For
example, knowledge of the size of the network or its topology or the number
of and identities of the other agents may be used as part of the program for
rendezvous. If available to the agents, this information is assumed to part of
its starting state. (One could imagine situations where the information is made
available by the nodes of the network and not necessarily encoded in the agent.)

Other properties that may be considered in mobile agent computing include
whether or not the agents have the ability to “clone” themselves, whether or
not they have the ability to “merge” upon meeting (sometimes referred to as
“sticky” agents) or whether or not they can send self-generated messages. At



this point, most of the research on rendezvous ignores these properties and they
will not be discussed below.

2.2 Distributed networks

The model of a distributed network is essentially inherited directly from the the-
ory of distributed computing. We model the network by a graph whose vertices
comprise the computing nodes and edges correspond to communication links.

The nodes of the network may or may not have distinct identities. In an
anonymous network the nodes have no identities. In particular this means that
an agent can not distinguish two nodes except perhaps by their degree. The out-
going edges of a node are usually thought of as distinguishable but an important
distinction is made between a globally consistent edge-labelling versus a locally
independent edge-labelling. A simple example is the case of a ring where clock-
wise and counterclockwise edges are marked consistently around the ring in one
case, and the edges are arbitrarily - say by an adversary - marked 1 and 2 in the
other case. If the labelling satisfies certain coding properties it is called a sense
of direction [13]. Sense of direction has turned out to greatly effect the solvability
and efficiency of solution of a number of problems in distributed computing and
has been shown to be important in rendezvous as well.

Networks are also classified by how they deal with time. In a synchronous
network there exists a global clock available to all nodes. This global clock is
inherited by the agents. In particular it is usually assumed that in a single step
an agent arrives at a node, performs some calculation, and exits the node and
that all agents are performing these tasks “in sync”. In an asynchronous network
such a global clock is not available. The speed with which an agent computes or
moves between nodes, while guaranteed to be finite, is not a priori determined.

Finally we have to consider the resources provided by the nodes to the agents.
All nodes are assumed to provide enough space to store the agent temporarily
and computing power for it to perform its tasks. (The case of malicious nodes
refusing agents or even worse destroying agents - so-called blackholes - is also
sometimes considered.) Beyond these basic services one considers nodes that
might provide some form of long-term storage, i.e., state that is left behind
when the agent leaves. In the rendezvous problem the idea of leaving an indis-
tinguishable mark or token at a node (introduced in [5]) has been studied. More
accommodating nodes might provide a whiteboard for agents to write messages
to be left for themselves or for other agents.

3 The Rendezvous Problem

Given a particular agent model (e.g., deterministic, anonymous agents with
knowledge they are on a ring of size n) and network model (e.g., anonymous,
synchronous with tokens) a set of k agents distributed arbitrarily over the nodes
of the network are said to rendezvous if after running their programs after some
finite time they all occupy the same node of the network at the same time. It



is generally assumed that two agents occupying the same node can recognize
this fact (though in many instances this fact is not required for rendezvous to
occur). As stated, rendezvous is assumed to occur at nodes. In some instances
one considers the possibility of rendezvous on an edge, i.e., if both agents use the
same edge (in opposite directions) at the same time. (For physical robots this
makes sense. For software agents this perhaps is not so realistic but sometimes
necessary to allow for the possibility of rendezvous at all - especially in instances
where the network lacks a sense of direction.)

The first question one asks for an instance of rendezvous is whether or not
it is solvable. There are many situations where it is not possible to rendezvous
at all. This will depend upon both the properties of the agents (deterministic
or randomized, anonymous or with identities, knowledge of the size of the net-
work or not, etc.) and the network (synchronous or asynchronous, anonymous
or with identities, tokens available or not, etc.). The solvability is also a func-
tion of the starting positions chosen for the agents. For example, if the agents
start at the same node and can recognize this fact, rendezvous is possible in
this instance. Given a situation where some starting positions are not solvable
(i.e., rendezvous is not possible) but others are, we distinguish between algo-
rithms that are guaranteed to finish for all starting positions, with successful
rendezvous when possible but otherwise recognizing that rendezvous is impos-
sible, versus algorithms that are only guaranteed to halt when rendezvous is
possible. Algorithms of the former type are said to solve rendezvous with detec-
tion. (The distinction is perhaps analogous to Turing machines deciding versus
accepting a language.)

For solvable instances of rendezvous one is interested in comparing the effi-
ciency of different solutions. Much of the research focuses on the time required to
rendezvous. In the synchronous setting the time is measured via the global clock.
(In some situations, it makes a difference if the agents begin their rendezvous
procedure at the same time or their is possible delay between start times.) In the
asynchronous setting we adapt the standard time measures from the distributed
computing model. Also of interest is the size of the program required by the
agents to solve the problem. This is referred to as the memory requirement of
the agents and is considered to be proportional to the base two logarithm of the
number of states required by the finite state machine encoding the agent.

As is often the case, researchers are interested in examining the extremes in
order to get an understanding of the limits a problem imposes. Over time it has
become clear that for rendezvous symmetry (of the agents and the network) plays
a central role in determining its solvability and the efficiency of its solutions. As
such we divide our discussion below into the asymmetric and symmetric cases.
For simplicity we restrict ourselves to the case of just two agents in most of the
discussion below.



4 Asymmetric Rendezvous

Asymmetry in a rendezvous problem may arise from either the network or the
agents.

4.1 Network asymmetry

A network is asymmetric if it has one or more uniquely distinguishable vertices.
A simple example is the case of a network where all of the nodes have unique
identities chosen from a subset of some totally ordered set such as the integers.
In this case, the node labelled with the smallest identity (for example) is unique
and may be used as a meeting point for a rendezvous algorithm. Uniqueness
need not be conferred using node labels. For example, in a network where there
is a unique node of degree one, it may be used as a focal point.

If a “map” of the graph with an agent’s starting position marked on it is
available to the agents then the problem of rendezvous is easily solved by just
traversing the path to an agreed upon unique node. Algorithms that use an
agreed upon meeting place are referred to by Alpern and Gal [3] as FOCAL
strategies. In the case where the graph is not available in advance but the agents
know that a focal point exists (e.g., they know the nodes are uniquely labelled
and therefore there exists a unique minimum label node) this strategy reduces
to the problem of graph traversal or graph exploration whereby all of the nodes
(sometimes edges) of the graph are to be visited by an agent. This has been
extensively studied in a number of contexts, e.g., [9, 25]. Much of the work in
this area has looked at improving the efficiency (time or memory) for restricted
classes of graphs, e.g., trees [11]. A closely related problem is that of robot explo-
ration of an unknown environment with obstacles which can often be modeled
using graphs. See for example [6].

4.2 Agent asymmetry

By agent asymmetry one generally means the agents have unique identities that
allow them to act differently depending upon their values. In the simplest sce-
nario of two agents, the agent with the smaller value could decide to wait at its
starting position for the other agent to find it by exploring the graph as above.
Alpern and Gal [3] refer to this as the Wait For Mommy (WFM) strategy and
they show it to be optimal under certain conditions.

WFM depends upon the fact that the agents know in advance the identities
associated with the other agents. In some situations this may be an unrealistic
assumption. Yu and Yang [29] were the first to consider this problem. Under the
assumption that the algorithm designer may assign the identities to the agents
(as well as the existence of distinct whiteboards for each agent), they show that
rendezvous may be achieved deterministically on a synchronous network in O(nl)
steps where n is the size of the network and l is the size of the identities assigned.
The perhaps more interesting case where an adversary assigns the labels was first
considered in [10]. Extensions to this work including showing rendezvous on an



arbitrary graph is possible in time polynomial in n and l and that there exist
graphs requiring Ω(n2) time for rendezvous are described in [17, 18]. The case
of an asynchronous network is considered in [8] where a (non-polynomial) upper
bound is set for rendezvous in arbitrary graphs (assuming the agents have an
upper bound on the size of the graph). Improvements (in some cases optimal)
for the case of the ring network are discussed in each of the above papers.

5 Symmetric Rendezvous

In the case of symmetric rendezvous, both the (generally synchronous) network
and the agents are assumed to be anonymous. Further one considers classes of
networks that in the worst case contain highly symmetric networks that do not
submit to a FOCAL strategy. As might be expected some mechanism is required
to break symmetry in order for rendezvous to be possible. The use of random-
ization and of tokens to break symmetry have both been studied extensively.

5.1 Randomized rendezvous

Many authors have observed that rendezvous may be solved by anonymous
agents on an anonymous network by having the agents perform a random walk.
The expected time to rendezvous is then a (polynomial) function of the (size of
the) network and is directly related to the cover time of the network. (See [24]
for definitions relating to random walks.)

For example, it is straightforward to show that two agents performing a
symmetric random walk on ring of size n will rendezvous within expected O(n2)
time. This expected time can be improved by considering the following strategy
(for a ring with sense of direction). Repeat the following until rendezvous is
achieved: flip a (fair) coin and walk n/2 steps to the right if the result is heads,
n/2 steps to the left if the result is tails. If the two agents choose different
directions (which they do with probability 1/2) then they will rendezvous (at
least on an edge if not at a node). It is easy to see that expected time until
rendezvous is O(n). Alpern refers to this strategy as Coin Half Tour and studies
it in detail in [2]. Note that the agents are required to count up to n and thus
seem to require O(log n) bits of memory to perform this algorithm (whereas
the straightforward random walk requires only a constant number of states to
implement). This can be reduced to O(log log n) bits and this can be shown to
be tight [23] for achieving linear expected rendezvous time.

5.2 Rendezvous using tokens

The idea of using tokens or marks to break symmetry for rendezvous was first
suggested in [5] and expanded upon for the case of the ring in [27]. The first ob-
servation to make is that rendezvous is impossible for deterministic agents with
tokens (or whiteboards) on an even size ring when the agents start at distance
n/2 as the agents will remain in symmetric positions indefinitely. However, this



is the only starting position for the agents for which rendezvous is impossible.
This leads one to consider algorithms for rendezvous with detection where ren-
dezvous is achieved when possible and otherwise the agents detect they are in an
impossible to rendezvous situation. In this case, a simple algorithm suffices (de-
scribed here for the oriented case). Each agent marks their starting position with
a token. They then travel once around the ring counting the distances between
their tokens. If the two distances are the same, they halt declaring rendezvous
impossible. If they are different they agree to meet (for example) in the middle
of the shorter side.

Again, one observes that the algorithm as stated requires O(log n) bits of
memory for each agent in order to keep track of the distances. Interestingly
enough this can be reduced to O(log log n) bits and this can be shown to be
tight for unidirectional algorithms [20]. If we are allowed two movable tokens
(i.e., the indistinguishable marks can be erased and written with up to two
marks stored per node) then rendezvous with detection becomes possible with
an agent of constant size [21].

Multi-agent rendezvous, i.e., more than two agents, on the ring is considered
in [14, 16], the second reference establishing optimal memory bounds for the
problem. Two agent rendezvous on the torus is studied in [21] where tradeoffs
between memory and the number of (movable) tokens used are given. Finally
[15] considers a model in which tokens may disappear or fail over time.

5.3 Whiteboards and blackholes

The use of whiteboards to achieve multiagent rendezvous on an arbitrary anony-
mous asynchronous network is studied in [4] where the problem is shown to be
equivalent to that of leader election. In [12] rendezvous on an asynchronous ring
with whiteboards in the presence of blackholes is considered.

6 Related Problems

As was mentioned above the rendezvous problem is intimately related under
certain conditions to that of graph exploration [9, 25]. Besides this connection
there are a number of “search” problems that are at least tangentially related to
rendezvous in as much as techniques and/or models considered by researchers
on these problems may be of some use to those working on rendezvous. Some
examples are described below.

Imagine that the police have cornered a fugitive in a complicated warren
of tunnels and rooms. They know that she is situated at one of the nodes and
would like to capture her by searching the rooms. Their main concern is to decide
what is the least number of police personnel necessary in order to be certain the
fugitive does not evade capture. This number, referred to as the search number
of a graph, was introduced by Megiddo et al. [22] and has since been studied by
many authors.



Two friends check into an n room hotel. The hotel clerk is off duty and each
doesn’t know the room number of the other. They start calling rooms in order
to find each other. What is the least number of calls they must make before
at least one finds the other? This question was formalized and generalized as
mutual search by Buhrman et al[7].

A friend has given you the name but not the address of a restaurant in
downtown Manhattan. You start searching for the restaurant by asking passersby
which direction the restaurant is in. Their answers are sometimes erroneous, even
contradictory. What is the best strategy to use in order to find the restaurant
quickly? This problem was formalized in [19].

7 Conclusions

Rendezvous is a natural and fundamental problem for mobile software agents
traveling through a distributed network. This makes it a natural choice as a
model problem to study in the development of the theory of mobile agent com-
puting much like leader election and consensus form model problems for the
traditional study of the theory of distributed algorithms. We have attempted to
bring together the current state of our knowledge of the study of rendezvous in
the theoretical computer science context. A lot of work remains to be done.
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