Enhancing Hyperlink Structure for Improving Web Performance

A

Jurek Czyzowicz Evangelos Kranakis¥ Danny Krizanc” Andrzej Pelc®

Miguel Vargas Martin
16th February 2003

Abstract

In a Web site, each page v has a certain probability p, of being requested by a user. The access cost of a
Web site is the sum of p, - ¢(r,v), of every page v, where ¢(r,v) is the cost of the shortest path between the
home page, r, and page v. The cost of a path is measured in two ways. One measure is in terms of its length,
where the cost of the path is simply the number of hyperlinks in it. The other measure is in terms of the data
transfer generated for traversing the path. This research work concerns the problem of minimizing the access
cost of a Web site by adding hotlinks over its underlying structure. We propose an improvement on Web site
access by making the most popular pages more accessible to users. We do this by assigning hotlinks to the
existing structure of the Web site. The problem of finding an optimal assignment of hotlinks is known as the
hotlink assignment problem. We present heuristic algorithms which are tested and compared by simulation on
real and random Web sites. We develop The Hotlink Optimizer (HotOpt), a new software tool that finds an
assignment of hotlinks reducing the access cost of a Web site. HotOpt is empowered by one of the algorithms
presented in this paper.

1 Introduction

There are many factors, from physical to logical, which affect the speed of information retrieval from the Internet.
Examples include the efficiency of the underlying data transmission lines and the protocols that govern their
usage; the physical location of the information and the efficiency of the Web browsers which locate it.

Continuing efforts are being made in order to improve the performance of the Internet. Some of the most
important areas of research are Web site design, clustering, and caching. We believe that a well designed Web
site contributes to the improvement of the Internet since well structured sites lead to less traffic on the Web, as
users are getting the information they want without having to traverse superfluous Web pages. In addition, well
designed Web sites become more attractive to users since they offer rapid access to information.

1.1 Ouwur Approach: Hotlink Optimization

Unfortunately, it is common that the users and designers of a Web site perceive the Web site in a different
way. This discrepancy is reflected in users having to traverse “costly” paths in order to reach the pages they are
interested in. We say that a path is costly either because it is “too” long or because the pages in it are “too” big
(in bytes).

We endeavour to improve Web access by improving the design of Web sites. A well designed Web site will
avoid some useless traffic, save time to users, and reduce the Web server work load. Our idea is conceptually
simple, “bring the most popular pages closer to the home page.”

We propose an improvement on Web site access by adding hotlinks that provide shortcuts to the most popular
pages. Suppose that there is a page with many access hits; we want this page to be closer to the home page so

ADepa,rtement d’ Informatique, Universite du Quebec a Hull. Hull, Quebec J8X 3X7, Canada
YSchool of Computer Science, Carleton University. Ottawa, Ontario K1S 5B6, Canada
ZDepartment of Mathematics, Wesleyan University. Middletown, C'T 06459, USA
XDepartement d’ Informatique, Universite du Quebec a Hull. Hull, Quebec J8X 3X7, Canada
“School of Computer Science, Carleton University. Ottawa, Ontario K1S 5B6, Canada

users can reach it at a lower cost. Cost may be measured in terms of the expected number of steps or in terms
of the expected data transfer. Figure 1 illustrates the idea.

It would be interesting to measure the cost of a Web site in terms of its latency. Latency is a measure of
network performance that “corresponds to how long it takes a single bit to propagate from one end of a network to
the other” ([32], page 23). The latency of a Web site is the average of the latencies of its Web pages. The latency
of a Web page is the time elapsed from the time when the user requests a page on his or her navigator to the time
when the page is completely displayed on the screen. From this definition of latency, we can say that the latency
of page v is smaller for user A, who has a high speed Internet connection, than for user B, who has a slower one.
The latency of a Web page experienced by users A and B also depends on other factors including their physical
locations and the traffic on the transmission lines. Due to the fact that the latency of a Web page depends on a
combination of many factors that vary from one user to other, it is extraordinarily complex to design a realistic
model for optimizing the latency of a Web site. Nevertheless, by optimizing the expected number of steps (or the
expected data transfer) of a Web site, we significally decrease latency. See the example illustrated in Figure 1.

— hyperlink
—= hotlink

7

Figure 1: Example of an assignment of one hotlink per page. The figure shows a small Web site modeled with a
directed graph (edges going downward). The sizes of the Web pages are in KBytes.

To see how a hotlink assignment reduces the latency of a Web site by reducing the average number of steps,
suppose that a user at the home page (at the top) wishes to reach the Web page of 23KBytes (left most page).
Without the hotlink, the user would have to download the two intermediate pages between this page and the
home page.

1.2 Related Work

Since its appearance, the Internet has been the subject of arduous study. Until the last few decades, when the
amount of information on the Internet started to expand at unprecedented rates and with unknown patterns, it
was never so urgent to organize the content. Perhaps, the unregulated growth of the Internet is a result of the
different socio-economic interests that interact on it. As an entity that is not well-understood, consisting of a
solid source of information and communication for the whole world, the Internet has become an attractive field
of study to researchers.

Researchers have focused their attention on the optimal design of Web sites based on user access patterns.
Some of them suggest analysing user access patterns to help design better Web pages, sites, and browsers. Catledge
et al. [9] and Drott et al. [13] analyse user access patterns to suggest improvements that help to design better
Web pages. For example, Catledge et al. find that users rarely traverse a path of more than two hyperlinks
before returning to the starting point. This observation would suggest to create dense Web sites. Pirolli et al.
[33] propose to create aggregation of Web pages according to their importance or their content.

Perkowitz et al. [30] propose the design of adaptive Web sites by promoting and demoting pages, highlighting
hyperlinks, adding hyperlinks and clustering related pages. Perkowitz et al. [31] present an algorithm that
analyses user access logs in order to identify candidate hyperlink clusters to be included in index pages. The
performance of the algorithm is measured according to the quality of the clusters; specifically, they assess the
quality of a cluster by answering the following question: Given a visit to a page of a cluster, what percentage of
the pages in this cluster was visited by this user? They find that when the number of clusters is 1, the percentage
of visits is approximately 72%; but when the number of clusters is 10, the percentage of visits is around 20%.

They also compare clusters constructed by a human with clusters constructed by their algorithm and find that
the algorithm constructs clusters with at least 15% more visits than the human-authored ones. Note that the
approach of Perkowitz et al. finds clusters of related documents and creates index pages to those documents,
however, this solution does not specify where the index pages are to be inserted in the Web site.

Spiliopoulou et al. [37] present a tool for detecting “interesting” commonly traversed paths. They suggest the
use of this information to improve Web site design but do not suggest a specific mechanism.

Nakayama et al. [29] propose a technique to detect the gap between Web designer’s expectations and users’
behaviour. The former is assessed based on the content of Web pages, whereas the latter is assessed by analysing
user navigation patterns. The resulting gap suggests (without specifying) the possibility for improvements to the
Web site based on the criteria of the Web designer. These improvements may be on the hyperlink topological
structure or on the page layout. The statistical analyses used to assess Web designers’ expectations and users’
behaviour are suitable for evaluating the improvements without involving actual users.

Fu et al. [15] propose an algorithm to reduce the number of steps to reach the most popular pages of a Web
site. They classify the Web pages according to the number of hyperlinks in them into “index pages” and “content
pages”. Based on this classification and on the popularity of Web pages, the authors promote and demote pages
to reduce the number of steps. Fu et al. test their approach in a particular Web site. They show experimentally
that their approach actually “reduces” the number of steps required to reach popular pages. Their algorithm
requires the empirical adjustment of parameters used in their classification of Web pages.

Srikant et al. [38] propose improving Web site design by finding the pages whose actual location is different
from their expected locations, i.e. where visitors expect to find them. Their algorithm relies on the belief that
when the user presses the back button of the navigator it is because the user did not find the page where he or
she had expected to find it. The algorithm of Srikant et al. is tested only in a particular Web site. They find
that “many” pages are wrongly placed, according to their criteria.

Some researchers (e.g. [6], [L1] and [16]) have studied the assignment of shortcuts in full binary tree structures.

1.3 General Notation and Terminology

A Web site is a collection of Web pages administered by the same authority which are linked together to form
a unified source of information. We say that two Web pages are connected by a hyperlink, which is a one-way
linkage between two pages. The notion of a home page is needed to understand the organization of a Web site.
The home page is considered to be the starting point of any Web site, and it is assumed that any Web page
belonging to the Web site can be reached from the home page. Under this assumption, we can say that within a
site, a Web page b is a descendant of a Web page a if there is a path of hyperlinks leading from a to b. Therefore,
any Web page is a descendant of the home page. This research focuses on improving the design of Web sites by
assigning hotlinks (shortcuts) to the collection of Web pages. A hotlink is defined as an added hyperlink that
links a Web page to a descendant of that page.

In a Web site, each page v has a certain probability p, of being requested by a user. The access cost of page
v, is denoted ¢(r, v), and corresponds to the cost of the shortest path between the home page, 7, and page v. The
access cost of a Web site is the sum of the access cost of all its pages. The cost of a path is measured in two
ways. One measure is in terms of its length, where the cost of the path is simply the number of hyperlinks in it.
The other measure is in terms of the data transfer generated by the path, i.e., the number of bytes that need to
be transferred in order to traverse the path. The problem is to minimize the access cost of a Web site by adding
hotlinks to its underlying structure. An immediate intuitive solution to the problem would be to add as many
hotlinks as necessary to connect directly the home page with every other page of the Web site. However, from a
practical point of view, this solution could produce a Web site without semantic structure and with a very dense
home page, that would be difficult to visualize and understand by users. Therefore, we must restrict our problem
to assigning at most k hotlinks per page. The problem is to minimize the access cost of a Web site by adding at
most k hotlinks per page. This is a very difficult problem, in fact, some instances of it have been proven to be
NP-hard (see [6]).

Consider a part of the Web called a Web site, consisting of a collection V' = {v1,...,un} of Web pages
connected by hyperlinks. These hyperlinks have been placed a priori by design in the initial construction of the
Web pages. Assume there exists a directed path of hyperlinks from the home page r to any other page of the
collection. We can view the Web site as a directed graph G = (V, E), where each page is represented by a node,

and each hyperlink is represented by an edge'. The number of hyperlinks in page v is called outdegree, and is
denoted by d,. The mazimum degree of all the pages of a Web site is denoted by 4.

Consider a tree T = (V, E'), where E' C E, with a distinguished node called the root, r. We define the
distance from the root r to a node v € V, denoted by d(v), as the number of edges between them.

Suppose that the leaves of T have a probability distribution p over them. We assign popularities? to the
internal nodes in a bottom-up fashion, in such a way that the weight of a node is equal to the sum of the
probabilities of the leaves descendant to it. Observe that in this way, the root node will have a weight of 1. Thus,
let us say that node v has weight p,, then we define the access cost of a Web site T, as follow:

E[T] = Z Do - C(TJ U)a (1)
v is a leaf

The optimal k-hotlinks assignment problem consists in minimizing Equation 1 by adding at most k hotlinks
from each node of the tree. If £ = 1 we call it optimal hotlink assignment problem.

As mentioned before, the cost of a path can be measured in two ways. One measure is in terms of the number
of steps, where the cost of the path is the number of hyperlinks in it. The other measure is in terms of the data
transfer generated for traversing the path. We use a slightly different notation and terminology for these two
measures.

Optimizing Number of Steps

Consider a hotlink h = (s,t), added to the original tree®>. We say that s is the hyperparent of ¢, and t is the
hyperson of s. Consider a set of hotlinks, H, assigned to the tree T'; the resulting graph is denoted by T, and
the gain of H is defined by

G(H) = E[T] - E[T"] (2)
The gain of a single hotlink, h = (s, t), is defined by

g(h) = pe(d(t) —d(s) — 1) 3)
A set of hotlinks H is optimal if G(H) > G(H') for any hotlink set H'.

Optimizing Data Transfer

Define the weight (in bytes) of a page v, w,, as its own size plus the size of its embedded files. The access cost of
a page v, w(v) = ¢(r,v), is equal to the sum of the weights of the pages contained in the shortest path between
the home page r and v.

The gain of a single hotlink, h = (s, t), is now defined by

9(h) = p(w(t) — w(s) — wy) (4)
Define I (r,u) as the shortest path from r to u given the hotlink assignment H. We have the following:

whw) = > wy (5)
v€EITH (r,u)
E,[T"] = > wh(i)-ps (6)
iis a leaf
GH) = E,[T]-E,[T"]= > (w@)-w()-p: (7)
iis a leaf

A set of hotlinks H is optimal if G(H) > G(H') for any hotlink set H'.

IThroughout this paper we use interchangeably the terms root and home page, node and Web page, edge and hyperlink.
2The terms probability and popularity will be used interchangeably throughout this paper.
3Literals s and t stand for source and target nodes.

1.4 Contributions of the Paper

In this paper we make several contributions. We consider some variants of the problem, namely, one hotlink per
page and multiple hotlinks per page. Hotlink assignment algorithms are presented, and tested with simulations.
In particular, we use simulated Web sites with simulated access patterns, real Web sites with simulated access
patterns, and a real Web site with real access patterns. We develop the Hotlink Optimizer, a hotlink assignment
software tool. In this section we summarize our main contributions.

1.4.1 Hotlink Assignments to Web Sites

We present algorithms for one and multiple hotlinks per page, which were tested by simulations.

For the case of one hotlink per page, among the algorithms we have tested, algorithm greedyBFS achieves the
best performance. The results of our experiments reveal that algorithm greedyBFS is capable of saving up to 27%
the average number of steps on simulated Web sites with simulated access patterns, 35% on real Web sites with
simulated access patterns, and 27% on a particular Web site with real access patterns. Regarding data transfer,
algorithm weighted-greedyBF'S is capable of saving up to 14, 30, and 22%, respectively.

For the case of multiple hotlinks per page, we test algorithms k-greedyBFS and greedyBFS* on simulated Web
sites with simulated access patterns, and find that algorithm k-greedyBFS outperforms algorithm greedyBFS* for
k < 5. For k = 5, the algorithms are capable of saving up to 43% on the expected number of steps of a Web site.

1.4.2 The Hotlink Optimizer

We have developed the Hotlink Optimizer (HotOpt), a powerful software tool that assists Web administrators
and designers in re-structuring their Web sites according to the needs of users.

By analysing the hyperlink structure of a Web site, and taking into consideration the access patterns of the
users, HotOpt is able to suggest a set of hotlinks, H, and thus save a certain proportion of the access cost of the
Web site. While the inputs are the home page file and the access log files, the output is a set of hotlinks H along
with 2%, the proportion of gain achieved by H. Figure 16 shows the user interface of HotOpt.

1.5 Outline of the Paper

In Section 2 we present heuristic hotlink assignment algorithms and the simulation process. In Section 3 we
introduce the Hotlink Optimizer, a software tool that assists Web administrators and designers by suggesting an
assignment of hotlinks. Finally, in Section 4 we discuss the conclusion and some possible extensions to our work.

2 Hotlink Assignment Algorithms and Simulations

In this section we present our hotlink assignment algorithms (we also describe an algorithm by Kranakis et al.
[26] called approzimateHotlinkAssignment) and their performance when tested on random and real Web sites.

Before presenting the algorithms we explain the process of the simulations. We evaluate the algorithms on
three different kinds of structures: random Web sites, real Web sites with unknown access probability distribution,
and an actual Web site with a known access probability distribution.

2.1 The Simulation Process

In order to generate realistic random Web sites, we need to know how the pages of a Web site are linked together.
We also need to know how users access the Web sites in order to emulate the popularity of the Web pages. For
each Web page, we generate an outdegree é and an access probability p according to theoretical distributions.
Even though the distributions of § and p are precise, they do not provide any information on how they are to be
distributed among the pages of the Web site. Given the huge universe of possible combinations of § and p, we
obtain 95% confidence intervals for all the results that we present. We validate the correctness of the simulations
by showing that the outdegree § and the popularity p of the random Web sites actually follow the theoretical
probability distributions.

2.1.1 Random Web Sites

Faloutsos et al. [14] point out that Internet topology can be modeled using power-law relationships. They compare
three snapshots of the Internet with power-laws and observe a strong similarity despite the growth of the Internet
between the snapshots. In particular, we are interested in the power-law that governs the outdegree § of a Web
page. The probability that a page has degree i is proportional to i~*, for k > 1.

Broder et al. [7] have found that k = 2.72 is an accurate value for the outdegree. Their experiments are based
on a sample of over 200 million pages and 1.5 billion hyperlinks.

Given a Web page v, the probability that v has outdegree ¢ is determined by the formula

P[6, = i] ~i™272 (8)

2.1.2 Generation of Random Web Sites

There are many techniques for generating random graphs. Waxman [40] proposes a random graph generator for
modeling geographical networks. Calvert et al. [8] discusses how graph-based models can be used to generate
large graphs with specific parameters of locality and hierarchy. Zegura et al. [41, 42] survey the generation
of commonly used graph models. Zegura et al. also study the difficulty of generating random graphs with a
particular average degree and then propose a technique to generate such graphs. Aiello et al. [2] describe a
random graph model for reproducing sparse gigantic graphs with particular degree sequences. The Aiello et al.
model fails to reproduce some characteristics of real networks. Watts [39] fully explains the concept of “small
world” graphs, which are clustered, sparse, and of small diameter. There is an extensive literature about small
worlds, e.g., [1, 36]. Hayes [20, 21] analyses gigantic graphs such as the Web, and maintains that the Web is a
small world graph. Hayes points out how lattices andErdds-Rényi graphs fail to reproduce small world graphs
since lattices do not have small diameter and Erd6s-Rényi graphs are not clustered.

We generate random Web site trees T' = (V, E) of size s = |V|. The outdegree of a page is taken from a
sample of outdegrees generated by Formula 8.

The generation of a random Web site tree structure is described in Algorithm 1. In Section 2.1.4, we discuss
the assignment of access probabilities to the random Web site trees.

Algorithm 1 hyperlinksStructure(size)
1. V=E=¢

2. let q be an empty queue

v =new Web page

-

V=VUuv
5. enqueue v in q

6. while q is not empty

(a) if |V| = size then return T = (V, E)

(b) v =dequeue q

(¢) assign o random outdegree 6, to v (sec Section 2.1.2)
(d) fori=1 tod,

i. w =new Web page

ii. V=VUw, E=EU(v,w) (i.e., insert in page v a new hyperlink pointing to a new Web page w)
iii. enqueue w in q
iv. if |V| = size then return T = (V, E)

2.1.3 Actual Web Sites

In Section 2.1.2, we briefly survey the efforts to generate random graphs with particular characteristics [40, 8, 41,
42, 2, 20, 21]. We know of no precise technique for simulating “typical” Web sites.

Instead of simulating random Web sites, we could take a sample of Web sites from the Internet. Henzinger
et al. [22] suggest performing random walks on the Internet in order to extract representative samples of Web
pages. They point out that with this random walk, pages with big indegree will have more chances to be visited
than pages with small indegree, which may not be true in reality.

In the absence of efficient techniques for generating Web sites, we test our algorithms with the hyperlink
structure* of the Web sites of eleven universities in Ontario. Once we retrieve the hyperlink structure of a Web
site, we convert it into a directed graph G = (V, E), where each vertex v € V represents a Web page, and every
edge (v,w) € E represents a hyperlink going from v to w. We then generate a tree T = (V, E') by performing
breadth first search on G, starting with the home page. In Section 2.1.4 we study the assignment of access
probabilities to these Web sites.

2.1.4 'Web Access Distribution

To perform the simulations, we need to assign access probabilities to the Web sites. This information can be
extracted from the access log files. However, sometimes the log files are unavailable, either because the Web
administrators prefer not to disclose them or because the Web site structure has been simulated with a random
graph. We explain how to assign access probabilities to Web sites with and without the log files.

Modeling Access Distribution

While it is possible to get the hyperlink structure of any Web site, it is not easy to convince a Web site adminis-
trator to disclose log files in order to know the popularity of the Web pages. When access logs are not available,
we simulate the popularity of a Web page using the Zipf’s popularity law.

Given Zipf’s observations of human behaviour [43], one could conjecture that the popularity of Web pages
obeys Zipf’s popularity law. Glassman [17] prove experimentally that the popularity of Web pages can actually be
modeled with Zipf’s popularity law. Glassman analyses 100, 000 requests from 300 different users of 40,000 Web
pages. Zipf’s popularity law is also found in the length of user’s navigation. Levene et al. [27] show experimentally
that Zipt’s popularity law explains user’s navigation, in the sense that longer navigations are less probable than
shorter ones. Pitkow [34] provides a good survey on Web characterizations.

In Zipf’s distribution, the probability of the i-th most probable item is p; = ﬁ, where H,, is the harmonic

number, H,, = Z;nzl % [24]. Thus, given the é-th most popular Web page v of a Web site of m pages,

1
= 9)

In order to associate popularities to the m leaves of a Web site T, we generate a popularity ranking-list of
m elements based on Equation 9, where the i-th most popular leaf page has popularity p; = ﬁ Each of these
popularities is randomly associated with a different leaf of T'. This popularity represents the access probability
of a page. The access probability of an intermediate (i.e., non-leaf) page is the sum of the access probabilities
of the leaves descendant to it, in such a way that the home page has access probability of 1. The assignment of
access probabilities to the Web pages of a Web site T is described in Algorithm 2.

Dy

2.1.5 The Distribution of File Sizes

Arlitt et al. [3] carefully analyse the traffic of a Web server. They prove experimentally that the file size
distribution is heavy tailed (see [35] for a background of heavy tail models). The assertion of Arlitt et al. is
confirmed by Crovella et al. [10], who show experimentally that file sizes greater than about 1,000 bytes can be
well modeled with a Pareto distribution. Barford et al. [5] show experimentally that file sizes can be modeled
with a hybrid distribution. Files of “small” size can be well modeled with a lognormal distribution, whereas
“big” files can be modeled with Pareto distribution. According to Barford et al., the body of the distribution

4Note that the hyperlink structure of a Web site is different from its file structure.

Algorithm 2 accessProbabilities(T = (V, E))

1. create a popularity ranking-list rankingList of length m, where m is the number of leaf pages of T (see
section 2.1.4)

2. for each leaf page v of T
(a) take a random element from rankingList, p (not taken before), and make p, = p
3. for each intermediate page (i.e., non-leaf) v

(a) py is equal to the sum of the leaf pages descendant to v

is modeled with lognormal distribution for values smaller than 133KBytes. Downey [12] creates a model that
suggests that file sizes are modeled only by a lognormal distribution. Mitzenmacher [28] points out why the
arguments of Downey yield only a lognormal distribution. Mitzenmacher corroborates the results of Barford et
al. and suggests a double Pareto distribution for the body of the curve and a Pareto distribution for the tail.
Assuming that the model proposed by Barford et al. [5] is correct, we create a file size distribution as follows:

Pluwy = 2] { #ﬁe*(ln‘”*”)Z/Z”Q if z < cutoff point
Yy = z] =

10
akog—(et) otherwise, (10)

where w, is the size in bytes of page v and its embedded files. The values of u,o and a are taken from the
observations of Barford et al. [4] on the requests of over 40,000 files from over 500 users in 1998. The values of
k and the cutoff point are calculated to fit the results of Barford et al. [4] who observe that 83% of the files fall
in the body of the distribution. See Figure 14. The values used in Formula 10 are displayed in Table 1.

| parameter | value |
o 7.796
o 1.625
% 8,863
a 1.47

cutoff point | 10,790

Table 1: Parameters used in Formulal0.

For the case of random Web sites, we assign weights to the pages in a random fashion, according to the
distribution of Formulal0.

The straightforward solution for getting the actual weights of real Web sites would be to download the entire
Web sites, however this action would require enormous storage capacity. One alternative would be to process the
information contained in the log files, however the log files are usually undisclosed to the public. Therefore we
use random file sizes. We search the number of embedded files on every page and for each of them we withdraw
a size from the distribution given by Formulal0.

2.2 Algorithm simpleBFS

Algorithm simpleBFS iteratively assigns hotlinks in breadth first search order, starting with the home page.
Consider a hotlink (s,t). In each iteration of the algorithm, s corresponds to the next node in the breadth first
search order and t corresponds to a descendant of s that offers the biggest gain. The algorithm stops when there
are no more possible hotlinks to assign. Algorithm simpleBFS uses the function next in_ BFS order, which
returns the next node of the tree in breadth first search order, starting from the home page.

In a variant of algorithm simpleBFS, called greedyBFS, the target node can not be a descendant of a node
that already has a hyperparent. The only modification of simpleBFS occurs in step 2a.

Algorithm 3 simpleBFS(T)
1. H=¢

2. while((s = next_in_BFS order) # ¢)

(a) t =v:v mazimizes Equation 3; and v is descendant of s; and v does not have a hyperparent

(b) if t# ¢ then H = HJ{(s,8)}

2.3 Algorithm greedyBFS

Algorithm greedyBFS assigns hotlinks iteratively in breadth first search order starting from the home page.
Consider a hotlink (s,t). In each iteration of the algorithm, s corresponds to the next node in breadth first search
order, and ¢ corresponds to the descendant of s that maximizes the gain, but is not a descendant of a node z,
which is at a higher level than s and already has an incoming hotlink®. See Figure 2. The algorithm stops when
there are no more possible hotlinks to assign. We also have a recursive version of algorithm greedyBF'S, which we
call recursive. This recursive version will help us to validate the simulations, as we will see later.

Algorithm 4 greedyBFS(T)
1. H=¢

2. while((s = next_in_BFS order) # ¢)

(a) t = v : v mazimizes Equation 3; and v is a descendant of s; and v does not have a hyperparent; and
v s not a descendant of a node x, which is at a higher level than s and already has a hyperparent.

(b) if t# ¢ then H = HJ{(s,1)}

* elegible candidates
. fort
non-elegible
candidates for t

Figure 2: In algorithm greedyBFS, two hotlinks are not allowed to cross each other. Consider a hotlink (s,t) to
be assigned in an iteration of the algorithm. ¢ must be a descendant of s that minimizes the cost but is not a
descendant of a node x, which is at a higher level than s and already has an incoming hotlink.

By comparing these two algorithms we will see that in practice, greedyBFS offers the same or better per-
formance than simpleBFS. This claim comes from the assumption of “obvious navigation”. Obvious navigation
consists in taking alwaysthe hyperlink or hotlink taking us closer to the desired page. This is the natural way
users navigate on the Web. Note that in some cases this kind of navigation can be inefficient. SeeFigure 3.

If we took two hotlinks from an arbitrary path from the root to a leaf after running simpleBFS, one of the
following four cases would hold: a) one hotlink is “inside” the other, or b) the two hotlinks are overlapped, or c)
one hotlink starts exactly at the end of the other, or d) otherwise. These four cases are illustrated in Figure 4.

Observe that obvious navigation can be inefficient only in case b). Furthermore, the deepest hotlink will be
wasted in this case and the source node will be unable to accommodate an efficient hotlink from it. Case b)

5The levels of the tree are counted in increasing order starting from the root, such that the root is at the lowest level.

Figure 3: Tllustration of “obvious navigation” assumption. Suppose that a user is at page and wishes to reach a
page descendant of w. We assume that, as the user does not have a map of the site, the path (z,2) + z = w will
be followed, even though path x — y + (y,w) would have been shorter. Therefore, obvious navigation is efficient

only when x — y > z = w.
root root root root
leaf leaf leaf leaf
3 b) Y)
Figure 4: Four possible scenarios of two hotlinks on a path, after executing algorithm simple BF'S. Each figure

shows an arbitrary path from the root to a leaf. a) one hotlink is “inside” the other, b) the hotlinks are overlapped,
c¢) one hotlink starts exactly at the end of the other, d) otherwise.

never happens in algorithm greedyBFS. Therefore, under obvious navigation assumption, algorithm greedyBF'S
performs at least as well as algorithm simpleBFS.

2.3.1 Performance of Algorithm greedyBFS
Algorithm greedyBFS Evaluated on Random Web Sites

Algorithm greedyBF'S is described in Section 2.3. We show the results of the simulations in Figure 5 and Table
2. We plot the average proportion of gain that can be attained by the algorithm. The average proportion of gain
has a 95% confidence interval of at most F1.27. Observe that the gain of the algorithm oscillates between narrow
intervals, which indicates that the size of the tree does not greatly affect the performance.

% gain
40

35

greedyBFS ——
30+

20

15 I I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

number of pages in the web site

Figure 5: Gain on the access cost obtained by applying greedyBFS to randomly generated Web sites of size 1,000
to 17,000. The average proportion of gain has a 95% confidence interval of at most F1.27.

10

size of % of | standard | 95% confidence
Web site, |V| | gain | deviation interval
1,000 24.85 2.46 0.85
2,000 26.34 3.16 1.10
3,000 25.30 3.21 1.11
4,000 25.77 3.67 1.27
5,000 25.35 2.18 0.75
6,000 25.23 2.45 0.85
7,000 26.86 1.94 0.67
8,000 25.76 2.31 0.80
9,000 25.71 3.10 1.07
10,000 26.88 3.40 1.18
11,000 24.70 2.38 0.83
12,000 25.82 3.61 1.25
13,000 25.70 2.86 1.00
14,000 26.57 2.59 0.90
15,000 25.89 2.52 0.87
16,000 27.04 2.90 1.00
17,000 26.96 2.49 0.86

Table 2: Proportion of gain on the access costs of randomly generated Web sites of 1,000 to 17,000 pages. The
proportion of gain has a 95% confidence interval of at most F1.27.

Algorithm greedyBFS Evaluated on Real Web Sites

Algorithm greedyBFS is discussed in Section 2.3. The results of the simulations are displayed in Table 3 and
depicted in Figure 6. The average number of nodes of the sample of Web sites is 9,669.2. Observe that the
proportion of gain stabilizes after assigning less than 1,000 hotlinks, which is approximately 10% of the average
number of Web pages.

% gain
36 T

32 |

30 B
greedyBFS —o—

2ol I I I I I I I
1 4 16 64 256 1024 4096 16384

maximum number of hotlinks |H| allowed in the web site

Figure 6: Average gain obtained by applying greedyBFS to actual Web sites. The z axis are plotted in logarithmic
scale base 2. The average proportion of gain for each of the eleven Web sites has a 95% confidence interval of at
most F5.53. The proportion of gain decreases at some points due to the different assignments of Zipf’s distribution
in each sample.

2.3.2 Hotlink Assignments to the scs.carleton.ca Domain

We are able to use the scs.carleton.ca domain for testing, since we have access to both its hyperlink structure
and its access logs, which contain information about the popularity of the Web pages.

To test an algorithm, we convert the structure of the scs.carleton.ca domain into a directed graph G = (V, E),
where each vertex v € V represents a Web page, and every edge (v, w) € E represents a hyperlink going from v

11

max total number | % of | standard
of hotlinks, |H| gain | deviation

1 23.28 4.95

2 25.77 6.53

4 26.10 5.58

8 28.51 6.51

16 30.74 5.58

32 30.11 5.35

64 32.15 6.72

128 33.06 6.57

256 33.87 5.57

512 34.02 5.79

1024 34.79 5.81

2048 34.46 6.30

4096 34.68 6.64

8192 35.30 6.11

16384 34.86 6.25

Table 3: Average proportion of gain over the access cost of eleven real Web sites when the total number of hotlinks
is limited. The average proportion of gain for each of the eleven Web sites has a 95% confidence interval of at most
F5.53. The proportion of gain decreases at some points due to the different assignments of Zipf’s distribution in
each sample.

to w. We then construct a tree T = (V, E') by performing breadth first search on G from the home page. We
call this process link structure and it is described in Section 3.2.1.

We use the access log files of the domain to assign access probabilities to the pages. The log files used are over
57.2 MBytes in size and contain the access logs for 7 days, for a total of 602,879 file requests. The process that
assigns popularities to the Web pages is called access probabilities and its description can be found in Section
3.2.1.

Figure 7 illustrates the gain obtained in the experiments. The scs.carleton.ca domain contains 798 pages.
Observe that the maximum gain of greedyBF'S and recursive is achieved at |H| = 53 < 798, which represents less
than 10% of the number of pages in the site.

% gain

32

greedyBFS ——

recursive -+

I
10 20 30 40 50 60 70

maximum total number of hotlinks, [H|

Figure 7: Gain attained by greedyBF'S, and recursive in the scs.carleton.ca domain. For |[H| < 53 greedyBFS and
recursive differ in performance. Observe that this behaviour is due to the different order on which each algorithm
assigns the hotlinks; however, in the end they will always converge, as the latter is the recursive version of the
former. Note that again the maximum gain is achieved with few hotlinks, as 53 <« |V| = 798.

12

2.4 Algorithm approximateHotlinkAssignment

Algorithm approzimateHotlinkAssignment was designed by Kranakis et al [26]. They prove the following upper
bound on the access cost of a Web site, which is good for small Web site trees of small outdegree d:

H §+1
E[T] < ®) Ty T
log(6 + 1) — (H—gl)

where #H(p) denotes the entropy of the probability distribution on the leaves.

Algorithm approximateHotlinkAssignment is a recursive algorithm that works as follows. Let T, denote a tree
rooted at page c. In the first call to the algorithm, ¢ is the home page. Recall that ¢ is the maximum outdegree
of the tree and p, is the access probability of page c. The algorithm partitions the original tree into subtrees and
then proceeds recursively for each of these subtrees until it is not possible to add more hotlinks. The subtrees
are:

1. The trees rooted at the children of ¢ minus:

d-pe
o+1 -

2. The tree rooted at a node whose weight is between 5’_’1:1 and

Algorithm approzimateHotlinkAssignment is described next. The set of hotlinks, H, is initially empty.

Algorithm 5 approximateHotlink Assignment(T)

1. if ¢ has grandchildren

2. find a page u, descendant of ¢ such that 55 < py < gfi

(a) if no such descendant exists let u be the descendant leaf page of mazimum p
(b) if distance from c¢ to u is > 2
i. H=HU (c,u)
(c) else let u be the (any) grandchild of ¢ of mazimum p
i. H=HU (c,u)
let v be the ancestor of u that is child of c
approximateHotlinkAssignment(7, — T,)

(d)
()
(f)

)

(g) for every child w of c, except v

approximateHotlink Assignment(T,)

i. approximateHotlink Assignment(T,)

2.4.1 Performance of Algorithm approximateHotlinkAssignment

We present the results of comparing the performance of algorithms greedyBFS, described in Section 2.3, and
approximateHotlinkAssignment, described in Section 2.4, with the theoretical lower bound on the access cost of
a Web site, presented in [6]:

E[TH] > m -H(p) = m : izzlpi log(1/pi), (11)

where #H(p) is the Entropy of the probability distribution p.

The performance is compared on randomly generated Web sites of size 10,000 with maximum outdegree 3 to
19. Figure 8 and Table 4 illustrate the results of the simulations. The average proportion of gain for greedyBF'S,
approzimateHotlinkAssignment and the theoretical lower bound on the access cost of a Web site, have 95%
confidence intervals of at most F1.49, 71.68, and F0.29, respectively.

13

Figure 8: Comparison of greedyBFS with approximateHotlinkAssignment and the theoretical lower bound on the
access cost of a Web site (from Inequality 11) when applied to random Web sites of size 10,000 and maximum
outdegree from 3 to 19. The average proportion of gain for greedyBFS, approzimateHotlinkAssignment and the

% gain

100
B-.

0 +

85 - hotlinkAssign -+ B
5 optimal solution --2--
80 - - b
L LN 4
7 .

B Eeem e L= Boemnn B-em-e a

greedyBFS ——

" i
e
+ +
+

4

6 8 10 12 14 16 18 20

maximum outdegree of the web pages

upper bound have a 95% confidence interval of at most F1.49, F1.68, and F0.29 respectively.

maximum | % of gain with % of gain with optimal % of
outdegree, § greedyBFS approzimateHotlinkAssignment gain
3 84.83 89.88 97.86
5 81.14 81.87 95.35
7 78.05 76.04 94.17
9 77.07 73.47 93.91
11 75.69 69.91 93.32
13 74.96 67.08 93.04
15 73.49 64.81 92.95
17 72.98 64.16 92.85
19 73.89 62.41 92.71

Table 4: Comparison of the performance of greedyBFS with approximateHotlinkAssignment and the theoretical
lower bound on the access cost of a Web site (from Inequality 11) when applied to random Web sites of size
10,000 and maximum outdegree from 3 to 19. The average proportion of gain for greedyBFS, approximate-
HotlinkAssignment and the upper bound have a 95% confidence interval of at most F1.49,F1.68, and F0.29

respectively.

14

2.5 Algorithms k-greedyBFS and greedyBFS*

This algorithm is a natural variation of greedyBFS. Again, the function next in BFS order returns each of the
nodes of the tree in breadth first search order, starting with the home page. Observe that the call k-greedyBFS(
T,1) is equivalent to a call to greedyBFS(T). We also have a recursive version of k-greedyBFS, which we call
k-recursive. This recursive algorithm will help us to validate the correctness of the simulations.

Algorithm 6 k-greedyBFS(T,k)
1. H=¢

2. while((s = next_in_BFS order) # ¢)

(a) forj=1tok

i. t = v :v mazimizes Equation 3; and v is a descendant of s; and v does not have a hyperparent;
and v is not descendant of a node x, which is at a higher level than s and already has a hyperparent

ii. if t# ¢ then H=H|J{(s,t)}

We present another multiple hotlinks algorithm called greedyBFS*, which assigns at most & hotlinks per page.
This algorithm runs the algorithm k-greedyBFS(T, 1) k times but creates a new breadth first search tree between
each iteration®, treating the hotlinks as regular hyperlinks.

Algorithm 7 greedyBFS¥(T,k)
1. for1 to k

(a) TH = k-greedyBFS(T,1)

(b) delete the arcs of TH that are not traversed in breadth first search starting from the home page. Call
this tree T'.

2.5.1 Performance of Algorithms k-greedyBFS and greedyBFS*
Algorithms k-greedyBFS and greedyBFS* Evaluated on Random Web Sites

Algorithms k-greedyBFS and greedyBFS* are described in Sections 2.5 and 2.5. The results of the simulations
are depicted in Figure 9 and Table 5. Observe that for values of k > 5, greedyBFS* outperforms k-greedyBFS.

2.6 Algorithm weighted-greedyBF'S

One factor that slows down Web performance is the inevitable downloading of information that does not interest
users. This problem happens to anyone who surfs the Web searching for information. For example, suppose we
are on page v and want to get the information located in page w. Among the hyperlinks of v, however, there is no
hyperlink (v,w) that takes us directly to w. Inevitably, we have to “download” others pages until we find a page
x with the desired hyperlink (z,w). Given a Web site, we want to find an assignment of hotlinks that minimizes
the expected data transfer, i.e., the necessary amount of bytes to be downloaded to reach one of its pages.

The previous sections dealt with the problem of improving Web performance by optimizing the average
number of steps required to reach the pages of a Web site. As a consequence of minimizing the number of steps,
we certainly reduce the amount of irrelevant information that needs to be transferred, yet, that was not the aim.
In this section we study the assignment of hotlinks for optimizing the average data transfer. We restrict the
problem to assigning at most one hotlink per node.

60bserve that k-greedyBFS(T,1) is equivalent to greedyBFS(T), since k = 1.

15

% gain
70

k-greedyBFS ——
greedyBFS koL -

25 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

maximum number of hotlinks per page, k

Figure 9: Performance of k-greedyBFS and greedyBFS*. Observe how greedyBFS* outperforms k-greedyBFS
when k > 5. The proportion of gains for k-greedyBFS and greedyBFS* have a 95% confidence interval of at most
F0.91 and F0.99 respectively.

maximum hotlinks | % of gain with | 95% confidence || % of gain with | 95% confidence
per page, k k-greedyBFS interval greedyBF Sk interval
2 34.18 0.91 32.75 0.79
4 41.77 0.84 40.92 0.99
6 46.48 0.80 46.97 0.87
8 48.27 0.62 49.89 0.67
10 50.52 0.74 53.13 0.80
12 50.92 0.75 54.78 0.68
14 51.31 0.69 56.90 0.74
16 51.34 0.41 57.92 0.64
18 51.50 0.64 59.23 0.72
20 52.15 0.80 60.72 0.69

Table 5: Performance of k-greedyBFS and greedyBFS*. Observe how greedyBFS* outperforms k-greedyBFS when
k > 5. The average proportion of gain for k-greedyBFS and greedyBFS* have a 95% confidence interval of at
most F0.91 and F0.99 respectively.

16

One is tempted to pursue a similar idea to that of [26] in order to find a balanced partitioning of the tree.
Inevitably this will lead to a recursive algorithm like in [26]. However there are some difficulties to this approach.
In this section we present a heuristic algorithm called weighted-greedyBF'S.

Algorithm weighted-greedyBFS, described in Algorithm 8, operates in the same way as algorithm greedyBFS,
presented in Section 2.3. The difference between these two algorithms is that the former attempts to maximize
Equation 4, whereas the latter attempts to maximize Equation 3. Algorithm weighted-greedyBF'S assigns hotlinks
iteratively in breadth first search order beginning with the home page. Consider a hotlink (s,t). In each iteration
of the algorithm, s corresponds to the next node in breadth first search order, and ¢ corresponds to the descendant
of s that maximizes the gain, but that is not a descendant of a node z, which is at a higher level than s and
already has an incoming hotlink. See Figure 2. Recall that function next in_BFS order returns each node of
the tree in breadth first search order, starting from the home page. The algorithm stops when no more hotlinks

can be assigned. We will use a recursive version of weighted-greedyBFS called weighted-recursive for validating
the correctness of the simulations.

Algorithm 8 weighted-greedyBFS(7T)
1. H=¢

2. while((s = next_in_ BFS order) # ¢)

(a) t = v : v mazimizes Equation 4; and v is a descendant of s; and v does not have a hyperparent; and
v is not a descendant of a node x, which is at a higher level than s and already has a hyperparent.

(b) if t# ¢ then H = HJ{(s,1)}

2.6.1 Performance of Algorithm weighted-greedyBFS
Algorithm weighted-greedyBFS Evaluated on Random Web Site Trees

The results of the simulations are plotted in Figure 10 and displayed in Table 6. We plot the average proportion
of gain that can be attained by the algorithm. The average proportion of gain has a 95% confidence interval of at
most F2.27. Observe that the gain of the algorithm oscillates between narrow intervals, indicating that the size
of the tree does not greatly affect the performance.

% gain
30

P 4
weighted-greedyBFS o

ST T

5L 4

° I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000 16000
size of the web site, [V|

Figure 10: Gain obtained by applying weighted-greedyBFS to randomly generated Web sites of size 1,000 to
15,000. The average proportion of gain has a 95% confidence interval of at most F2.27.

Algorithm weighted-greedyBFS Evaluated on Real Web Sites

We show the results of the simulations in Figure 11 and Table 7. The average number of nodes in the sample of

Web sites is 9,669.2. Observe that the proportion of gain stabilizes after assigning less than 500 hotlinks, which
is roughly 10% of the average number of Web pages.

17

number of pages in | % of | standard | 95% confidence
Web site, |V| gain | deviation interval
1000 12.71 6.54 2.27
3000 13.76 5.12 1.78
5000 14.73 6.10 2.11
7000 13.21 4.03 1.40
9000 13.75 5.37 1.86
11000 11.10 3.51 1.22
13000 11.86 4.06 1.41
15000 12.30 3.81 1.32

Table 6: Proportion of gain on the access costs of randomly generated Web sites of 1,000 to 15,000 pages. The
proportion of gain has a 95% confidence interval of at most F2.27.

% gain

weighted-greedyBFS o |

I I I I I I I
4 16 64 256 1024 4096 16384

maximum total number of hotlinks, [H|

Figure 11: Average gain obtained by applying weighted-greedyBFS to actual Web sites. The x axis are plotted in
logarithmic scale base 2. The average proportion of gain for each of the eleven Web sites has a 95% confidence
interval of at most F7.40. The proportion of gain decreases at some points due to the different assignments of

probabilities and file sizes in each sample.

max total number | % of | standard
of hotlinks, |H| gain | deviation
1 21.36 8.40
2 21.42 9.33
4 23.88 11.26
8 24.92 11.04
16 25.23 9.85
32 26.21 11.14
64 28.01 12.17
128 28.55 12.30
256 28.97 11.24
512 30.10 13.54
1024 29.35 12.75
2048 28.53 11.93
4096 29.25 11.88
8192 29.28 13.57
16384 29.45 13.40

Table 7: Average proportion of gain over the access cost of eleven real Web sites when the total number of hotlinks
is limited. The average proportion of gain for each of the eleven Web sites has a 95% confidence interval of at
most F7.40. The proportion of gain decreases at some points due to the different assignments of probabilities

and file sizes in each sample.

18

Case Study

We are able to test our algorithms on the scs.carleton.ca domain because we have all the necessary information,
i.e., the hyperlink structure, access logs, and file sizes.

The case study is conducted in the same way as described in Section 2.3.2. In this case, we need to associate
real weights to the Web pages. The weight of a Web page is its own size plus the size of its embedded files (in
bytes).

Figure 12 illustrates the proportion of gain obtained by the algorithm. The scs.carleton.ca domain contains
798 pages. Observe that the maximum gain of greedyBFS and recursive is achieved at |H| = 53 <« 798, which
represents less than 10% of the number of pages in the site.

% gain

ROOOOOBOO0060000066600

weighted-greedyBFS o

.
0 10 20 30 40 50 60 70
maximum total number of hotlinks, [H|

Figure 12: Gain attained by algorithm weighted-greedyBFS in the scs.carleton.ca domain. The domain contains
798 pages and the maximum gain is attained at |H| = 52 hotlinks, which indicates that we can get good gain
with just a “few” hotlinks.

2.7 Validation of the Simulations

To validate the correctness of the simulations, we use the model validation techniques presented by Jain [23]. We
evaluate both the correctness of the implementation of the algorithms and the generation of realistic Web sites.

Correctness of the Algorithms

In order to verify the correctness of the implementation of the algorithms, we check that the outcomes of the
algorithm and their recursive implementations are exactly the same. With this test, we can be confident that the
implementation of the algorithms is correct since it is unlikely that different (logical or syntactical) errors in the
implementation of the algorithms produce the same results. Since algorithms k-greedyBFS and greedyBFS* are
variations of algorithm greedyBFS, we can also be confident that these algorithms are correctly implemented.

Correctness of the Generation of Random Web Sites

According to our criteria, a random Web site has a realistic structure if the outdegree follows Equation 8. Figure
13 plots the outdegree frequencies that characterize our random Web sites. To validate the correct assignment
of access probabilities to the intermediate, i.e., non-leaf, pages, we verify that the access probability of the home
page is 1, since each node’s access probability is the sum of the probabilities of the leaves descendant to it.

Correctness of the Generation of File Sizes

To validate the correctness of the generation of file sizes, we plot the distribution of file sizes of the Web sites used
in our simulations and verify that they follow the hybrid distribution discussed in Section 2.1.5. The distribution
of file sizes used in the simulations is plotted in Figure 14.

19

frequency
1e+06

100000 theoretical distribution E
of outdegrees
10000 outdegree frequency b

o
in our random sites

1000

100 -

10

outdegree

Figure 13: The correctness of the structure of the random Web sites is proven by comparing their outdegree
frequencies with a power-law distribution (given by Equation 8) in a loglog scale.

) 4

lognormal

1 10 100 1000 10000 100000
filesize

Figure 14: The correctness of the file sizes used in our simulations is proven by plotting the cumulative distribution
function of the hybrid (lognormal-Pareto) distribution, given in Formulal0. The file sizes are plotted in log scale.
The cutoff point is such that approximately 83% of the file sizes fall in the lognormal distribution.

20

3 The Hotlink Optimizer

In Section 2 we looked at the efficiency of the hotlink assignment algorithms and found that we can reduce the
access cost of a Web site by as much as 35%. This result suggests that the development of a hotlink assignment
tool would be useful. In this section we present the architecture and user interface for the Hotlink Optimizer
(HotOpt), a powerful software tool that assists Web administrators and designers in restructuring their Web sites
according to the needs of users. HotOpt is presented in [25] as well.

By analysing the hyperlink structure of a Web site, and looking at the user’s patterns, HotOpt is able to
suggest a set of hotlinks to be added to the Web site. This is a semi-automatic process in the sense that the
hotlinks are found automatically, but they are not automatically added to the Web site. For the moment, we
want to assist Web designers, not to replace them.

HotOpt can find a set of hotlinks, H, that reduces the access cost of the Web site. The inputs are the home
page file” and the access log files, and the output is the set of hotlinks H along with 2, the proportion of gain
offered by H. Figure 15 depicts a macroscopic view of HotOpt.

inputs { home page

log files
HotOpt Hotlink Optimizer
outputs { set of hotlinks
% of savings

Figure 15: Inputs and outputs of HotOpt.

3.1 The User Interface

HotOpt has a user interface that displays the tree-shaped hyperlink structure of the Web site (cf. Figure 16).
The user has to provide the location of the home page and the access log files.

3.1.1 Initial Set Up

In order to run HotOpt, the Web administrator needs to have both the html source files and the log files in an
explicit path on his or her system. It is important to remark that HotOpt will not delete or modify any existing
file of the Web site nor delete any hyperlinks.

3.1.2 Input

The user needs to provide the home page and the log files (top left corner of Figure 16). If no log files are available,
HotOpt will use an arbitrary Zipf’s popularity distribution. Refer to Section 2.1.4 to see how Zipf’s distribution
is used. The user may (optionally) specify the output file where the set of hotlinks is to be stored. The user can
also limit the overall budget of hotlinks to be assigned, as well as the maximum number of hotlinks per page (top
center part of Figure 16). The optimization process starts by pressing the “HotOpt” button located in the top
right corner of the interface. See Figure 16.

3.1.3 Output

HotOpt takes the hyperlink structure of the Web site and transforms it into a tree. This tree is displayed in
the main window of the user interface along with the hotlinks, as depicted in Figure 16. The hotlinks are easily

7Observe that from the home page we can perform breadth first search on the Web site.

21

hotlink aptimizer (Hot0pt) I 5 |

- home page file ~log files ~output
original access cast {fﬁﬁﬁ‘:

Z:thotopt software |scs ktml ‘ Elarress_log.1 (Z:\hotopt untitled hot]
Zithotopttaccess_log.2 clear
maximurm overall hotlinks] 32500 =4 b et i

ifempy, g tswbuson il B sed gain [zs.48630% et

maximurn hotlinks per nude'_T:zj showthe file when done

sizeis 770, number of leaves is 561, maximum outdegree is 25

= ~kranakislindex. htm*20--* =
~kranakis\biagraphy.html
~kranakistresearch html
kranakisipapers.html
= ~kranakisiteach htrml*30--*
-~kranakisi185.himl
~kranakis\384.htm!
["= 20" ~kranakis| 513 htrm*36--*
= ~kranakis513-00.himl
*2= = 36% ~lranakisi513-projects00.hml
~kranakisls13-refs.html
- ~kranakis\513-projects.html
~kranakis513-stulecO0.html
~kranakis\b13-present htrml
- kranakis}513 read9 il [|
EH ~kranakisisl 3-dates.html
~kranakis\cryptoimage.html
- ~kranakis\513-cangese.html
=1 ~kranakisis23.html
-~ ~kranakis\523-99.html
~*= = 30*~kranakis|523-refs.himl
~kranakis|523-read htrl - |

done %

Figure 16: User interface of HotOpt.

identified by assigning a unique number to each of them. For example, in Figure 16, we can see that there is
a hotlink going from ~kranakis|indez.htm to “kranakis|513.html, a second one going from “kranakis|teach.html
to “kranakis|523-refs.html, and a third one from “kranakis\513.html to “kranakis|513-projects00.html. HotOpt
displays the original access cost and the new cost, along with the proportion of gain (see the top right corner of
Figure 16). The set of hotlinks are saved in the file specified by the user (cf. Figure 17).

i ZAbotoptiantiled bt s |
17, [~sacklindex.htm, ~sacklindexhtml) &

18. [~csgsiseminarsiindeschtml, ~bsplindex.htm)

19, [~csgsiresourcestindex.html, ~csgsiresourcestamoeba_papers.html)

20. [~kranakistindexhtm, ~kranakisib13.html)

2, [~krizanciindexhtm, ~krizansi523webpointers.html)

22, [~oppacheriindex.htm, ~oppacheripagesiabstracts.html)

23, [~gistsharedresourcestindex.htm, ~gisisharedresourcesiequipment.itml)

24, [~lanthleriindex.htm, ~lanthieripersonalipetsipets.html)

25, [~deugo) 95501 iindexhtml, ~deugal 95501 tindexhtm)

26. [~santoroira.html, ~santaorolsi-portal.html)

27, [~jit\researchlindex.html, ~jit\researchiresearch.html)

28, [~wlitcourses.html, ~wlit 2041 index.htm)

29, { ~csgsiseminarsiseminaré.html, ~morinibookmarks.html)

30 { ~kranakisiteach.htrml, ~kranakisi523-refs.html)

3. [~gisiprojectsiprojectlist.html, ~gislprojectsidemosimultiresimultiresdemo.html)
32, [~lanthierirezearchiresearch.html, ~lanthieriresearchiprojectsiaihtml)

33, [~santoro'401-org.html, ~santoroitreesitrees html)

34, ~wlit582index html, ~wli\582index.htrm)

35, { ~marintindex.htm, ~maorinipublicationsigisitomlin-gis.html)

36, [~hkranakizt51 2.html, ~kranakisi513-projects00.html) -]

Kl [

Figure 17: Output of HotOpt.

3.2 Architecture

The tasks performed by HotOpt can be summarized as follows (cf. Figure 18). First, the Web site is transformed
into a graph and then into a tree. Secondly, a probability distribution is assigned to the leaves of the tree. Finally,
the optimization algorithm is applied.

22

3.2.1 Processes of HotOpt

HotOpt performs four basic processes.

1. Link structure (graph). Beginning at the home page file, build a directed graph G = (V, E), where V is the
set of Web pages and FE is the set of hyperlinks between the Web pages.

2. Link structure. Construct a tree T' = (V, E') performing breadth first search on the graph G. The root of
the tree is the node associated to the home page.

3. Access probabilities. Assign probabilities to the leaves of the tree by counting the number of times, according
to the log files, that each leaf was requested.

4. Optimization algorithm. Find an assignment of hotlinks to 7. Based on the simulations of Section 2, we
conclude that the best hotlink assignment algorithm known so far is algorithm greedyBFS. This algorithm
is implemented in HotOpt. Finally, output the set of hotlinks along with the proportion of gain that those
hotlinks can achieve.

inputs { home page log files
link structure . o optimization
(graph) link structure access probabilities algorithm
rocess 1 — — o

P process 2 process 3 process4
HotOpt | hy 4 .
oupuss { Hefh)

X% of ganwith H

Figure 18: HotOpt performs four basic processes. Process link structure (graph) constructs a directed graph,
where the nodes are Web pages and the edges are the hyperlinks that connect the pages. Process link structure
builds a Web tree in breadth first search order with the home page as the root. Process access probabilities assigns
probabilities to the leaves of the tree based on the access log files. Process optimization algorithm is crucial since
it is responsible for applying the optimization algorithm.

We describe these four processes in detail.

Link Structure

In this section we explain the link structure process, which transforms a Web site into a tree.

Consider a Web site as a directed graph, where Web pages are nodes connected by hyperlinks. The transfor-
mation of a Web site into a graph is performed by the process called link structure (graph). It has been proven
that some instances of the hotlink assignment problem are NP-hard (see [6]). Therefore, we approach the problem
for trees. However, the tree must be constructed without braking the semantic structure of the Web site, and
keeping the shortest path from the home page to all the other pages of the site.

We construct a tree in breadth first search order so that the root is the node associated to the home page.
The process is formally described in Algorithm 9. The algorithm receives as parameters a graph G = (V, E) and
a distinct node r associated to the home page of the Web site. The output will be a breadth first search tree
T = (V, E") rooted at node 7.

It is convenient to identify each node by the path and file name of the source file of the Web page, so that the
hotlinks can be easily identified.

23

Algorithm 9 websitetoBFStree(G = (V, E),r)

1. let q be an empty queue

2. E'=¢

Yv € V, mark v as not visited
mark r as visited

enqueue T in q

AR N

while q is not empty
(a) u =dequeue q
(b) for each edge (u,v) € E :v

i. enqueue v in q
ii. mark v as visited
iii. E'=FE"U (u,v)

7. return T = (V, E"),r

Access Probabilities

In this section we describe the process of assigning a probability distribution to the leaf pages of the tree. The
access probability of a Web page is determined by its popularity. We compute the popularity of a Web page by
counting the number of times, according to the access logs of the Web site, that this page was visited by the
users.

Consider the access log of a Web site (c.f. Figure 19). Each entry in the access log contains information
about one request: requester’s IP address, time of request, file requested, protocol used, hitp code, and size of the
file in bytes. Not all of the entries represent an actual hit to a page, since some represent the request for a file
embedded in a page and others indicate an unsuccessful attempt to download a page, i.e., due to client or server
errors. Therefore we need to filter the entries and extract only the actual hits to Web pages. We are interested
on the entries with hittp code 200 or 304, i.e., “ok”, and “not modified” respectively since they are the only ones
that indicate an actual access to the page. Refer to [19] for a complete description of the http 1.1 protocol and
[18] for a complete description of log files. Algorithm extractHits, given in Algorithm 10, receives as inputs a tree
T and a log file. After the execution of the algorithm, each leaf of the tree will have a popularity associated to
it, depending on the number of times the leaf was visited.

Algorithm 10 extractHits(T, logFile)

1. for each entry of logFile
2. if code= 200 or code= 304 and file requested is a leaf v of T

(a) increment by 1 the number of hits to leaf v

Once algorithm extractHits, given in Algorithm 10, has been executed, we compute the access probability
distribution of the leaf pages based on their popularity. Let a; be the number of times that leaf page [was
requested, and let A = 3", a;, be the total number of times all the leaves were requested. The access probability
of leaf I is defined by p; = 4.

After the access probability distribution has been computed, we need to assign weights to the internal nodes
of the tree in a bottom-up fashion, such that the weight of page v, denoted as p,, is the sum of the probabilities
of the leaves that are descendants of v. Observe that for the home page r, p, = 1.

24

m XedPlus: logs .txt x
File Edit Jump Search Special Commands Piges < ~Insert-

Faokds & @3 a4
[£134,117,5,8 - - [06/Tan 2001 :06:00:04 —0R00T "GET /" 200 SO00°H
216,35,116,92 - - [06/Jan/2001:06:01123 05001 "GET Arobots,txt HTTR/L,0" 200 490°H
216.35,116,93 - - [06/Jan /2001106301327 -0500]1 “GET / HTTRAL.0" 200 S000°H
209,247,40,204 - - [06/Jan/ 200106302508 —0500] "GET /maheshwalindex, html HTTPA1,0" 200 B370"H
24,28,6,80 - - [06/Jan 2001306206323 —0500] "GET simages HTTR/L,0" 301 3147H
24,28,6,80 - - [06/Jan 2001106106123 —05001 "GET fimages/ HTTRP/1.0" 200 B5°H
24,28,6.80 - - [0B/Jan 2001706706324 -0B00] "GET / HTTPA1,0" 200 GO00™H

24,258,680 - /teaching javacourse HTTRA1,0" 404 289°H
24,28,6,80 - ET /teaching/pizza/index,html HTTP/1,0" 404 295"H
24,28,6,80 - - [06/7an 2001106506526 —0500] "GET steaching/sortandsearch/index, html HTTPAL,0" 404 3037H
24,28,6.680 - 06127 -06001 "GET /misc/degrassifdegrassi,htm]l HTTR/L,0" 404 257°H
24,28,6.80 - 127 06001 "GET /cagsdresources/pdc,html HTTRAL,0" 200 E215°M
24,28,6.80 - - [0B/Jan 2001z 128 -0800] "GET /“csgsdresourcesdog.html HTTRALL0" 200 11463"H
24,28,6,80 - - [06/Jan 2001106106528 -0500] "GET /reports/reductions,ps HTTR/L,0" 404 231°H
24,28,6,80 - - [06/7an 2001106206528 -0500] "GET /reports/honours.ps HTTPAL,0" 404 2887H

+28,6,60 - "GET Areports/nsercld96,ps HTTPA1,.0" 404 230°H

6,80 "GET /reports/nserct988,ps HTTRAL 0" 404 230°H

129 -0800]1 "GET Areports/pdf.ps HTTR/L.0" 404 284°H

1039:05 -0500]1 "GET Apublications/tech_reports/1333 HITP/L.0" 301 338°H
203,124,214 - - [06/Jan/2001:06:09:08 -0500] "GET #“csgs/resources/gaal html HTTR/L,0" 200 8764°H
203,124,2,14 - - [06/Jan /2001106109110 -05001 "GET Acsgs/resources/uave,gif HTTP/L,0" 200 B031°H
202,86.166,17 - - [06/Jan/2001:06:09:50 -0800]1 “GET A“morin/misc/sortalgd HTTRALL1" 200 2432°M
202,86,166,17 - - [06/Jan/2001:06:09:57 -0800]1 “GET /“morin/misc/sortalg/Sortltem.class HTTRALA" 200 2070°H
216,35,103,52 - - [06/Jan/2001:06:03:57 -0500]1 "GET Apublications/tech_reports/1993/ HTTF/1,0" 200 S127"M

| 142,206,2,12 - - [06/Jan 200130631002 -0500] "GET /#“kranakis/5l3-notes/cryptol3,pdf HTTRAL,0" 304 —°H
202,86,166,17 — - [06/Tan/ 2001+ 3 05001 "GET #morin/misc/sortalg/SortPanel,class HTTPA1,1" 200 3409°H

193,172,127.75 - [OB/Jan/ZOOi:O 32 05001 "GET /tcurtisd HTTRALLL" 200 4846°H
192.172,127.75 - - [06/Jan/ 200106110235 -0500] "GET /tcurtis/pice/wip.png HTTRAL.L" 200 741"
193,172,127,75 - - [06/Jan/2001:06110236 -0000] "GET /“tcurtis/pics/decss—now,png HTTP/L,1" 200 2Z701°H

24,112,158,227 - [UE/Jan/ZUOl:OE:llElS -05001 "GET fgraphicasheader,gif HTTPA1,0" 200 G440°H
24,112,158,227 - - [06/Jan/ 2001306311219 05001 "GET /graphics/help.gif HTTR/L.0" 200 388"°H

24,112,158,227 - - [06/Jan 200150631119 -0%001 "GET / HTTP/L,0" 200 5000°M
= [0B/Jan/2001: 06311219 -0500]1 "GET /graphics/splash. jpg HTTRAL.0" 200 35563°H

124'112‘158‘22? T

/homes70userS/myvargastuso/iogstt Read - Write

Figure 19: Example of an access log file of a Web site. The fields are as follows: requester’s IP address, time of
request, file requested, protocol used, hitp code, and size of the file in bytes.

Optimization Algorithm

This process runs the hotlink assignment algorithm. Among the algorithms tested, algorithm greedyBFS per-
formed best. This algorithm is described in Section 2.3. Algorithm greedyBFS is the optimization algorithm
implemented in HotOpt.

3.2.2 Modular Structure

Figure 20 illustrates the main structure of HotOpt. The tree constructor module takes the home page and the
access log files as input. It is responsible for running link structure (graph), link structure, and access probabilities
processes. These processes are depicted in Figure 18. The tree constructor module outputs a Web site tree,
T = (V, E) with a probability distribution p over its leaves.

The optimization algorithm sub-module applies the best hotlink assignment algorithm depending on the char-
acteristics of the tree T. Such characteristics are extracted by the sub-module tree characterizer. Currently,
HotOpt applies the algorithm greedyBFS to any Web site, regardless of its characteristics, as we have not finished
determining which characteristics are significant. Moreover, algorithm greedyBFS has proven to be the best in all
situations we have examined so far. See Section 2.3.1 to see the performance of algorithm greedyBFS. The final
outputs are the set of hotlinks H and the proportion of gain, %, offered by H.

4 Conclusion and Extensions

In this paper we studied the assignment of hotlinks for improving the access cost of Web sites. Two measures
were used to determine the access cost of a Web site, namely, the expected number of steps and the expected
data transfer. We presented hotlink assignment algorithms for arbitrary Web sites. These algorithms were tested
using simulations on random and real Web sites. We found that the expected number of steps in a Web site can
be reduced by at least 24% and as much as 35%, whereas the data transfer can be reduced by at least 11% and
as much as 30%. These results, however, are theoretical because it is assumed that users would use the hotlinks
to navigate on the Web site. It would be interesting to see to what extent users actually use the hotlinks to
determine what is the actual gain of the algorithms. Extensions to this work include the design of new hotlink
assignment algorithms, especially for the case of multiple hotlinks per page, where many possible heuristics arise.

25

tree constructor optimizer

home page link optimization
structure W agorithm —t,% H
\L 1\ T(V, E) 1\ 1.
access R,
log files B0CESS tree
probabilities characterizer

hotlink optimizer

Figure 20: Main structure of HotOpt.

We developed the Hotlink Optimizer (HotOpt), a software tool that assists Web designers to assign efficient
hotlinks to a Web site. HotOpt has a friendly user interface and is able to display a tree visualization of the Web
site including the suggested hotlinks. HotOpt implements our best hotlink assignment algorithm, but HotOpt
can be upgraded if a better algorithm is found.

References

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

Lada A. Adamic. The small world Web. In S. Abiteboul and A.M. Vercoustre, editors, In Proceedings of
the Third European Conference on Research and Advanced Technology for Digital Libraries, ECDL, volume
1696, pages 443-452. Springer Verlag, 1999.

William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive graphs. In Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, pages 171-180, Portland, Oregon,
U.S.A., May 21-23 2002. ACM.

Martin F. Arlitt and Carey L. Williamson. Internet Web servers: Workload characterization and performance
implications. IEEE/ACM Transactions on Networking, 5(5):631-645, October 1997.

Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crovella. Changes in Web client access patterns:
Characteristics and caching implications. World Wide Web, 2(1-2):15-28, 1999.

Paul Barford and Mark Crovella. Generating representative Web workloads for network and server per-
formance evaluation. In Proceedings of Measurement and Modeling of Computer Systems, pages 151-160,
1998.

Prosenjit Bose, Jurek Czyzowicz, Leszek Gasieniec, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc, and
Miguel Vargas Martin. Strategies for hotlink assignments. In Proceedings of the Eleventh Annual International
Symposium on Algorithms and Computation (ISAAC 2000), pages 23-34, Taipei, Taiwan, December 2000.

Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata,
Andrew Tomkins, and Janet Wiener. Graph structure in the Web. Computer Networks, 33(1-6):309-320,
June 2000.

Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling Internet topology. IEEE Communi-
cations Magazine, June 1997.

Lara D. Catledge and James E. Pitkow. Characterizing browsing Strategies in the World-Wide Web. In
Proceedings of the Third International World-Wide Web Conference, Darmstadt, Germany, April 1995.

Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web traffic. Evidence and possible
causes. [EEE/ACM Transactions on Networking, 5(6):835-846, 1997.

26

[11] Jurek Czyzowicz, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc, and Miguel Vargas Martin. Optimal
assignment of bookmarks to Web pages. In progress, 2002.

[12] Allen B. Downey. The structural cause of file size distributions. In Proceedings of the Nineth International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Cincinnati,
Ohio, U.S.A., August 15-18 2001.

[13] M. Carl Drott. Using Web server logs to improve site design. In ACM Sizteenth Annual International
Conference of Computer Documentation (SIGDOC-98), Getting feedback on your Web site, pages 43-50,
New York, New York, U.S.A., September 23-26 1998. ACM Press.

[14] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the Internet
topology. Computer Communication Review, 29(4):251-262, 1999.

[15] Yongjian Fu, Mario Creado, and Ming-Yi Shih. Adaptive Web sites by Web usage mining. In Proceedings of
the International Conference on Internet Computing (IC 2001), volume 1, pages 28-34, Las Vegas, Nevada,
U.S.A., June 25-28 2001. CSREA Press.

[16] Sven Fuhrmann, Sven Oliver Krumke, and Hans-Christoph Wirth. Multiple hotlink assignment. In Andreas
Brandstadt and Van Bang Le, editors, Proceedings of the Twenty-Seventh International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2001), volume 2204 of Lecture Notes in Computer Science,
pages 189-200, Boltenhagen, Germany, 2001. SVLNCS.

[17] Steven Glassman. A caching relay for the World Wide Web. Computer Networks and ISDN Systems,
27(2):165-173, 1994.

[18] Apache Group. Apache HTTP server project. http://httpd.apache.org/docs/logs.html, 2002.

[19] Network Working Group. Request for comments: 2068. Hypertext transfer protocol HTTP/1.1.
http://www.ietf.org/rfc/rfc2068.txt, 1997.

[20] Brian Hayes. Graph theory in practice: Part I. American Scientist, 88(1):9-13, January—February 2000.
[21] Brian Hayes. Graph theory in practice: Part II. American Scientist, 88(2):104-109, March—April 2000.

[22] Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc Najork. On near-uniform URL sam-
pling. In Proceedings of the Nineth International World Wide Web Conference, Amsterdam, The Netherlands,
May 15-19 2000.

[23] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons, Inc., 1991.
[24] Donald Ervin Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, 1973.

[25] Evangelos Kranakis, Danny Krizanc, and Miguel Vargas Martin. The hotlink optimizer. In Proceedings of
the International Conference on Internet Computing (IC ’02), volume 2, pages 87-94, Las Vegas, Nevada,
U.S.A., June 24-27 2002. CSREA Press.

[26] Evangelos Kranakis, Danny Krizanc, and Sunil Shende. Approximate hotlink assignment. In Proceedings of
the Twelfth Annual International Symposium on Algorithms and Computation (ISAAC 2001), volume 2223,
pages 756-767, Christchurch, New Zealand, December 19-21 2001. SVLNCS.

[27] Mark Levene, José Borges, and George Loizou. Zipf’s law for Web surfers. Knowledge and Information
Systems, 3(1):120-129, 2001.

[28] Michael Mitzenmacher. Dynamic models for file sizes and double pareto distributions.
http://citeseer.nj.nec.com/mitzenmacher02dynamic.html, 2002. Preprint.

[29] Tekehiro Nakayama, Hiroki Kato, and Yohei Yamane. Discovering the gap between web site designers’
expectations and users’ behavior. In Proceedings of the Nineth International World Wide Web Conference,
Amsterdam, The Netherlands, May 15-19 2000.

27

[30] Mike Perkowitz and Oren Etzioni. Adaptive sites: An AI challenge. In Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 97, volume 1, pages 16-23, Nagoya, Japan,
August 23-29 1997.

[31] Mike Perkowitz and Oren Etzioni. Towards adaptive Web sites: Conceptual framework and case study.
Artificial Inteligence, 118(1-2):245-275, 2000.

[32] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann
Publishers, Inc., 1996.

[33] Peter Pirolli, James Pitkow, and Ramana Rao. Silk from a sow’s ear: Extracting usable structure from the
Web. In Proceedings of ACM CHI 96 Conference on Human Factors in Computing Systems, volume 1 of
PAPERS: World Wide Web, pages 118-125, 1996.

[34] James E. Pitkow. Summary of WWW characterizations. Computer Networks and ISDN Systems, 30(1—
7):551-558, 1998.

[35] Sidney I. Resnick. Heavy tail modeling and teletraffic data. Annals of Statistics, 25(5):1805-1869, 1997.

[36] Beth Saulnier. Small world. Cornell Magazine On Line, 101(1), 1998. http://cornell-
magazine.cornell.edu/Archive/July August98/July World.html.

[37] Myra Spiliopoulou, Lukas C. Faulstich, and Karsten Winkler. Data mining for the Web. In Principles of
Data Mining and Knowledge Discovery, pages 588—589, 1999.

[38] Ramakrishnan Srikant and Yinghui Yang. Mining Web logs to improve Website organization. In Proceedings
of the Tenth International World Wide Web Conference, pages 430-437, Hong Kong, May 2001.

[39] Duncan J. Watts. Small Worlds. Princeton University Press, 1999.

[40] Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in Communica-
tions, 6(9):1617-1622, December 1988.

[41] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to model an internetwork. In
INFOCOM 1996, volume 2, pages 594—602, San Francisco, California, U.S.A., March 24-28 1996. IEEE.

[42] Ellen W. Zegura, Kenneth L. Calvert, and Michael J. Donahoo. A quantitative comparison of graph-based
models for Internet topology. IEEE/ACM Transactions on Networking, 5(6):770-783, December 1997.

[43] George Kingsley Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley, Cambridge,
Massachusetts, U.S.A, 1949.

28

