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1 Introduction

As determined in [11, 10], the 39 nt. spliced leader RNA (SL RNA) in trypanoso-
matid protozoa assumes two alternate secondary structure conformations. In partic-
ular, [10] showed that T. brucei SL RNA can be induced in vivo to switch from one
conformation to another, using complementary 2′-O-methyl RNA oligonucleotides.
The presence of these two conformational forms of SL RNA is critical for its abil-
ity to be spliced onto the 5′ end of pre-mRNA, thus forming mature mRNA in
trypanosomatid protozoa.

An RNA conformational switch is an RNA nucleotide sequence having two sec-
ondary structures S0, S, where S0 denotes the minimum free energy (mfe) struc-
ture (also here called native state), such that S is a distinct metastable secondary
structure, separated by an activation energy barrier from the native state S0, yet
whose free energy is close to that of S0. Increasingly, RNA switches have been
found to play an important biological role; see, for instance, [9, 3, 13, 15, 18]. Due
to the growing importance of recognizing RNA switches, Voss et al. [21] devel-
oped an algorithm called paRNAss, which predicts conformational switching for
a given RNA sequence. paRNAss uses the program RNAsubopt from Vienna
RNA package [5, 12] to list low energy secondary structures for a given RNA se-
quence; by clustering these structures, according to different metrics on the space of
secondary structures, the program outputs a distance plot. If clusters of low energy
secondary structures appear to be distinct and clearly separated from each other,
then paRNAss predicts a conformational switch for the given RNA sequence.

From the viewpoint of molecular evolution theory, over the past decade P. Schuster
and co-workers Stadler, Reidys, Hofacker, Bornberg-Bauer, Flamm, etc. [16, 19,
20, 2] have studied properties of neutral networks within the context of protein
and especially RNA structures. In the following, we give a brief summary of their
approach.

Let n be a fixed, but arbitrary positive integer. A length n RNA nucleotide sequence
is considered as a word in the space Cn = {A, C, G, U}n. If a = a1, . . . , an ∈ Cn,
then a secondary structure S for a is a collection of ordered pairs (i, j), where
1 ≤ i < j ≤ n, which satisfies the following conditions.

(1) If (i, j) ∈ S, then ai, aj form a Watson-Crick or GU wobble base pair; i.e.,
ai, aj is among AU,UA,GC,CG,GU,UG.

(2) If (i, j), (k, `) ∈ S, then it is not the case that i < k < j < `; i.e., pseudoknots
are disallowed.

(3) If (i, j), (k, `) ∈ S, then i ∈ {k, `} implies that i = k and j = `; i.e., there are
no base triples.

(4) If (i, j) ∈ S, then j > i+θ, where θ is fixed and usually taken to be 3; i.e., due
to molecular rigidity, every loop region must have at least θ unpaired bases.

2



Let Sn denote the space of all RNA secondary structures of length n. Secondary
structures can clearly be identified with balanced parenthesis expressions contain-
ing dots, where a dot corresponds to an unpaired nucleotide position, and a match-
ing parenthesis which opens at nucleotide position i and closes at nucleotide posi-
tion j corresponds to base pair (i, j).

Associating each sequence s ∈ Cn with its native state secondary structure S 4

leads to a map F : Cn → Sn from genotypes to phenotypes. This map is clearly
many-to-one, since sequence space 5 Cn has size 4n, while shape space Sn has size
at most 3n.

For any fixed secondary structure S of length n, consider the inverse image F −1(S)
consisting of those sequences s ∈ Sn whose mfe secondary structure is S. Define
an undirected graph G = (V, E), where vertex set V = F−1(S), and where edge
set E consists of undirected edges {s, s′} between vertices s, s′ which satisfy the
following condition: either s, s′ differ by only one nucleotide, which is not involved
in a base pair of S, or s, s′ differ by at most 2 nucleotides at positions i, j where
(i, j) is a base pair of secondary structure S. Intuitively, there is an edge between
s, s′ when they differ by one neutral or compensatory mutation. Finally, a neutral
network is a connected component of graph G; i.e., the collection of sequences s ∈
Cn having a given secondary structure S, all of which are reachable by a sequence
of neutral or compensatory mutations. In a series of papers [16, 19, 20, 2, 7], P.
Schuster and co-workers investigate mathematical properties of neutral networks.

A particular problem of interest from the perspective of molecular evolution theory
is to determine, given different secondary structures S, S ′, the minimum number
N(S, S ′) of pointwise mutations, such that there exists a sequence s ∈ F −1(S)
which can be transformed into a sequence s′ ∈ F−1(S ′). Call this the Covering
Problem. While a rigorous solution of this problem remains elusive, we consider a
related problem in this paper.

Define the binary relation R ⊆ Cn × Sn by

R = {(s, S) : S is a secondary structure for s}.

In contrast to the mapping F : Cn → Sn, which associates to each RNA sequence
s of length n a unique native state secondary structure S, the relation R(s, S) holds
whenever S is a secondary structure which is compatible with s.

4 Depending on the energy model used, there may be more than one minimum free energy
(mfe) secondary structure for a given sequence. In such situations, in order to develop the
mathematical theory of neutral networks, “native state” can be identified the lexicographi-
cally first mfe structure, or alternatively with that structure output by an algorithm such as
Zuker’s mfold [22, 14] or Vienna RNA Package RNAfold [12].
5 Sequence space is also called configuration space.
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Results in this paper are motivated by the following question. Given a finite set
S1, . . . , Sk of secondary structures, under what conditions does there exist a single
RNA sequence which can realize each of the given structures?

Given secondary structures S1, . . . , Sk, we study the problem of determining the
minimum number N(S1, . . . , Sk) of positions, for which after removal of all base
pairs incident to these positions, there exists an RNA sequence s ∈ Cn which is
compatible with each of the structures Si. Call this the Min ∗ Realizability Prob-
lem (M∗RP). In this paper, we give an O(nk) algorithm to determine whether
N(S1, . . . , Sk) = 0, and we prove that the Min ∗ Realizability Problem is NP -
complete for k ≥ 4. Our work extends that of Reidys et al. [17] (Intersection
Theorem), Flamm et al. [6] (Generalized Intersection Theorem), and Abfalter et
al. [1], where results equivalent to our Lemma 8 and Theorem 10 were first proved.
Of particular note is the interesting use of the Generalized Intersection Theorem in
the latter two papers, in order to sample in a uniform manner from the set of RNA
nucleotide sequences which are compatible with two given secondary structures.
Such sampling, along with an adaptive walk and a dynamic programming method
using ear decompositions, allows Abfalter et al. [1] to design RNA conformational
switches. In a similar manner, the work of the current paper lays the groundwork
for the design of RNA nucleotide sequences compatible with secondary structures
admitting pseudoknots, base triples and non-canonical base pairing.

In Section 2, we give the main definitions of shape, binary realizability problem,
min ∗ realizability problem and we relate the latter problem with the vertex cover
set problem, known to be NP-complete. In Section 3, we consider a bonded version
of the min ∗ realizability problem, which we show can be solved in polynomial
time.

2 Realizing Shapes

In this section, we define the notions of shape, 0, 1-labeling, ∗-labeling and for-
mulate the Realizability Problem, the Binary Realizability Problem, and the Min ∗
Realizability Problem. The realizability problem is to construct an RNA nucleotide
sequence which is compatible with a given set of secondary structures.

Following is an outline of this section. Lemma 8 and Theorem 10, which solve
the realizability problem, were first proved by Reidys et al. [17] (Intersection The-
orem), Flamm et al. [6] (Generalized Intersection Theorem), and Abfalter et al.
[1], though we were initially unaware of their prior work. The min ∗ realizability
problem is to determine the minimum number of nucleotide positions, such that
there exists an RNA nucleotide sequence compatible with a given set of secondary
structures after edges incident to those positions have been removed. By a series of
reductions, we show that the vertex cover set problem can be reduced to the min
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∗ realizability problem; i.e. given an instance of the vertex cover set of valence 3
(i.e. an undirected graph G, whose vertices have degree at most 3), we define an
associated set S1, S2, S3, S4 of secondary structures such that there is a vertex cover
of G of size r if and r′ many ∗s suffice to subsequently realize S1, S2, S3, S4. (Here
the association of r′ and S1, S2, S3, S4 is given by a polynomial time computable
function.) Since the vertex cover set problem, even for valence 3 graphs is NP-
complete, it follows that the min ∗ realizability problem is as well. In the sequel,
we make these ideas precise and provide details of our results.

Shapes arise from secondary structures when we remove the labels.

Definition 1 A shape S of size n is a graph with set Vn = {v1, v2, . . . , vn} of nodes
and set of independent edges such that for any two edges {vi, vj}, {vs, vt}, where
i < j and s < t, it is not the case that i < s < j < t.

The nodes in S are called bases and the edges in S are called basepairs. Further,
we assume also that any shapes of the same size share the same set Vn of nodes and
we denote by E(S) the set of basepairs of the shape S.

Definition 2 The shape space, denoted SHAPEn, consists of all shapes of size n.

Given k shapes S1, S2, . . . , Sk in the shape space SHAPEn define the shape graph
G(S1, S2, . . . , Sk) by combining the k shapes. More formally, define.

Definition 3 G(S1, S2, . . . , Sk) is the graph on the set Vn of vertices and whose set
of edges is the union of the sets of edges E(Si), i = 1, 2, . . . , k.

For any graph G we denote the number of vertices of G by |G| and the number of
edges of G by ‖G‖. We consider the RNA alphabet {A, U, C, G}. In this alphabet
the letter A is complementary with the letter U , and the letter C is complementary
with the letter G.

Definition 4 A string s=s1. . .sn over the alphabet {A,U,C,G} realizes a shape S
of size n if for any basepair {vi, vj} of S the letters si and sj are complementary
with one another.

We are interested in the following problem.

Problem 5 (Realizability Problem) For any shapes S1, S2, . . . , Sk of the same
size construct a single string realizing all these shapes.

Definition 6 A binary string s = s1 . . . sn over the alphabet {0, 1} realizes a
shape S of size n if si 6= sj for any basepair {vi, vj} of S.

Note that a string realizing the shapes S1, S2, . . . , Sk over the four letter alphabet
{A, U, C, G} exists if and only if there exists a binary string realizing the shapes
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S1, S2, . . . , Sk. So the Realizability Problem is equivalent to

Problem 7 (Binary Realizability Problem) For any shapes S1, S2, . . . , Sk of the
same size construct a single binary string realizing all these shapes.

It is easy to see that a binary string s = s1 . . . sn realizes the shapes S1, S2, . . . , Sk

if and only if for any edge {vi, vj} of the graph G(S1, S2, . . . , Sk) we have si 6= sj .
Note also that realization is possible if and only if G(S1, S2, . . . , Sk) has no odd cy-
cles, i.e., it is a bipartite graph. Using the breadth first traversal of G(S1, S2, . . . , Sk),
we can check the existence of an odd cycle in G(S1, S2, . . . , Sk). If there is no such
a cycle, using the same search, we can construct the string s in the following way:
for each new found vertex vi we define the symbol si to be different from the sym-
bol sj such that vj is the already found neighbour of vi. Note that checking of the
existence of s as well as constructing of s requires O(‖G(S1, S2, . . . , Sk‖) time.
Thus we have

Lemma 8 Any shapes S1, S2, . . . , Sk of size n can be realized by a single binary
string s if and only if the graph G(S1, S2, . . . , Sk) has no odd cycles. Furthermore,
one can check the existence of s and, if s exists, construct s in O(nk) time.

The Intersection Theorem of Reidys et al. [17] states that for any shapes S, S ′,
there exists an RNA sequence which realizes S, S ′. The Generalized Intersection
Theorem of Flamm et al. [6] states that there exists an RNA sequence which real-
izes S1, S2, . . . , Sk if and only if G(S1, S2, . . . , Sk) is a bipartite graph, a condition
equivalent to the nonexistence of odd cycles. Being previously unaware of the work
of [17, 6], we have independently come upon the same conclusion of those authors
in Lemma 8 and Theorem 10.

Definition 9 A 0, 1-labeling of the shape graph G(S1, S2, . . . , Sk) is a function

` : {v1, v2, . . . , vn} → {0, 1},

on the vertices of the shape graph in such a way that if {vi, vj} is an edge of
G(S1, S2, . . . , Sk) then

`(vi) 6= `(vj).

Firstly consider the case of two shapes.

Theorem 10 Any two shapes S1, S2 of size n can be realized by a single binary
string which can be constructed in O(n) time.

Proof (Theorem 10). Let {v1, v2, . . . , vn} be the common set of vertices, and let
E1, E2 be the corresponding sets of edges of S1 and S2, respectively. Consider a
connected component C of the graph G(S1, S2). Since every node of this graph has
degree at most two, C must be either a path or a cycle. Note that in the cycle each
basepair contained in one of the shapes is followed by a basepair containing in the
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Fig. 1. These three shapes cannot be realized by a single binary string of length three.

other shape. So the cycle has equal numbers of basepairs containing in the shapes
S1 and S2 respectively. Thus, the graph G(S1, S2) cannot have an odd cycle. Hence
Theorem 10 follows from Lemma 8. It follows that every connected component
is either a path or an even cycle. If vi1 , vi2 , . . . , vis is a connected component of
G(S1, S2) we define the labeling ` in such a way that `(vir) 6= `(vir+1

), for r =
1, 2, . . . , s − 1. This completes the proof of Theorem 10. 2

In general, three or more shapes may not be realizable by a single binary string.
An example with three shapes is depicted in Figure 1. So to realize more than two
shapes by a single string we need to introduce an extra “don’t care” symbol (here
we use the symbol ∗) where we allow to match the symbol ∗ with any of 0 and 1 as
well as with itself. We can generalize the notion of labeling previously defined to
the following more general concept.

Definition 11 A ∗-labeling of the shape graph G(S1, S2, . . . , Sk) is a labeling of
the vertices with 0s, 1s and ∗s, i.e.,

` : {v1, v2, . . . , vn} → {0, 1, ∗},

in such a way that if {vi, vj} is an edge of G(s1, s2, . . . , sk) such that {`(vi), `(vj)} ⊆
{0, 1} then

`(vi) 6= `(vj).

Definition 12 A binary string s = s1 . . . sn over the alphabet {0, 1, ∗} realizes a
shape S of size n if si 6= sj or si = sj = ∗ for any basepair {vi, vj} of S.

It is clear that any shape S ∈ SHAPEn is realized by the string ∗n. So we can state

Problem 13 (Min ∗ Realizability Problem (M∗RP))
For any shapes S1, S2, . . . , Sk of the same size compute the minimum number of ∗s
in a single string over {0, 1, ∗} realizing all these shapes.

Note that M∗RP can be expressed also as

Problem 14 For any shapes S1, S2, . . . , Sk of the same size compute the minimum
number of vertices that must be removed from the graph G(S1, S2, . . . , Sk) to dis-
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Fig. 2. The graph Ĝ.

connect all odd cycles.

We show that M∗RP is NP-complete for k ≥ 4. A subset V ′ of vertices of a graph G
is called a vertex cover set if for each edge e of G there is some v ∈ V ′ such that
v ∈ e. We consider the following problem.

Problem 15 (Vertex Cover Set Problem for Degree D (VCSP[D]))
For any graph G with maximum vertex degree D find the minimum number of ver-
tices in a vertex cover set of G.

It is known (see [8]) that VCSP[3] is NP-complete.

We call a subset V ′ of vertices of a graph G feedback vertex set for odd cycles if V ′

contains at least one vertex from every odd cycle in G.

Problem 16 (Odd Feedback Vertex Set Problem for Degree D (OFVSP[D])) For
any graph G with maximum vertex degree D find the minimum number of vertices
in a feedback vertex set for odd cycles of G.

Theorem 17 OFVSP[4] is NP-complete.

Proof (Theorem 17). For any graph G = (V, E) define a new graph Ĝ = (V̂ , Ê)
as follows (see Figure 2). The set V̂ consists of

(1) the set V ,
(2) for each v ∈ V a new vertex v′, and
(3) for each edge e ∈ E a new vertex ve.

We will denote the set of all new vertices defined in condition 2 by V ′ and the set
of all new vertices defined in condition 3 by V ′′. The set Ê consists of

(1) the set E,
(2) for each edge e = {a, b} ∈ E two new edges {a′, ve} and {ve, b

′},
(3) for each v ∈ V the edge {v, v′}.
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We will denote the set of all edges defined in condition 2 by E ′.We prove that the
minimum number m of vertices in a vertex cover set for G is equal to the minimum
number m̂ of vertices in a feedback vertex set for odd cycles for Ĝ. Let U be any
vertex cover set for G, and C be any odd cycle in Ĝ. Note that C cannot be entirely
contained in the graph (V ′∪V ′′, E ′) since all cycles in this graph have even length.
So C has to contain at least one edge in the set E. Therefore, C has to contain at
least one vertex in U . Thus U is a feedback vertex set for odd cycles for Ĝ. Hence
m̂ ≤ m. Now assume that m̂ < m. Let U ′ be a feedback vertex set for odd cycles
for Ĝ such that |U ′| = m̂. If U ′ contains some vertex ve of V ′′ where e = {v1, v2},
then ve can be replaced by either v′

1 or v′

2 while preserving U ′ to be a feedback
vertex set for odd cycles for Ĝ. So we can assume that U ′ ⊆ V ∪ V ′. Let U ′′ be the
subset of V consisting of all vertices v such that at least one of the vertices v, v ′ is
contained in U ′. Since |U ′′| ≤ |U ′| < m, the set U ′′ cannot be a vertex cover set
of G. So there exists an edge e = {v1, v2} in E such that neither v1 nor v2 belongs
to U ′′. Hence, U ′ does not contain any of vertices v1, v2, v

′

1, v
′

2. Thus U ′ does not
contain any of vertices of the odd cycle v1v2v

′

2vev
′

1v1. The obtained contradiction
implies m̂ = m. Note that the graph Ĝ can be constructed from G in time linear
in the size of G, and the maximal vertex degree of Ĝ equals to the maximal vertex
degree of G plus one. So VCSP[3] is transformed in polynomial time to OFVSP[4].
On the other hand, there exists a simple non-deterministic polynomial time algo-
rithm for solving OFVSP[4]: we guess a subset of vertices in the graph and check
in linear time whether after removing this subset the remaining part of the graph
contains odd cycles, using the breadth first traversal of this part. 2

Let G = (V, E), G′ = (V ′, E ′) be two graphs. We call the graph G′ homeomorphic
extension of G if G′ is obtained from G by replacing some edges (v ′, v′′) of G
with chains ch(v′, v′′) = (v′, u1)(u1, u2) . . . (uk−1, uk)(uk, v

′′) where u1, u2, . . . , uk

are new vertices of degree 2 not yet contained in G. The graph G′ is called odd
homeomorphic extension of G if all chains ch(v ′, v′′) have odd length. For any ui

of ch(v′, v′′) the nodes v′ and v′′ are called the end points of ui.

Lemma 18 If G′ is odd homeomorphic extension of G then the minimal feedback
vertex sets for odd cycles in G and G′ have the same cardinality.

Proof. Note that there exists one-to-one correspondence between cycles in G and G′

such that each odd cycle C in G corresponds in G′ to odd cycle containing all ver-
tices of C. So each feedback vertex set for odd cycles in G is a feedback vertex set
for odd cycles in G′. Now let A be a minimal feedback vertex set for odd cycles
in G′. Note that any vertex in (V ′ \V )∩A can be replaced by any end point of this
vertex while preserving A to be a feedback vertex set for odd cycles in G′. Thus we
can assume that A contains only vertices from G. Therefore, A is also a feedback
vertex set for odd cycles in G.

Theorem 19 Let k ≥ 3. Then for any graph G of maximum vertex degree k there
exist k shapes S1, . . . , Sk such that G(S1, . . . , Sk) is isomorphic to an odd homeo-
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Fig. 3.

morphic extension of G and ‖G(S1, . . . , Sk)‖ = O(‖G‖2).

Proof. Let G be a graph of maximum vertex degree k. Note that each connected
component of an odd homeomorphic extension of G is an odd homeomorphic ex-
tension of a connected component of G. So without loss of generality we can as-
sume that G is connected. First, we construct shapes S ′

1, . . . , S
′

k, s.t., G(S ′

1, . . . , S
′

k)
is isomorphic to an homeomorphic extension of G. For the sake of convenience we
extend indices of the shapes to any integer values assuming S ′

i = S ′

j for any i and j
such that i ≡ j (mod k). Where, for any shape S ′

i with i > k we will actually
mean the shape S ′

i′ , s.t., 1 ≤ i′ ≤ k and i′ ≡ i (mod k). We call the bases of
G(S ′

1, . . . , S
′

k) corresponding to vertices of G original bases. All other bases of
G(S ′

1, . . . , S
′

k) are called additional. For any vertex v of G we will denote the cor-
responding to v original base by v. Consider any rooted DFS spanning tree T of the
graph G. We call edges belonging to T spanning edges. All other edges of G are
called secondary. For any subtrees T ′, T ′′ of T the subtree is called proper subtree
of T ′′ if the root of T ′ is a child of the root T ′′ in T . Each spanning edge corresponds
to unique basepair in G(S ′

1, . . . , S
′

k). These basepairs are constructed inductively
from the root to leaves of T in the following way. Let v1, . . . , vk′ , where k′ ≤ k, be
all children of the root r of T . Then we place the basepairs {r, v1}, . . . , {r, vk′} as
shown in Figure 3. Assume now that we constructed already basepairs correspond-
ing to edges from some vertex u to all its children in T . Let v ′ be a child of u, and
v′

1, . . . , v
′

k′ , where k′ ≤ k−1, be all children of v′ in T . Let also v′′ be the next to the
right from v′ in G(S ′

1, . . . , S
′

k) original base such that v′′ is a child of u (or a vertex
which is not a descendant of v′ in T if there is no such child), and S ′

i be the shape
containing the basepair {u, v′}. Then we place the basepairs {v′, v′

1}, . . . , {v
′, v′

k′}
in the segment between the bases v′ and v′′ as shown in Figure 4:

10



������

������

������

��������

	�	
�
 ������


�
��� ��������

�������� ��������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������

S’

S’i

u

i+1

S’i+2

v’. . . . . .

. . . . . .

. . . . . .

v’1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v’2

. . . . . .

S’i+k’

v’k’

. . . . . .

. . . . . . v’’

. . .

. . .

. . .

. . .

Fig. 4.

Now we have to add to G(S ′

1, . . . , S
′

k) chains of basepairs corresponding to sec-
ondary edges of G. For these purposes we consider inductively all subtrees of T in
the order from trivial subtrees formed by leaves of T to the whole tree T . Let T ′ be
some considered subtree different from a subtree formed by a leave and from the
whole tree T . Denote the root of T ′ by v′, the parent of v′ in T by u. Let also v′′

be the next to the right from v′ in G(S ′

1, . . . , S
′

k) original base such that v′′ /∈ T ′.
Since T is a DFS tree, each secondary edge e of G has the following property: one
of the ends of e is an ancestor in T for the other end. So we distinguish ancestor
and descendant ends of e. Moreover, if the edge e is incident to a vertex of T ′ then
either both ends of e belong to T ′ or only descendant end of e belongs to T ′. In the
first case we say that e belongs to T ′, and in the second case we say that e originates
in T ′. We will produce for T ′ the following procedure:

(1) for any secondary edge e belonging to T ′ we construct the chain of basepairs
corresponding to e such that this chain is placed completely in the segment
between the bases v′ and v′′;

(2) for any secondary edge e originating in T ′ we construct a part of the corre-
sponding to e chain of basepairs starting from the base corresponding to the
descendant end of e and ending in some additional base called boundary base
of T ′ such that this part is placed completely in the segment between the bases
v′ and v′′. Moreover, in this part the basepair incident with the boundary base
belongs to the shape containing the basepair {u, v ′}, and in the segment be-
tween the boundary base and the base v ′′ there can be only other boundary
bases of T ′ (i.e., all boundary bases of T ′ are placed in some “buffer” segment
containing only these boundary bases (see Figure 5)).

Let T ′

1, T
′

2, . . . , T
′

k′ are all proper subtrees of T ′. Assume that the required procedure
is already produced for these subtrees (if some proper subtree is formed by a leaf
of T then we don’t produce any procedure for this subtree, but we consider the
base corresponding to this leaf as a boundary base in the “buffer” segment for this
subtree). So we need to construct for T ′ all chains corresponding to secondary edges

11
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Fig. 5. The segment containing all constructed for T ′ basepairs except the basepairs incident
with boundary bases of T ′ is outlined by the solid frame, the “buffer” segment for T ′ is
outlined by the dashed frame, and the basepairs incident with boundary bases of T ′ are
depicted by dashed arcs.

belonging to T ′, but not belonging to any proper subtree of T ′ and the appropriate
parts of all chains corresponding to secondary edges originating in T ′. Let e be
an edge belonging to T ′, but not belonging to any proper subtree of T ′. Then e
originates in some proper subtree T ′

j of T ′, and v′ is the ancestor end of e. Since
we already produced the required procedure for T ′

j , we have constructed a part of
the corresponding to e chain starting from the base corresponding to the descendant
end of e and ending in the appropriate boundary base of T ′

j . Hence, to complete this
chain, we have to construct a chain of basepairs linking this boundary base with v ′.
Now let e be an edge originating in T ′. Then either e originates in some proper
subtree T ′

j of T ′ or v′ is the descendant end of e. In the first case we have to prolong
the appropriate part of the chain corresponding to e from the boundary base of T ′

j

to the boundary base of T ′. In the second case we have to construct the appropriate
part of the chain corresponding to e from v ′ to the boundary base of T ′. Summing
up these observations, we conclude that the required procedure for T ′ consists in
the following operations:

(1) for any boundary base of the subtrees T ′

1, . . . , T
′

k′ such that the corresponding
edge of G ends in v′ we construct a chain of basepairs from this base to v ′;

(2) for any boundary base of the subtrees T ′

1, . . . , T
′

k′ such that the corresponding
edge of G doesn’t end in v′ we construct a chain of basepairs from this base
to the appropriate boundary base of T ′;

(3) for any edge e whose descendant end is v ′ we construct a chain of basepairs
linking v′ with the corresponding to e boundary base of T ′.

The way of constructing all these chains is shown in Figure 6. (In this Figure for
each proper subtree we group together for the sake of convenience the boundary
bases corresponding to secondary edges ending in v ′ and the boundary bases cor-
responding to secondary edges not ending in v ′ while these bases can be actually
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Fig. 6.

intermixed among each other. Note that this assumption is not important for our
proof.)

Assume now that the required procedure is already created for all proper subtrees
T1, T2, . . . , Tk′ of the tree T . Then we complete the construction of S ′

1, . . . , S
′

k as
shown in Figure 7.

To obtain the shapes S1, . . . , Sk from the shapes S ′

1, . . . , S
′

k, we have to replace
in G(S ′

1, . . . , S
′

k) each chain of even number of basepairs corresponding to a sec-
ondary edge by a chain of odd number of basepairs. Note that any chain of even
number of basepairs has at least two basepairs. Let {α1, α2}, {α2, α3} be such two
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basepairs belonging to some shapes S ′

i and S ′

j respectively. Since k ≥ 3, there ex-
ists a shape S ′

l different from S ′

i and S ′

j . Note also that only the basepairs {α1, α2}
and {α2, α3} contain the base α2. So the base can be replaced α2 by two neighbour
bases α′

2 and α′′

2 , and the basepairs {α1, α2} and {α2, α3} can be replaced by the
basepairs {α1, α

′

2}, {α′

2, α
′′

2} and {α′′

2, α3} belonging to the shapes S ′

i, S ′

j and S ′

l

respectively (see Figure 8). Applying in G(S ′

1, . . . , S
′

k) this transformation to all
chains of even number of basepairs corresponding to secondary edges, we obtain
the required shapes S1, . . . , Sk.

Note that for any secondary edge e the corresponding to e chain of basepairs in
G(S ′

1, . . . , S
′

k) has no more than a + 1 basepairs where a is the number of subtrees
of T in which the edge e originates. So this chain has no more than |G| basepairs.
Therefore, the corresponding to e chain of basepairs in G(S1, . . . , Sk) has no more
than |G| + 1 = O(‖G‖) basepairs. Thus ‖G(S1, . . . , Sk)‖ = O(‖G‖2).

Since the DFS tree T can be constructed in time linear in ‖G‖ (see, e.g., [4]) we
can also observe that the shapes S1, . . . , Sk can be constructed in time polynomial
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in the size of G. Thus, taking into account Lemma 18, we conclude that OFVSP[4]
can be transformed in polynomial time into Problem 14 for k ≥ 4. Therefore,
Theorem 17 implies that Problem 14 is NP-hard for k ≤ 4. On the other hand, we
can propose a non-deterministic polynomial time algorithm for solving Problem 14:
we guess a subset of bases in G(S1, S2, . . . , Sk) and check in linear time whether
after removing this subset the remaining part of G(S1, S2, . . . , Sk) contains odd
cycles, using the breadth first traversal of this part. Thus Problem 14 is NP-complete
for k ≥ 4. Since Problem 14 is equivalent to M∗RP, we obtain

Theorem 20 M∗RP is NP-complete for k ≥ 4.

3 On Bounded Minimum Realizability

The results of Section 2 show that M∗RP is NP-complete for k ≥ 4 but leave open
the complexity of this problem for k = 3. This raises the question on what is the
complexity of a restricted version of this problem whereby the maximum number
of possible stars is given in advance. First of all we give a precise definition of the
problem.

Problem 21 (Min ∗ Realizability Problem for m Possible ∗s (M∗RPP[m])) For
any shapes S1, S2, . . . , Sk of the same size compute a string over {0, 1, ∗} which
realize all these shapes and contains no more than m ∗s if such string exists.

This “approximation” variant of the original problem has a simple polynomial time
solution. To see this we argue as follows. To solve M∗RPP[m], we have to decide if
there exists a set of m vertices of G(S1, S2, . . . , Sk), such that there is no odd cycle
in the set of vertices remaining after removing this set. For any subset of vertices
of G(S1, S2, . . . , Sk) we can check the existence of an odd cycle not intersecting
with this subset in O(‖G(S1, S2, . . . , Sk)‖) time, using the breadth first traversal of
the complementary to this subset part of G(S1, S2, . . . , Sk). So we can make the
following conclusion.
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Lemma 22 M∗RPP[m] can be solved in O
((

n

m

)

‖G(S1, S2, . . . , Sk)‖
)

time.

In particular, Lemma 22 provides an O(n‖G(S1, S2, . . . , Sk)‖) time algorithm for
M∗RPP[1]. In the sequel we show how to remove the multiplicative factor n above
and propose a more effective algorithm for solving this problem. First we define
the important concepts of critical vertices and tours.

Definition 23 A vertex of a graph G is called critical if it is contained in all odd
cycles in G.

Further in a graph we consider also cycles which can contain several times the same
vertices and edges.

Definition 24 Tours are cycles which may contain several times the same vertices
and edges.

First we consider the case of graphs with all critical vertices of degree at most 3. We
later indicate all modifications that are necessary to extend this result to arbitrary
graphs.

Lemma 25 All critical vertices of a graph G of vertex degree at most 3 can be
found in O(‖G‖) time.

Proof. First we check in O(‖G‖) time whether G contains odd cycles by breadth
first traversal of G. If there are no odd cycles in G then the problem is assumed to
be solved. Let G contain odd cycles. Then we find any one odd cycle C in G such
that C has no chords, i.e., edges which join vertices of C, but do not belong to C.
We find previously any arbitrary odd cycle in G. It can be done, using backtracking
of traversed edges during the traversal of G.

Let C ′ = c′1c
′

2 . . . c′hc
′

1 be the found odd cycle (i.e., h is odd). Then we label the ver-
tices c′1, c

′

2, . . . , c
′

h by two symbols 0 and 1 in such a way that any two consecutive
vertices c′i and c′i+1 are labeled by different symbols. After that we check for each of
vertices c′1, c

′

2, . . . , c
′

h consecutively if this vertex is joined to another vertex of C ′ by
an edge not belonging to C ′. Let us assume that we detect that a vertex c′i is joined
by an edge to a vertex c′j where j > i + 1. Then we compare the labels of c′i and c′j .
If these labels are equal, we reduce the cycle C ′ to the odd cycle c′ic

′

i+1 . . . c′jc
′

i by
removing from C ′ the vertices c′j+1, c

′

j+2, . . . , c
′

h, c
′

1, c
′

2, . . . , c
′

i−1. If these labels are
different, we reduce the cycle C ′ to the odd cycle c′1c

′

2 . . . c′ic
′

jc
′

j+1 . . . c′hc
′

1 by re-
moving from C ′ the vertices c′i+1, c

′

i+2, . . . , c
′

j−1. After this reduction, we continue
the checking of vertices of the remaining cycle, going in the direction of vertices
with greater indices. Each time we detect a new chord, we produce the above de-
scribed reduction of the cycle. We stop the checking when the index of the next
checked vertex is less than the index of the last checked vertex. One can see that
after this procedure we obtain the required cycle C without chords.
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Let C = c1c2 . . . crc1 (r is odd). Denote by G′ the graph remaining after remov-
ing from G all vertices c1, . . . , cr. In O(‖G′‖) time we can also check whether G′

contains odds cycles. If G′ contains an odd cycle then G has no critical vertices.
Assume G′ does not contain odd cycles. Then G′ is a bipartite graph, so we can
label in O(‖G′‖) time all vertices of G′ by two numbers 0 and 1 in such a way that
for any edge {u, v} of G′ the vertices u and v are labeled by different symbols.
We will denote the label of a vertex v by l(v). Simultaneously we can compute all
connected components of G′.

Let K1, . . . , Ks be all connected components of G′ which are connected to ver-
tices of C by at least two edges. Consider any component Ki. Let Ki is connected
to vertices of C by edges {v1, cj(1)}, . . . , {vp, cj(p)} where p ≥ 2 and j(1) <
j(2) < . . . < j(p) (note that, since the vertices cj(1), . . . , cj(p) have vertex degree at
most 3, all these vertices are different, while the vertices v1, . . . , vp can coincide). In
what follows we consider the ordered pairs of vertices (cj(1), cj(2)), (cj(2), cj(3)), . . . ,
(cj(p−1), cj(p)), (cj(p), cj(1)) which we call neighbour pair of Ki. For a neighbour
pair (cj(q), cj(q′)) the part cj(q)cj(q)+1 . . . cj(q′) (cj(q)cj(q)+1 . . . crc1c2 . . . cj(q′) in the
case of q = p) of the cycle C is called the segment of this neighbour pair. For each
neighbour pair (cj(q), cj(q′)) we compute the value

l + l(vq) + l(vq′) (1)

where l is the length of the segment of (cj(q), cj(q′)), i.e., l = j(q′) − j(q), if
q = 1, . . . , p − 1, and l = r + j(q′) − j(q), if q = p. The neighbour pair is
called odd if value (1) is odd, otherwise it is called even. Since the vertices vq, vq′

are in Ki, there exist paths in Ki between vq and vq′ , and for each such a path there
exists the cycle consisting of this path, the segment of (cj(q), cj(q′)), and the edges
{vq, cj(q)} and {vq′, cj(q′)}. Any such cycle is called associated with the neighbour
pair (cj(q), cj(q′)). Note that in any path in Ki any two adjacent vertices have dif-
ferent labels, so the length of any in Ki between vq and vq′ is odd if and only if
l(vq) + l(vq′) = 1. Therefore, the length of any cycle associated with a neighbour
pair is odd (even) if and only if the neighbour pair is odd (even). Note also that
we can check for all neighbour pairs of the components K1, . . . , Ks whether the
neighbour pairs are odd or even during only one walking along the cycle C. Since
all vertices of the cycle C have vertex degree at most 3, the total time required for
the checking is bounded by O(r). Thus for any Ki we can compute the number of
odd neighbour pairs of Ki. We prove the following fact.

Proposition 26 For any Ki the number of odd neighbour pairs of Ki is odd.

Proof. Let C1, . . . , Cp be some cycles associated respectively with all neighbour
pairs of Ki, and lt be the length of Ct, t = 1, . . . , p. Then

∑p
t=1 lt = r+2p+

∑p
t=1 l′t

where l′t is the length of the part of Ct containing in Ki. Note that all these parts
form a tour of length

∑p
t=1 l′t in Ki. Since in this tour any two adjacent vertices have

different labels, the length
∑p

t=1 l′t of this tour has to be even. Hence, since r is odd,
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∑p
t=1 lt is also odd. Therefore, among the cycles C1, . . . , Cp we have odd number

of odd cycles. Since each of these odd cycles corresponds to an odd neighbour pair
of Ki, we conclude that Ki has odd number of odd neighbour pairs. 2

It follows from Proposition 26 that each of the components K1, . . . , Ks can have
either just one or at least three odd neighbour pairs. Note that for any odd neighbour
pair all critical vertices of G have to be contained in the segment of this neighbour
pair since they have to be contained in both the cycle C and the odd cycle associ-
ated with the neighbour pair. Therefore, if some component Ki have at least three
odd neighbour pairs then all critical vertices of G have to be contained in the in-
tersection of the segments of all these neighbour pairs. One can easily see that any
three different segments of neighbour pairs of the same component have the empty
intersection, so in this case G have no critical vertices.

Thus we have to analyse only the case when each of the components K1, . . . , Ks

has just one odd neighbour pair. Denote by Li the segment of the only odd neigh-
bour pair of the component Ki, i = 1, . . . , s, and by R the intersection of the
segments L1, . . . , Ls. In this case all critical vertices of G are contained in R. On
the other hand, we prove that any vertex of R is critical vertex of G, i.e., any cycle
in G not containing at least one vertex of R is even. We consider tours in G which
can contain several times only vertices and edges of the cycle C. We call such tours
quasitours. Let v be any vertex of R. We show that any quasitour T in G not con-
taining this vertex is even. If T is not intersected with the cycle C, i.e., T is a cycle
contained completely in G′, then T is even, since G′ has on odd cycles. Let T is
intersected with C. Then T is divided into parts consisting of consecutive edges
which either belong or not belong to C. The parts consisting of edge not belong-
ing to C are called external parts. Since C has no chords, each external part goes
through vertices of one of the components K1, . . . , Ks. A quasitour (cycle) is called
primitive if it has only one external part. First consider a primitive cycle Ĉ not con-
taining v. The only external part of Ĉ goes through vertices of some component Ki.
Then we can note that the other part of Ĉ is a part of C consisting of some number
of consecutive segments of neighbour pairs of Ki. We call these neighbour pairs
internal pairs of Ĉ. The only odd neighbour pair of Ki can not be an internal pair
of Ĉ, since the vertex v is contained in the segment of this neighbour pair. So all
internal pairs of Ĉ are even. We prove that Ĉ is even by induction on the number of
internal pairs of Ĉ. If Ĉ has only one internal pair then Ĉ is a cycle associated with
this pair. Since this pair is an even neighbour pair, Ĉ has to be even. Assume now
that any primitive cycle with no more than d internal pairs is even, and Ĉ has d + 1
consecutive internal pairs (u1, u2), (u2, u3), . . . , (ud+1, ud+2). Let the vertex uj is
connected to Ki by an edge {uj, u

′

j}, j = 1, 2, . . . , d + 1. Then the external part

of Ĉ consists of the edges {u1, u
′

1}, {ud+2, u
′

d+2} and some path P in Ki between
the vertices u′

1 and u′

d+2.

Consider the shortest path P̂ in Ki connecting the vertex u′

d+1 to vertices of P .
We have two cycles which are formed by the path P̂ with the edge {ud+1, u

′

d+1}
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and two different parts of Ĉ between the vertex ud+1 and the end of P̂ in P . Note
that each of these cycles is a primitive cycle which doesn’t contain v and has no
more than d internal pairs. So by induction hypothesis these cycles are even. From
this observation we can easily conclude that the cycle Ĉ is even. We can also note
that any primitive quasitour can be reduced to a primitive cycle on the same set of
vertices by removing an even number of edges. Therefore, any primitive quasitour
in G not containing v is even. Now we prove that T is even by induction on the
number of external parts in T . If T has only one external part, i.e., T is primitive,
then T is even as shown above. Assume that any quasitour with no more than d
external parts is even, and T has d + 1 external parts. Consider any one external
part of T . Let this external part in T be between vertices v ′ and v′′ and go through
vertices of a component Ki. Recall that all vertices of R are contained in the seg-
ment of one neighbour pair of Ki. So all these vertices, including v, are contained
in one of parts of C between the vertices v ′ and v′′. Thus the other parts of C don’t
contain v. Consider two quasitours which are formed by this part of C with two dif-
ferent parts of T between the vertices v′ and v′′. One of these quasitours is primitive,
and the other quasitour has d external parts. Moreover, both these quasitours don’t
contain v. Therefore, by induction hypothesis these quasitours are even. Hence we
conclude that T is also even. Thus, any cycle not containing v is even, i.e., v is a
critical vertex of G. So R is a set of all critical vertices of G.

In order to compute R, we choose the direction c1 → c2 → . . . → cr → c1 in
the cycle C. According to this direction, for any segment in C we define the bound
vertices to be the start or the end of this segment. Let L = {L1, . . . , Ls}. First
we replace in L each segment Li containing both the vertices c1 and cr by two
segments, one of which is the part of Li ending in cr, and the other is the part of Li

starting in c1. After that we mark all vertices in C which are the starts or the ends
of segments from L. Using this marking, we go along the cycle C from c1 to cr

and count consecutively for any vertex cj in C the number of segments from L
containing cj (if cj is marked as the start of a segment then for cj we increase
the counter by one, and if cj is marked as the end of a segment then for the next
vertex cj+1 we decrease the counter by one). All vertices which are contained in
s segments from L are placed in R. Note that the computing of R requires O(r +
s) = O(|G|) time. Thus the total time required for our algorithm is bounded by
O(‖G‖). 2

This completes the proof of Lemma 25. 2

The proposed algorithm can be modified for finding all critical vertices in arbitrary
graphs (i.e., graphs with arbitrary vertex degree). In order to describe these modifi-
cations, we note that the case of arbitrary graphs has two essential differences from
the case of graphs of vertex degree at most 3.

(1) The first difference is that any vertex cj in C can have several adjacent vertices
v

(1)
j , . . . , v

(τ)
j in any component Ki. If some vertices v

(α)
j and v

(β)
j have differ-
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ent labels then there exists an odd cycle consisting of the edges {v
(α)
j , cj},

{v
(β)
j , cj} and some path in Ki between v

(α)
j and v

(β)
j . This cycle intersects

with C only in cj . So in this case cj is an only potential critical vertex of G,
and we can check whether cj is a critical vertex in time O(‖G‖). Thus, if for
some vertex c in C and some component Ki we have two adjacent to c vertices
in Ki labeled by different numbers, then we can find all critical vertices of G
in time O(‖G‖). Otherwise, for each neighbour pair (cj(q), cj(q′)) we compute
the value (1), taking as the vertices vq and vq′ any vertices in the correspond-
ing component which are adjacent to cj(q) and cj(q′) respectively, and then we
continue the procedure described in the proof of Lemma 25.

(2) The second difference of the case of arbitrary graphs is that any vertex in C
can be the start or the end of several segments from L. So in this case, during
the computation of the number of segments from L containing a vertex in C,
we have to increase or to decrease the counter by the appropriate numbers
of segments. Note that the described modifications do not increase the time
bound for our algorithm.

So we obtain the following extesion of Lemma 25.

Lemma 27 All critical vertices of an arbitrary graph G can be found in O(‖G‖)
time.

Lemma 27 now implies the main theorem.

Theorem 28 M∗RPP[1] can be solved in O(‖G(S1, S2, . . . , Sk)‖) time.

4 Conclusion and Open Problems

In this paper we have studied the problem of determining the minimum number
of positions, for which after removal of all base pairs incident to these positions,
there exists an RNA sequence which is compatible with each of k given secondary
structures. There are several remaining interesting open problems which are worth
investigating.

The first problem concerns the status of the min ∗ realizability problem for k = 3
secondary structures.

The second problem is related to the design of a more efficient algorithm to approx-
imate the minimum number of stars required for the realizability of a shape graph
G(S1, S2, . . . , Sk). The proof of Lemma 27 described above shows how to reduce
the multiplicative factor

(

n

m

)

when m = 1 and is quite complex. The complexity
of the simple algorithm described in Lemma 22 above has a multiplicative factor
nm, where m is an upper bound on the number of *s, but it is not known whether
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a polynomial time (in m and n) approximation scheme for the min ∗ realizability
problem exists.

The third problem is related to the design of an algorithm to decide whether or not
a given arbitrary graph on n nodes and of vertex degree at most k is the shape graph
of a string of length n using k shapes, i.e., of the form G(S1, S2, . . . , Sk). A similar
question can be posed if the number of permissible ∗s is also given.
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