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Abstract

Motivated by computer experiments concerning the expected number of base pairs in optimal
secondary structure for random RNA, we study the asymptotics of the expected maximum
number of base pairs in secondary structures for random RNA sequences of length n, both for
the usual alphabet of {A,C,G,U} as well as for the binary alphabet {0,1}. After proving a
general limit result, we obtain estimates of the limit for the binary alphabet with thresholds
k > 0, by relating the limit to D(p), the “dual” of the well-known constant L(p), arising in
studies of the longest common subsequence (LCS) of two random binary sequences. Finally,
in an appendix, we prove a general asymptotic limit theorem which entails that there is an
asymptotic limit for the mean free energy and standard deviation per nucleotide, as computed
by mfold, of random RNA of any fixed compositional frequency; additionally, all higher order
moment limits are shown to exist.

1 Introduction

It is well-known that there is a compositional bias in nucleotide usage of various classes of RNA,
depending on function (see, for instance Karlin, Mrazek, Campbell [17]). For example, the mononu-
cleotide (or compositional) frequency of 530 tRNAs from Sprinzl’s tRNA database [25, 26] is given
by ga = 0.239922, gc = 0.253383, qc = 0.275618, gy = 0.231076, while that from a collection
of 155 16S ribosomal RNAs [1] is g4 = 0.2642, gc = 0.2101, g¢ = 0.3178, gy = 0.2079. This
suggests the following motivating question: To what extent might compositional frequency of a class
of RNAs determine or constrain the stability of optimal secondary structures (hence the function)
for members of that class?

In this paper, we study asymptotic properties of random RNA generated by a 0-th order Markov
chain from fixed mononucleotide or compositional frequencies of nucleotides A,C,G,U; in the ap-
pendix, we consider random RNA generated by k-th order Markov chains. Our investigation is
different than the work of either Hofacker et al. [16] or of [21, 22]. These authors consider a sticki-
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ness parameter,® which gives the probability that any two positions can base pair. In [16], Hofacker,
Stadler and Schuster extend the technique of Stein and Waterman [28] to compute asymptotic lim-
its of the expected number of base pairs divided by sequence length, the number of secondary
structures of a given order, etc. They do this by deriving appropriate recurrence relations and
proceed by application of Bender’s Theorem (see [28]), a very powerful tool for solving asymptotic
limits when generating functions satisfy a particular functional relation. In [21], Nebel computes
precise r-th order moments of asymptotic numbers of secondary structures by using sophisticated
extensions of the generating function technique of [29]. For example, Theorem 10 of [21] states
that “the average number of unpaired bases in a secondary structure of size n is asymptotically
% + 13—0 + % +O(n~1)”. This, however, concerns the expected number of unpaired bases among all
secondary structures, even those which are not optimal, where additionally any bases may pair (i.e.
not just Watson-Crick or GU wobble pairs). While the results of Hofacker et al. and of Nebel are
both interesting and deep, they do not concern the questions addressed in this paper. In particular,
the asymptotic limits we establish concern the expected mazimum number of base pairs (and higher
order moments) of random RNA of a given compositional frequency (or of given dinucleotide or
more generally k-tuple frequency). This is not the same mathematical model as the Bernoulli model
with a given stickiness parameter. In particular, the asymptotic value P, /nS, = 0.2051 of expected
number of base pairs from the model of Hofacker et al. (cf. Table 3 of [16]) is quite different from
the asymptotic value of approximately 0.46 suggested by our computer experiments summarized
in the table and graph from Figure 7. For this latter comparison, for both the stickiness model of
Hofacker et al. and our model, compositional frequency is pg = 0.5 = p¢ and p4 = 0 = py, and
the threshold (i.e. minimum number of unpaired bases in hairpin loops) is 1. While the models of
Hofacker et al. and of Nebel concern the collection of all secondary structures compatible with a
given RNA sequence, we consider only optimal secondary structures having a maximum number of
base pairs for a given RNA sequence.

In this paper, we consider different possible values ¢ > 0 for a minimum threshold on the number
of unpaired bases between any two paired bases (i.e. hairpin loops are required to have at least ¢
unpaired bases in the loop region). We prove a general limit theorem, which states that there is
an asymptotic limit for the ratio of the expected maximum number of base pairs in random RNA
divided by sequence length; moreover, this limit depends only on the compositional frequency used
to generate the random RNA. In this regard, our simulations suggest that this limit is a minimum
when the compositional frequency is 0.25 for each base A,C,G,U.? In an appendix, we extend the
asymptotic limit result in three directions: (i) we consider the more realistic Turner [32] energy
model using Zuker’s algorithm [19, 33], as well as the Nussinov-Jacobson [23] energy model; (ii) we
consider random RNA as generated from a kth order Markov chain, for arbitrary but fixed & > 1
(the asymptotic limit proved in the main part of the text concerns Oth order Markov chain); (%)
we consider not only the mean minimum free energy (mfe) per nucleotide of random RNA, but the
standard deviation of the mfe per nucleotide as well as higher order moments. This extension is
placed in an appendix, since the focus of the current paper is combinatorial; i.e. to prove exact
values or lower and upper bounds for the asymptotic limit of the expected maximum number of
base pairs of random RNA as a function of compositional frequency. A companion paper [7] to this

!Stickiness parameter p = 2(papv + popc + pepv) if Watson-Crick and GU wobble pairs are allowed, while p =
2(papu + pepe) if Watson-Crick but no GU wobble pairs are allowed. Here, pa, pc, pc, puv denote the compositional
frequency of a class of RNA.

2If only Watson-Crick base pairing is allowed, then clearly the maximum number of base pairs for RNA sequence
s is bounded above by min(|s|4, |s|v) + min(|s|c, |s|¢), where |s|, denotes the number of occurrences of x in sequence
s. To avoid obvious trivialities of this form, Conjecture 5 requires that mononucleotide frequencies g4 = qu and
qc =qc-



article focuses on the Turner energy model, dinucleotide frequencies, random RNA generated by a
first-order Markov chain, Z-scores, p-values and asymptotic Z-scores to quantify the extent to which
(structural) RNA has lower folding energy® than random RNA of the same dinucleotide frequency.

Obtaining provable, exact values for asymptotic limits of expected maximum number of base
pairs for random RNA of different compositional frequencies seems currently to be an intractable
problem, so to shed light on this problem, we study the expected maximum number of base pairs
for random strings in {0, 1}* having a minimum number %k of hairpin loops, each having a threshold
of size t. Here, in analogy to RNA, we allow base pairings between distinct symbols (0 with 1, but
not 0 with 0 or 1 with 1) — alternatively expressed, we consider RNA strings containing only A,U or
only C,G. For this binary alphabet problem, the asymptotic ratio of the expected maximum number
of base pairs over n is compared to D(p), the “dual” of the well-known constant L(p), the latter
defined as the asymptotic ratio of the expected length of the longest common subsequence (LCS) of
two random strings of length n divided by n, where bits are generated randomly and independently,
1 with probability p and 0 with probability 1 — p.

2 Computer Experiments

Figures and tables from our computer experiments are found at the end of the paper. Some addi-
tional data, as well as a short, self-contained proof of Lemma 7, is available in the web supplement
found at http://clavius.bc.edu/"clotelab/. Throughout the paper, we consider an RNA se-
quence s to be a word over the finite alphabet {A,C,G,U}; i.e. s € {A,C,G,U}*. Given RNA
sequences s,t, we write the concatenation of s with ¢ by s - £, or sometimes even st.

Recall that a secondary structure for an RNA sequence a = ay---a, € {A,C,G,U}" is an
expression s = sj + -+ s, involving dot, left and right parenthesis, which is well-balanced, such that
nucleotides corresponding to matching parentheses are either Watson-Crick complements or GU
wobble pairs. We say that a secondary structure has threshold 6, if hairpin loops have at least
unpaired bases.

Formally, define a secondary structure S on RNA sequence a1, ..., a, to be a set of ordered pairs
(4,7) corresponding to base pair positions, where 7 < j and the following requirements are satisfied.

1. Watson-Crick or GU wobble pairs: If (i,7) belongs to S, then pair (a;, a;) must be one of the
following canonical base pairs: (4,U), (U, A), (G,0), (C,G), (G,U), (U,G).*

2. Nonezistence of pseudoknots: If (i,7) and (k,£) belong to S, then it is not the case that
1<k<j</t

3. No base triples: If (i, 7) and (7, k) belong to S, then j = k; if (4, j) and (k, j) belong to S, then
1 =k.
4. Threshold requirement: If (i,7) belongs to S, then j —i > 6.

A base pair (z,y) is interior to base pair (i,7) if i < z < y < j; one also says that (i, 7) is exterior

to (z,y).
In [23] Nussinov and Jacobson present a dynamic programming algorithm to compute the max-
imum number of base pairs in a secondary structure for a given RNA sequence. This O(n?) time

3The folding energy of an RNA sequence s is the minimum free energy of s, as computed by Zuker’s algorithm [33]
using the Turner energy model [32] — i.e. using Zuker’s mfold or RNAfold from the Vienna RNA Package.

1At times, we may disallow wobble pairs. Note that there is even an option in RNAfold of Vienna RNA Package
[15, 10] which disallows wobble pairs.



algorithm is the basis for the more realistic Zuker algorithm [33], as implemented in mfold and
in Vienna RNA package RNAfold. Since the current paper concerns a mathematical analysis of
asymptotic properties of RNA, we adopt the simpler Nussinov-Jacobson algorithm.

We now describe four methods of generating random RNA sequences: Markov0, Markovi, Shuf-
fle, Dishuffle. The first method is known as the random word model, or more precisely a 0-th order
Markov chain.

Algorithm 1 (Markov0) INPUT: An RNA sequence ai,...,an.
OutpuT: An RNA sequence x1, - .., T, of the same expected mononucleotide frequency as ai, ..., 0y,-

1. Compute the mononucleotide frequency of a1, ..., ay.

2. For i =1,...,n, generate z; by sampling from mononucleotide frequency.

The next method generates a random sequence by taking a random walk on a first-order Markov
chain, whose transitional probabilities are obtained from measured dinucleotide frequencies.

Algorithm 2 (Markovl) INPUT: An RNA sequence aq,...,ay.
OuTPUT: An RNA sequence x1,...,ZTy of the same expected dinucleotide frequency as a1,...,an.

1. Compute the mono- and dinucleotide frequency of a1, ..., a,.
2. Generate z1 by sampling from mononucleotide frequency.

3. Generate remaining nucleotides zs,...,z, by sampling from the conditional probabilities
Pr[X|Y], where Pr[X|Y] equals the dinucleotide frequency that nucleotide X follows Y di-
vided by mononucleotide frequency of nucleotide Y.

The next method is a trivial shuffle, familiar to beginning students of computer science.

Algorithm 3 (Shuffle) INPUT: An RNA sequence aq,...,an.
OutpuT: An RNA sequence x1,...,T, of the same exact mononucleotide frequency as a,...,an.

1. Choose a random permutation o € Sj,.
2. For i =1 to n, set z; = a,(;)-

The last method is a clever dinucleotide shuffle process, due to S. Altschul and B. Erikson [2],
which preserves the same exact dinucleotide count. (Web server and Python source code for this

algorithm is available in the web supplement. See also [9] for a recent web server, which implements
the Altschul-Erikson algorithm for k-tuple shuffles, for arbitrary but fixed k.)

Algorithm 4 (Dishuffle) INPUT: An RNA sequence ay,...,a,
OutpPUT: An RNA sequence x1,...,%, of the same exact dinucleotide frequency as ai,...,an,
where T1 = a1, Ty = ayn; moreover, the Altschul-Erikson algorithm even produces the same number

of dinucleotides of each type AA,AC,AG,AU,CA,CC, etc.

1. For each nucleotide z € {A,C, G, U}, create a list L, of edges z — y such that the dinucleotide
zy occurs in the input RNA.

2. For each nucleotide z € {4, C,G,U} distinct from the last nucleotide z,, randomly choose an
edge from the list L,. Let E be the set of chosen edges (note that E contains at most three
elements).



3. Let G be the graph, whose edge set is £ and whose vertex set consists of those nucleotides
x,y such that x — y is an edge in E. If there is a vertex of G which is not connected to the
last nucleotide a,, then return to (2).

4. For each nucleotide z € {A,C,G,U}, permute the edges in Ly — E. Append to the end of
each L, any edges from FE which had been removed.

5. for 1 =1 to n — 1, generate x;41 by taking the next available nucleotide such that z; — x;41
belongs to the list L.

The proof of correctness of the Altschul-Erikson dinucleotide shuffle algorithm depends on well-
known criteria for the existence of an Euler tour in a directed graph. See (Altschul and Erikson
1985) for details of Algorithm 4 and its extensions.

Now, given an RNA sequence s of length n, by the previous four methods, we can generate many
random sequences t of the same length n, guaranteed to have the same expected or exact mono-
or dinucleotide frequency as that of s, depending on choice of algorithm. While the theoretical
contribution of this paper focuses on the random word model or 0-th order Markov chain, we
experimented with each of the four algorithms to generate random sequences.

2.1 miRNA versus random RNA

The results of this section suggest that functionally important RNA, such as precursor micro-RNA
(miRNA) from the Rfam database [13], may have more base pairs than that of random RNA of the
same expected mononucleotide and/or dinucleotide frequency, as computed by our implementation
of the Nussinov-Jacobson algorithm [5, 23].> In computations described in this section we allow
GU wobble pairs, in addition to Watson Crick pairs, and alternately investigate the situation with
threshold 0 and 3.

We computed the mono- and dinucleotide frequencies of 506 precursor miRNAs, with sequence
data taken from Bonnet et al. [3] (the data of Bonnet et al. was itself extracted from Rfam), as
well as the minimum, maximum, average and standard deviation of the precursor miRNA lengths.
Table 1 and Figure 9 indicate clearly that precursor miRNA has more base pairs than random
RNA, when applying the Nussinov-Jacobson algorithm with threshold 3, where random RNA is
generated by each of Algorithms 1, 2, 3, 4. In contrast, Table 2 and Figure 10 indicate that for the
biologically irrelevant case of threshold 0, there is no such phenomenon. See the web supplement
for additional experiments with transfer RNA, type III hammerhead ribozymes and riboswitches.
Taken together, the data suggests that structural RNA has more base pairs than random RNA, if
the random RNA is generated by Algorithm 1 or Algorithm 2, but not necessarily if the random
RNA is generated by Algorithm 3 or Algorithm 4. While the Nussinov-Jacobson energy model is
amenable to mathematical analysis, it is a rather crude approximation for the real energy model,
especially for the biologically irrelevant case of threshold 0 (due to steric constraints, the threshold
is generally taken to be 3). In the companion paper [8], we compute Z-scores and p-values to study
how the folding energy of real RNA compares with random RNA.

5As shown in [8], most structurally important RNA has lower folding energy than random RNA, where folding
energy is measured using Zuker’s algorithm, as implemented in mfold or RNAfold. Since the Nussinov-Jacobson energy
model is a somewhat crude approximation to the real energy model, it is not surprising to see that random RNA
can have more base pairs than real RNA, as measured by applying the Nussinov-Jacobson algorithm. See additional
tables and figures in the web supplement of this paper.



2.2 Simulations suggest an asymptotic limit

In Table 3, we give a table of the expected number BP of base pairs in random RNA with varying
compositional frequency, no GU bonds, threshold 0, and string length 500, where the average
was taken over 100 random sequences per fixed compositional frequency. While it is clear that a
maximum number of base pairs is obtained for compositional frequency of 0.5 for each of A,U (or
of C,G),5 it is not obvious how to prove the following conjecture.

Conjecture 5 Let 8 > 0 be a fized threshold, and n > 6 + 2 arbitrary. Let qa,q9c,qG,qu be
compositional (mononucleotide) frequencies of A,C,G,U, satisfying g4 = qu, 9qc = qG and g4 +qu +
gc+qc = 1. Generate random RNA sequences of length n, obtained by appending nucleotides, where
A is appended with probability g4, C with probability qc, G with probability ga and U with probability
qu. Let BP(n) be the expected mazimum number of base pairs in such random sequences, where
Watson-Crick but no GU pairs are allowed. Then BP(n) achieves a minimum with the uniform
distribution ga = qu = gc = q¢ = 0.25.

Table 3 provides evidence for the likelihood of this conjecture, when n = 500 and threshold 8 = 0.

Some classes of RNA have compositional frequencies of approximately g4 = qu = 9¢ = q¢ =
0.25, so the above conjecture might suggest that such RNA is optimized for structural instability,
which appears to contradict the data presented in Figure 1. As previously mentioned, counting
base pairs is an approximation to the free energy of a secondary structure, albeit a very crude
approximation. Table 4 illustrates the expected minimum free energy (mfe), as computed by Version
1.4 of Vienna RN A Package RNAfold, in random RNA with varying compositional frequency, no GU
bonds, threshold 3, and string length 500, where the average was taken over 100 random sequences
per fixed compositional frequency. In this case, uniform compositional frequency g4 = qu = g¢ =
ga = 0.25 does not yield a maximum mfe value.

Further simulations suggest an asymptotic limit phenomenon. For any fixed compositional
frequency, for instance g4 = gqc = q¢ = qu = 0.25, we generated random RNA sequences of
length n by Algorithm 1, computed the number BP of base pairs in the Nussinov-Jacobson optimal
structure, and determined the ratio BP/n. See Figures 8, 7, 11 and Tables 3 and ??, which illustrate
the dependence of this asymptotic limit on the compositional frequency, for fixed threshold. The
remainder of the paper furnishes a proof of this asymptotic limit phenomenon, as well as upper and
lower bounds in the case of binary sequences.

3 Expected maximum number of base pairs in labeled secondary
structures

We now prove the existence of an asymptotic limit, as suggested by the computer experiments from
the previous section.

Definition 6 A function f defined on the positive integers is said to be superadditive if for all
integers s, s',

f()+ f(s) < f(s+ ). (1)
Similarly, o function f is said to be subadditive if
fls+8") < f(s) + £(s). (2)

5The formal proof is left to the reader; however, the idea is that by replacing all A’s by C’s and U’s by G’s, the
number BP can not decrease.



The following useful lemma is due to Fekete [11]; see also Steele [27] for extensions and additional
information. For the sake of completeness, we include a short self-contained proof in the web
supplement.

Lemma 7 (Superadditivity Lemma, Fekete [11]) For any superadditive function f, the limit
i ) T)

n—oe n n21 n

always exists. [ |

Fix arbitrary compositional frequencies g4, qc, G, qu wWith g4 + gc + 9¢ + qu = 1. For integer n
let E(n,q4,qc,9c,qu) denote the expected number of base pairs in an optimal secondary structure
(i.e. having maximum number of base pairs) for random RNA of length n generated by sampling
the compositional frequencies ¢4, gc, 9G, qu (i-e. 0-th order Markov chain). Since the compositional
frequencies are fixed throughout, we write E(n) instead of E(n,qa,qc, G, qu). Writing 4" instead
of {4,C,G,U}", let N(s) be the number of base pairs in an optimal secondary structure on RNA
sequence s € 4" when applying the Nussinov-Jacobson algorithm (i.e. N(s) is the maximum number
of base pairs in a secondary structure on s). Of course N(s) depends on fixed threshold 60, so we
should really write N (6, s), but the existence of a limit is independent of the value of 6.7

Lemma 8 For fixed compositional frequencies qa,qc,q9a,qu, E(n) is superadditive.

Proof (Lemma 8).

E(n+m) = Y Prfr]-N(r)

re4qntm

= Z Z Pr[s] Pr[t] N (st)
s€4n te4m

> > > Prfs]Prft] (N(s) + N(¢))
s€4n team

= Y _ Prft]- Y Pr[s]N(s)+ > _ Pr[s]- Y _ Pr[t]N(¢)
te4m se4n se4n te4m

= ) Pr[s]N(s)+ > _ Prt]N(t)
sedn teqm

= E(n)+ E(m).

This concludes the proof of Lemma, 8. [ |

Note that the previous lemma depends on two conditions.

1. Random words are generated by a 0-th order Markov process, which implies that Pr[st] =
Pr[s] - Pr[t], where st is the concatenation of sequence s followed by sequence t.

2. N(st) > N(s)+ N(t). This is clear, since the union of a secondary structure for s and one
for t yields a valid secondary structure for st, and so the maximum number of base pairs in a
secondary structure for st is at least N(s) + N(t).

"In mfold, @ is taken to be 3.



The condition (2) is not always valid for the Turner energy rules. For instance, if s = CCCUUUGGG = ¢,
then Vienna RNA package RNAfold yields

CCCUUUGGG
(..M

minimum free energy = -0.90 kcal/mol

CCCUUUGGGCCCUUUGGG
(CCoc e )M

minimum free energy = -3.30 kcal/mol

where the minimum free energy (mfe) structure for s and for ¢ each has 3 base pairs, but that for
the concatenation st has only 4.

Theorem 9 (Asymptotic expected maximum number of base pairs) For any compositional
frequencies qa, qc, qa, qu, there exists a limit L(qa, qc,qa,qu) such that the expected mazimum num-
ber of base pairs in random RNA of given compositional frequency and of length n is asymptotically

equal to n - L(qa,qc,9a, qu)-

PrOOF. By Lemma 8, E(n) is superadditive, so by Lemma 7, the limit lim,,_,o, E(n)/n exists. =

In the remainder of the paper, we provide rigorous upper and lower bounds for the asymptotic
limit of the expected maximum number of base pairs for random RNA as a function of the compo-
sitional frequency. In the appendix, we prove an asymptotic limit for mean and standard deviation
(as well as higher order moments) of minimum free energy (mfe) per nucleotide of random RNA
of a given compositional frequency, where mfe is computed by Zuker’s algorithm using the Turner
energy model.

3.1 Motivation

We now turn to the question of computing the asymptotic limit, whose existence was just shown.
Throughout the remainder of the paper, we will consider a binary alphabet 0,1, instead of the
usual RNA nucleotides A, C,G,U — this would correspond to the (unrealistic) case where an RNA
sequence consisted only of C, G or only of A,U. It is hoped that our analysis of asymptotics for a
binary alphabet may deliver techniques useful for the general problem.

For the purposes of combinatorial analysis a secondary structure is modeled as an outerplanar
graph with vertices 1,2,...,n such that there is at most one edge between any two vertices.® A
base pair (i,7), where i < j, is an edge connecting two positions of the RNA sequence a1, ..., ay.
Base pair (z,y) is interior to base pair (i,7) if i < £ < y < j; equivalently, (4,7) is said to be
exterior to (z,y). A labeled secondary structure, denoted LSS, differs from a secondary structure in
two respects: first, the bases are labeled by either 0 or 1, and second, a base is paired with another
base only if their labels are different. Thus a LSS is an outerplanar graph with n vertices such
that the valence of every vertex is at most one and vertices are labeled with either 0 or 1 in such

8Technically, the graphs we consider are labeled, outerplanar graphs with valence 1. For display, we order the
vertices 1,2,...,n along a horizontal line, and depict edges by arcs above this line. While an outerplanar graph has
all edges depicted by arcs above the line, a planar graph could additionally have arcs below the line, corresponding
for instance to a type-H pseudoknot.



a way that vertices 4, j connected by an edge (7, ) must have different labels. Graph vertices will
indistinguishably be called nodes and bases, and edges will be called base pairs.

The structural components of RNA secondary structures (see Clote-Backofen [5] or Water-
man [30]) are stacked base pairs, hairpin loops, bulges, interior loops, and multiloops. Such compo-
nents, with the exception of hairpin loops, are not important for our analysis. In the sequel we are
interested in secondary structures having at least k& hairpin loops, each having at least threshold
0 (see Figure 1). For our purposes, a hairpin loop in a secondary structure for a given binary
sequence is given by a base pair (7, ) having no interior base pairs. Such a base pair has threshold
0ifj—i=0+1;ie. j=1+ 60+ 1 and positions i + 1,...,7 + 6 do not belong to any base pair.

Definition 10 Consider a LSS with a random distribution of 0 — 1 labels. A threshold position s
a collection of unpaired bases delimited by a base pair (see Figure 1).

e TTree

u threshold v

Figure 1: Two bases v and v and a threshold of size t.

A 0-threshold is a base pair (i,7) with j = 7+ 1. In general, a labeled secondary structure (LSS)
may have several hairpin loops, each having possibly different thresholds. The threshold of the LSS
is defined to be the minimum threshold over all its hairpin loops.

3.2 Secondary structures with O-thresholds

We can prove the following theorem that gives the asymptotic behavior of the expected maximum
number of base pairs of a random labeled secondary structure.

Theorem 11 (0 — 1 Algorithm) Let Ey(n,p) be the expected mazimum number of base pairs for
a random word s € {0,1}", where s is generated by Algorithm 1 and probability of generating 1 is
p, while that of 0 is 1 —p. Then

E
lim O(nap)

n—oo n

Moreover, the resulting maz size base pairing has no threshold positions.

Proof (Theorem 11). For any binary string s of length n which contains ¢ many 0’s, Ey(s) =
min(é,n — 7). To see this consider the following algorithm.

Algorithm 0 — 1 Algorithm

Input: A string s189--- s, of bits of length n.

Output: An optimal secondary structure.
1. Repeat as long as two adjacent bases with different labels exist;
2. Basepair any two adjacent bases with different labels;
3. Remove the paired bases and go to step 1;




To analyze this algorithm we use the DeMoivre-Laplace theorem. Letting ¢ = 1 — p, and recalling

standard notation for the binomial probability distribution, where b(i;n,p) denotes ( ) p'q" ", we
have
n n\ '
n,p) = Zmin(z’,n —1) ( _)pzq”Z =A+B
. )
=0
where

2l
A — E - 7, MN—1
‘ (’i)p K

=0
2N ,
= np Z ( ) i— lq(n—l)—(z—l)
n/2J 1 n—1
Ln/2J—1

= np Y b(iin—1,p)
j=0

|27+ 2N
B = Z i<i>q1pn_z
=0
L2511

—ng Y b(Gn—1,9).
=0

Before proceeding, we define the notation f ~ g to mean that limn_wog = 1. Now, by the
DeMoivre-Laplace theorem (a version of the central limit theorem — see p. 182 ff. of Feller [12]),

2=t 2_1—(n—1)p Vvn—1(1/2 — p)
go b(jin —1,p) ~ (I)(Q (n— 1)pq ) 2 p — p? )
(2541 1o - Day o /@ Tlp-1/2
b(j;m —1, ~ B(-2
jz::() v 7 ( (n —1)pq )~ p—p? )

where
! / D
N e 2
V2T J—o
denotes the cumulative distribution function for the standard normal distribution with mean 0 and
standard deviation 1. Thus

O(z) =

[n/2]—-1
A = np Z b(jsn — ,p)~np<1>< n?/;(i—/;_p))

L"—IJ—I
5 . Vn—1(p—1/2)
B = n b(j;n —1,q) ~ ng® — .
q 2:% (j q) ~ ng ( - )

°In analysis and number theory (e.g. p. 7 of [14]) and in some probability texts (e.g. [12]), the notation ~ is used
in this context. This should not be confused with the statistics notation X ~ D, which means that random variable
X has probability distribution D.

10



vn—1(1/2—p)

p—p?
evident: for p < 1/2, as n tends to infinity, ®(x,) tends to 1, while ®(—z,,) tends to 0; for p > 1/2,
as n tends to infinity, ®(x,) tends to 0, while ®(—z,) tends to 1. Thus if p < 1/2 we have

Let z,, denote the expression . By properties of the normal distribution, the following is

E,
lim —2

n—00 ’I'L, p

=p(1-0)+0=p

while if p > 1/2 we have

E
O —p(0-1)+1=1-p.

n—oo n’ p

This completes the proof of Theorem 11. [

4 Asymptotics of Optimal Secondary Structures

In this section we consider asymptotics of optimal secondary structures with bases labeled with
0,1. We will extend the asymptotic result of Theorem 11 to the case of secondary structures with
a given threshold size.

Definition 12 Consider a sequence s = s159+++ sy, 0f 0s and 1s. Given integers k,t we consider the
combinatorial function Nj i(s) which is defined as the mazimum number of base pairs of an optimal
secondary structure over the string s with at least k threshold positions and each threshold position
has at least t unpaired bases.

Let s = s189--- s, be a sequence of independent and identically distributed {0, 1}-valued random
variables, where 1s are generated with probability p and Os with probability 1 —p
Assume that k is a subadditive integer valued function; i.e. k satisfies

k(m +n) < k(m) + k(n), for all integers m, n. (3)

Definition 13 Let Ej ;(n,p) be the ezpected mazimum number of base pairs of an optimal secondary
structure over a random string s of length n with at least k(n) threshold positions and each threshold
position has size at least t unpaired bases. Formally we define:

Bra(n,p) = Y Niya(s)pl* (1 —p)'*,
s€{0,1}»

where |s|o, |s|1 is the number of Os and 1s in s.

Lemma 14 Assume that k is a subadditive integer valued function, and that 0 < p < 1 is fized.
Then Ey4(n,p) is superadditive as a function of n; moreover, the limit

E
Bra(p) = tim Dhas?)

n—00 n

exists.

Proof (Lemma 23). Let s,s’ be two strings of length m and n, respectively, with at least k(m)
and k(n) thresholds each, respectively, and each threshold of size at least ¢. If we concatenate the

11



two strings s € {0,1}™ and s’ € {0,1}" we form the string ss’ which will have at least k(m) + k(n)
thresholds and each threshold of size at least ¢. It follows easily from Inequality (3) that

Nigm),£(8) + Nig(n) £ (") < Ni(mon) 1(58').

Finally, we can prove the superadditivity of Ej (n,p). Indeed,

Eyi(m,p) + Egi(n,p) = ZNk(m )l (1 = p)lelo 4 ZNk I (1 — )l
= Z Nimy,t(8)p1 1 (1 = p)l=l0 3™ Ny ) 1 (8")pl** 11 (1 — p) o'l
ss’ "

= Z(Nk(m),t(s) + Nk(n),t(sl))p|35"1(1 _p)|ss’\0

ss!

< Z Nk(m+n),t(ssl)p‘ss’|l (1 - p)|55,‘0

ss!

= Epi(m+n,p).

The existence of the limit is an immediate consequence of the superadditiovity of Ej ¢(n,p). This
completes the proof of Lemma 23. [ |

Our goal is to prove the following theorem.

Theorem 15 Fiz t, let 0 < p < 1 and let k be any subadditive integer valued function which

satisfies lim,, o k(n)/n = 0. Then the limit lim,,_, 7E’“’tén’p) exists; moreover,
2 D Ej4(n,p) . Ei4(n,p) .
— R — < — . - = o KL — X
p(l1—p)+p (1 po—— 1) 1_)oo . nlgrolo . < min{p,1 — p} (4)

The rest of this section is devoted to the proof of this theorem. The proof will follow a detour
in which we will first consider the simpler problem of the longest dual-common subsequence of two
random sequences (see Subsection 4.1) as well as an optimization result concerning the position of
the threshold in an optimal secondary structure with a single threshold position (see Subsection 4.2).

4.1 Longest dual common subsequences

Let s,s" € {0,1}™ be two strings s = s189- - 8,8 = s|sh---s!, of length n. A common subsequence
of s and s’ is determined by sequences i1 < 19 < -+ < iy < mand j1 < jo < - < Jp <1
of indices such that s;, = s;T, for all r = 1,2,...,k. The integer k is called the length of the
common subsequence. Given 0 < p < 1/2, let the sequence of bits be generated randomly and
independently, where 1s are generated with probability p and 0s with probability 1 —p. Let C(n, p)
be the expected length of the longest common subsequence of two random sequences s and s’ and
let C(p) := lim,, oo C(p,n)/n. The longest common subsequence problem goes back to [4, 24] and
concerns the computation of C(1/2). Related to this is proving that C(1/2) < C(p), for p # 1/2.
Both of these are open problems.

Of interest to us is the dual problem which we now define. A dual-common subsequence of s
and s’ is determined by sequences 77 < ip < -+ < i < mand j; < jo < -++ < J; < n of indices
such that s;, # s’ o for all r = 1,2,...,k. The integer k is called the length of the dual-common
subsequence. Let D(n,p) be the expected length of the longest dual-common subsequence of two
random sequences s and s’ and let D(p) := lim,,_,o, D(p,n)/n. In this section we prove the following
result.

12



Theorem 16 For any p, D(p) > 2p(1 — p) + p? (1 - 112+p+1>'

Proof (Theorem 16). Before proving the main theorem we digress in order to derive two useful
results using Chernoff bounds. Let X1, Xs,..., X, be a sequence of independent, identically dis-
tributed {0, 1}-valued random variables such that 1s are generated with probability p and Os with

probability 1 — p. Let N be the random variable that counts the number of occurrences of the
pattern 01 in X, Xo,..., X,,. We have

Lemma 17

2Inn 2
Pr [Nz(l— m) (n—l)p(l—p)] 21—;. (5)

Proof (Lemma 17). Consider the indicator random variables I;, i > 2, where I; = 1 if 01 ends
in position ¢, and is 0 otherwise. Clearly, I;, I; are independent random variables if and only if
|i — j| > 2. Define the random variables

ln/2] L(n+1)/2]

n
N=3"I, No=> Ty, Mi= Y Iy (6)
=2 i=1 =2

Since E[I;] = p(1 — p), it is clear that
o= B[N]=3_ BIL] = (n—1)p(1-p)
El/?J
po = E[Ny]= Z BEllI] = [n/2]p(1 - p)

L(n+1)/2]

p = E[Ni]= Y E[ly]=|(n+1)/2]p(1 - p).
=1

Using Chernoff bounds (see Motwani and Raghavan [20]) for 0 < § < 1 we see that

Pr[No > (1= 68)uo] > 1— exp(—pod®/2),

Pr[N1 > (1 - 68)p1] > 1—exp(—p18®/2).
Let Ay and A; denote the events “Ny > (1 —d)ug” and “Ny > (1 —§)u1”, respectively, and observe
that

Pr[N > (1 —-6)u] = Pr[Ng+ N; > (1—-06)y]

Pr[No > (1 — 0)po and Ny > (1 — &) 1]
Pr[Ap and A4]
1 — Pr[4g or A]
1 — Pr[Ag] — Pr[A4]
Pr[Ap] + Pr[4;] -1
1 — exp(—p06°/2) — exp(—p16°/2).

v

AV (|

v

Now if we choose § = ni(l?fp) then after a few elementary calculations we derive easily that
2Inn 2

13



This completes the proof of Lemma 17. [

Let X1, Xo,..., X, and Y7,Y5,...,Y,, be two sequences of independent, identically distributed
{0, 1}-valued random variables such that 1s are generated with probability p and Os with probability
1 —p. Let N(X) and N(Y) be the random variables that count the number of occurrences of the
pattern 01 and 10 in the sequences X1, Xs,..., X, and Y1,Ys,...,Y,, respectively. Finally, define
the random variable N(X,Y) := min{N(X), N(Y)}. We have

Lemma 18

np(l —p n

EIN(X,Y)] > (1— %) (n— p(1 - p) (1—3) . )

Proof (Lemma 18). Using Lemma 17 we derive that for § = ,/%,

Pr[N(X,Y) > (1 -6)(n — 1)p(1 — p)]
= Prmin{N(X),N(Y)} > (1 —6)(n —1)p(1 — p)]
= Pr[N(X) > (1-6)(n—1)p(1-p)]-Pr[N(Y)>(1-0)(n—1)p(1-p)]

- 2y

Using this last result we can estimate the expected value of the random variable N, namely we have
that

E[N(X,Y)] = zn:Pr[N(X,Y)Zk]
k=0

v

> Pr[N(X,Y) > k]
0<k<(1-6)(n—1)p(1—p)

2Inn 2 2
(1— m)("—l)p(l—l))O—E)-

Now we can turn to proving the theorem. For this purpose, let us assume that s = si1s9--- s,
and s’ = s|s,---s! be two binary strings generated randomly and independently, where 1s are
generated with probability p and 0s with probability 1 — p.

Fix a nonnegative r < n and consider all substrings 01 in $;418742** Sp—r and all substrings 10
ins._ 8 98, _,. Now pair the ith 01 substring with the ith 10 substring obtaining the ith block.
Let B, be the ordered set of blocks, from left to right say. Since s and s’ have uniform distributions,
we can use Lemma 18 to lower bound the expected size of B,:

B 21n(n — 2r) "o B 2 2
5(|B,)) > (1 \/ (n_%)p(l_p))( 2= 1p(1-p) (1- 25 ) ®

Every block gives rise to two matchings (base pairs); see Figure 2. Therefore the expected length
of the longest dual common subsequence between s and s’ is at least 2E[|B,|]. Passing to the limit

v

we observe that for any r = o(n),

D(p) > lim 2B(I1B, ] > 2p(1 - p).

n—00 n

14



s| 01 o1 01 01 01 |

s | 10 10 10 10

Figure 2: Pairing patterns 01 and 10 from s and s’, respectively, in order to form two matchings
(or base pairs). As a result, we obtain four blocks.

Next we improve the lower bound by considering substrings in s of the form 011* and 0¥01 for
1 < k <r < n. First consider the set C, of all substrings in s of the form 011¥ where 1 < k < r,
the leading 01 is in a block b € B,, and 100* is the substring of s’ with leading 10 in the block b.
Obviously, for each 011% € C,, we can add one matching (that has not been added yet) into the
dual common subsequence determined by B,. In particular we can match the last 1 in 011% € s
with the last 0 in the corresponding 100% € s'; see Figure 3.

s [00011111001011111100111101011100111001101 |

AN\

s [00010000111100000111100110000001111110011]

Figure 3: There are ten matchings arising from the five blocks. Further matchings can be obtained
by considering 011% and 0%01 in s, and 100¥ and 1¥10 in s, respectively.

Consider the indicator random variables If, r+1<i1<n—-r—2,1<k<r, where Izlc =1if
011% € C, and it starts in position 7, and is 0 otherwise. Obviously,

r n—r—2

G =) Y If.

k=1 i=r+1

To estimate the probabilities Pr[IF = 1], call an ordered pair (¢,') of two binary strings of equal
length ”good” if ¢ has at most as many 01’s as ¢’ has 10’s. If a pair (¢,¢') is "bad”, i.e. ¢ has more
01’s as ¢’ has 10’s, then the pair (reverse(t’), reverse(t)) is "good”. Thus, for each bad pair there is
unique good pair. Note that there are pairs that have equal number of 01 and 10, respectively, and
these are good pairs. Thus, Pr[(¢,t) is good] > 1/2.

Let A be the event that (s, s’) is good. Now,

lc—|—1(1 k1
2

The last inequality follows from conditioning on A since then each substring 01 of s is in a block
and thus the first 10 in 100* in s’ is guaranteed by the event A.
Therefore,

Pr[I¥ = 1] > Pr[I* =1 AND A] = Pr[A] - Pr[IF = 1| 4] > 2 r)

r n—r—2 T

EIC] = Y. > EIf]>) (n—2r—2)p"* (1 —p)Ft/2
k=1 i=r+1 k=1

15



S (n—2r—2)[ op° —2p+1 _p(l—p)(p—PQ)r] (9)
- 2 pP—p+1 pP—p+1

Second consider the set D, of all substrings in s of the form 0¥01 where 1 < k < r, the ending
01 is in a block b € B,, and 1¥10 is the substring of s’ with ending 10 in the block b. Obviously,
for each 0%01 € D,, we can add one matching (that has not been added yet) into the dual common
subsequence determined by B, U C,. (Notice that C, A D, C B,, where A returns substrings of s
that appear in both C, and D,.) In particular we can match the first 0 in 0¥01 € s with the first 1
in the corresponding 1¥10 € s'; see Figure 3. One can show that

B, > M= =D e 2t L p(op)e—r)

10
2 Pt pP—-p+1 (10)

Therefore all together there will be at least 2|B,| + |C;| + |D,| matchings (base pairs) between s
and s'.

Using 14, 15, 16, and the linearity of expectation, the average number of matchings between two
random strings will be

M = 2E[|Br”+E[|Cr|]+E[|Dr|]

21n(n — 2r) 2 2
> 2<1_\/(n—2T)p(1—p)>(n_2r_1)p(1_p)(1_n—27“> +

op’ —2p+1 _p(l—p)(p—pQ)’"]
p?—p+1 pPP—p+1 '

(n—2r—2)[p

Passing to the limit, we observe that for r = log(n),

M p
1 > — 2 [ S—
D(p) > nhm > 2p(1 p) +p (1 5 1)
This completes the proof of Theorem 16. [ ]

4.2 Dual-common subsequences and single thresholds

We would like to relate the dual-common subsequence problem and the expected maximum number
of base pairs in secondary structures by showing that the number of base pairs is maximized when
the threshold is at the center of the secondary structure.

Before providing the details of the proof we explain several ideas on optimal secondary structures.
Consider a sequence s = $189--- 8, of 0s and 1s.

0000 11
n - ;

1—a)n :
( )0110 1 10

Figure 4: An optimal matching between two arrays one of size an and the other of size (1 — a)n.
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Definition 19 For a given rational number a, where 0 < a < 1, an a-matching for s is a matching
without crossings between the subsequences s = $189 -+ Sqn (depicted as the top row in Figure 4)
and 8 = San+18an+2 - Sn (depicted as the bottom row in Figure 4), where an edge between i (where
1<i<an)and j (where an +1 < j < n) may exist only if s; # s;.

Definition 20 An a-matching is called optimal if the number of its edges is mazimum. Let fq(s)
be the number of edges of an optimal a-matching for s.

Let s = s182--- s, be a sequence of independent and identically distributed {0, 1}-valued random
variables, where 1s are generated with probability p and 0s with probability 1 —p, and 0 < p < 1/2.
Let the expected size of an optimal a-matching of a random string s of length n be defined by

Z fa(s)p*l (1 = p)lslo,
s€{0,1}"
where [so, |s|1 is the number of Os and 1s in s.

Lemma 21 For each rational number 0 < a < 1/2 the limit

Ly(p) == lim Ma(n,p)

n—00 n

exists. Moreover, £q(p) is mazimized for a = 1/2. In particular,

D(p) = 2'51/2(17)-

Proof (Lemma 21). The second identity D(p) = 2-£;/5(p) is an immediate consequence of the
definition of the dual-common subsequence. So we concentrate on the rest of the lemma. The
existence of the limit will follow from the superadditivity of the function M,(n). Indeed, we want
to prove that for any m,n, My(m) + My(n) < My(m + n). Let s and s’ be two strings of length m
and n, respectively, and consider the two a-matchings depicted in Figure 5. By superimposing the
two a-matchings a new a-matching is formed. The two arrays to the top form a new array of size
a(m + n) and the two arrays to the bottom a new array of sixe (1 — a)(m + n). Since the resulting

am ) an ————
| | \
| \ | \
I \ I \
| \ - - - - - - - R | \
: \\ : \\
(I-a)m : (I-an ———

Figure 5: a-Matchings for two strings one of size  and another of size n.

a-matching includes all the edges of the two previous a-matchings it follows that f,(ss’) is at least
fa(8) + fa(s'), where ss' is the concatenation of s and s'. Tt follows that

Ma(m.p) + Ma(np) = > fal)p*h@=p)o+ D7 fu(shp" (1 —p)h

se{0,1}m s'e{0,1}m

= Zfa ) (1 |ss\o+zf )l 1 (1 — p)lss'l
= > (fa(8)+fa(8))p'”'1( — p)lssl

ss’e{0,1}m+n
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< Y falssp (= p)leo

ss’e{0,1}m+n
= Ma (m + ’n’ap)

The existence of the limit is now an immediate consequence of the superadditivity of the function
M, (n,p) just proved.

Next we prove that £, is monotone in a. Indeed, assume that a < b < 1/2. We will show that
£, < £y. In the sequel we will provide a transformation s — s’ that transforms a sequence s into
a new sequence s' and an a-matching for s into a b-matching for s’ (see Figure 6). Consider a

A B’ A A’
an —e———— bn —e———

(1-a)n o _ o
B @ & (1-b)n B @ 5

Figure 6: Transforming a matching of type (a,1 — a) into a matching of type (b,1 —b).

sequence s as depicted on the left side of Figure 6. Since b < 1/2 we observe that 1 —a > 1/2 > b.
We are looking for a “cut” of the top and bottom rows of the leftmost sequence that forms pieces
A, B’ on the top and pieces B, A’ on the bottom row, respectively, in such a way that |[A| = zn ,
|B'| = (a—z)n and |B| = L%an, |A'| = (1 —a)n— £=%zn. We would like to “swap” the position of
the pieces A’, B' in such a way that the resulting top row (consisting of the pieces A, A’) has length
bn while the bottom row (consisting of the pieces B, B') has length (1 — b)n (see Figure 6). The
value of z that will achieve the desired cut is easy to determine by observing that the length of A

plus the length of A’ must be equal to bn, i.e.,

zn+ (1 —a)n — —%en = bn. (11)
Solving Equation 11 for z, we derive that
oo a(l —a— b).
1—-2a

Sequence s’ is formed by attaching A’ to A and B’ to B.
Let 3; be formed from segments A and B and 35 be formed from segments B’ and A’, where
s = §182. Let &, be formed by swapping A" and B'. Clearly, s’ = 515, and

fa(31) + fa(52) < fo(5155) = fo(s). (12)
It follows from the definition of the expected value that

M, (2n,p) = D fu(5)p™ (1= p) b, and
a )

a—zx - -
Ma ( a ”’p> - ;fa (52) p ™ (1 — p) P
2
Using these identities and Inequality (12) we obtain

x a—
Ma (_nap) + Ma (—nap>
a 4
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= Zfa (51)p|§1|1( |s1\0 + Zf 52) |52\1( )|32\0
= Z (fa (31) + fa (52))1)\5132\1( _p)|5152|0

5182

< Zfb 518h)pl"152l1(1 — p)lsrsalo
8152

- Z'fb |S‘1 1_ )|S’|0

< M (n,p).

Dividing both sides of the resulting inequality by n this implies that

Mo(Enp) | Mi(Eng) oz Ma(np) a—s Mo(SEn)
n n a Zn a “tn
Mb(nap)
- n

Using the last inequality and passing to the limit as n — oo we obtain that

T a—T

by =— Lo+ 'eaSEb-
a
This completes the proof of Lemma, 21. [ |
Proof (Theorem 15)
The upper bound
E E
lim k,t(nap) < lim O(W’ap) < min{p, 1 _p}
n—00 n n—0oQ n

is an immediate consequence of Theorem 11. It remains to prove that

. Egu(n,p) 2 P
Jim - >p(l—p)+p° (1 . B—

Divide the secondary structure into k(n) pieces each of size n/k(n). On each piece consider a string
s € {0,1}7/k™") i =1,2,... k(n). Observe that

Nl,t(s(l)) +N1,t(3(2)) NI Nl,t(s(k(”))) < Nk(n),t(3(1)5(2) oo gkm)y

where s s ... k() denotes string concatenation. It follows that

k(n)

k(n)ELt(n/k(n),p) = ZZNlt z) \5()|1( p)‘s(i)\o

i=1 (i)

= Z (N, t(S(l)) +---+ N t(S(k(n))))P'S(l)ms(k(n))‘1 (1- p)|5(1)m5(k(n))‘0
s(1)...5(k(n))

< Z Nk(n),t(s(l) e Bl @ s EEDfy (g5 s
s(1)...g(k(n))

= Ek:,t(nap)'
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Dividing by n we obtain that
Byi(n/k(n).p) _ Exy(n.p)

C]early Ek,t',(Lnap) < El,t(nyp)

< ~—>=, 80 in passing to the limit as n — oo, we have

E
lim El,t(n’p) — lim k,t(nﬁp)

n—00 n n—0o0 n

(13)

for any subadditive function k(n) satisfying k(n) = o(n).

Consider now two random strings s,s’ € {0,1}",generated by appending independently gener-
ated random bits, 1 with probability p and 0 with probability 1 — p, and let s” denote the string
reversal of s’. For constant ¢, the expected maximum number of base pairs in a secondary structure
on a string of the form s0's’, where the threshold spans the inserted subword 0°, is clearly the
expected maximum number of edges between s and s”, hence equal to D(n,p).

Recall that by Theorem 16 we have D(p) > 2p(1 —p) + 2p? (1 — ), for any p, and that by

T
Lemma 21 we have D(p) = 2-£;5(p). It follows that ¢;/5(p) > p(1 — p) + p? (1 -

E‘l‘t(2n—|—t
2n+t

p2+p+1>, fOI' any

), Q"n“. By taking the limit as » tends to infinity and applying

p. Tt follows that 20:2) <
Theorem 16, we have

P D(p) . Eii(n,p)
1— 21— < < lim =28
p(l—p)+p ( pg_p+1)_ 5 < Jim ==

This establishes the proof of Theorem 15. [

5 Conclusion

In this paper, we report results of various computer experiments concerned with random RNA;
see our web supplement http://clavius.bc.edu/"clotelab/ for some of the code used and data
obtained. These results suggest an asymptotic limit phenomenon for which we prove a limit in
Theorem 9, provide an exact value for the limit in Theorem 11 for the case of binary sequences
using threshold 0, and give an upper and lower bound in Theorem 15 for the case of binary sequences
using threshold ¢. As a tool, we investigate D(p), the “dual” of the well-known constant L(p); here,
n - L(p) is asymptotically the expected length of the longest common subsequence (LCS) of two
random sequences of length n, each generated by independently appending random bits, 1 with
probability p and 0 with probability 1 — p. Our experiments suggest Conjecture 5, which asserts
that under certain conditions the uniform distribution for nucleotides A,C,G,U yields a minimum
expected number of base pairs in random RNA. Is this the reason why natural RNA tends roughly
to have an equal mononucleotide frequency for each of A,C,G,U ? Hopefully this conjecture will
motivate further research in the field of random RNA.
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Appendix: Asymptotic Limits for subadditive functions

In this section, we prove a far-reaching extension of Theorem 9. Specifically, we prove the existence
of an asymptotic limit for the mean and standard deviation of the minimum free energy (mfe) per
nucleotide, as computed either by the Nussinov-Jacobson algorithm [23, 5] or by Zuker’s algorithm
mfold [33], for random RNA of any fixed compositional frequency; additionally, we prove the
existence of all higher order moment limits.

Definition 22 A real-valued valued function on the integers is subadditive (respectively, superaddi-
tive) if for all u,v, f(u+v) < f(u) + f(v) (respectively, f(u+v) > f(u) + f(v)).

Lemma 23 Consider a real-valued function f on the integers. If f > 0 (respectively, f <0) and f

k
is subadditive (respectively, f is superadditive) then so is the function J; k(_"l , for all integers k > 1.

Proof. If f is subadditive and f > 0 then —f is superadditive and —f < 0. Therefore it is enough
to prove the result when f is subadditive and f > 0. The proof is by induction on k. Clearly

k+1
the result is true for £ = 1. Assuming it is true for k, we will show that the function fT_(l") is

subadditive. Indeed, from the induction hypothesis we have that for 1 < u, v,
flc—i—l(u 4 v)
(u+wv)k
fEu+v) flut)
(u+v)k1  u+w
( fiw) ) ) fw) + f(v)

(u+ )1 (u+v)k-1 U+ v

(induction hypothesis)

k k
< (L4 L8 I i o<t £ 20
u [ (w) v fF(v) u_ fFu)f(v) v fF(v)f(u)
- F T PR k + k
u+v U u+v v U+ v U U+ v v

i : . fEw) | ()
Therefore it is enough to show that this last term is less than or equal to ~—z— + ~—p~. If we
simplify we obtain that it is enough to prove that

u FIE) | v O v ) u ”
u—+v uk u—+v vk “ut+v uk ut+v vk
k

In turn, if we multiply out Inequality 14 by (u + v)u*v* we obtain the equivalent Inequality 15.

uv® fE(u) f (v) +ou® 5 (0) f (w) < vo® P (u) + uu® 57 (0). (15)

After factorization, Inequality 15 becomes equivalent to Inequality 16.

(fk(u) B f’“(v)) _ (f(u) B f(v)> >0, (16)

uk vk u v

which is always true since f > 0. To see that Inequality 16 is always valid observe that if we put
a:=1% p.— /) then the inequality b ival
= 0= quality becomes equivalent to

(a _ b)2(ak_1 + ak—Qb_l_ et abk_2 + bk—l) Z O,
which is always true since a,b > 0. This completes the proof of Lemma 23. [ |

As a corollary of this lemma we also obtain the following result.
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Lemma 24 Consider a real-valued function f on the integers. If for some constant B > 0 we have
that f(n) > —Bn (respectively, f < Bn) and [ is subadditive (respectively, f is superadditive) then

k
for all integers k > 0 the limit of fn_(kn) erists as n — 0o.

Proof. As before, without loss of generality we consider only the case when f is subadditive. The
proof is by induction on k. Clearly, the result is trivial for £ = 0. By induction hypothesis the limit
of £ ( ) , exists as n — oo, for all integers 0 < i < k — 1.

Next consider the function g(n) := f(n) + Bn. Since f is subadditive so is g. It follows from

Lemma 23 that for all integers £ > 1, the function f;(ﬁ) is subadditive. By Fakete’s Lemma the

limit of £ ( ) exists as n — co. However,

g0 _ (1) + B
_ Z;(’“) FoBn
k fifn
_ > (’;) BkaTEz' )

It follows that

(17)

However, by induction hypothesis, the limits of all the terms in the sum occurring in Equation 17

*(n)

k
exist. Consequently, since the limit of gn—k exists as n — 0o so does the limit of fn—(kn) as n — oo,
and the proof of Lemma 24 is complete. [ |

We now apply Lemma 23 to the k-th moment of a random variable X. In our case we have a
subadditive random variable X measuring the minimum free energy of a random RNA structure.
For such a random variable we know that there is a constant B > 0 such that Inequality

X > —Bn (18)
is valid. We can prove the following lemma.

Theorem 25 Consider a subadditive random wvariable X satisfying Inequality 18. Then the limit
k
of % exrists as n — 00.

Proof. We imitate the proof of Lemma 24. Consider the random variable Y := X + Bn. Singe
X is subadditive so is Y. It follows from Lemma 23 that for all integers £ > 1, the function Y —=T

is subadditive and therefore so is its expected value ig_ ] By Fakete’s Lemma the limit of [ i
exists as m — oco. It is easy to see that
E[YF¥] E[(X + Bn)*
- — == Z B E[X1). (19)

k
Now repeating the argument in the proof of Lemma 24, we see easily that since the limit of E[Y ]

exists as n — oo so does the limit of [ ‘] as n — 0o. This completes the proof of Theorem 25 [
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We can also apply this lemma to show that for the standard deviation of a subadditive random
variable X satisfying Inequality 18 the limit of

Var(X)

exists, as n — oo.

Theorem 26 Let X be a subadditive random variable X satisfying Inequality 18. Then the limit
of

Var(X)  E[X?] - E[X]?
2 = 2

n n

exists, as n — 00.

Proof. Indeed, by Fakete’s lemma since X is subadditive the limit of % exists, as n — oco. As
2 2

a consequence, also the limit of E—Ef(g]— exists, as n — oo. By Theorem 25, the limit of E—ELXQ—] must

exist as n — oco. This completes the proof of Theorem 26. [ |

In Theorem 9, we established the existence of an asymptotic limit of the expected maximum
number of base pairs in a secondary structure of random RNA, which is generated by Algorithm
1 to have a given expected mononucleotide frequency. Given the generality of the theorems we
have just established, we can lift the asymptotic limit result of Theorem 9 in two directions: (i) to
consider a more realistic energy model for secondary structure formation, (%) to consider random
RNA generated by Algorithm 2 (resp. by any k-th order Markov process). The latter condition
ensures that the random RNA which is generated has a given expected dinucleotide frequency (resp.
k-tuple frequency). As earlier mentioned, Workman and Krogh [31] have pointed out the importance
of conserving dinucleotide frequency when computing Z-scores for minimum free energy of random
RNA, so this is a practical concern in applications.

To treat the Turner energy model [32, 19], which is the current energy model used in M. Zuker’s
algorithm, as implemented in mfold and in Vienna RNA Package RNAfold, we here redefine (in
a trivial manner) the Nussinov-Jacobson energy of RNA sequence ai,...,a, to be —1 times the
maximum number of base pairs in any secondary structure on ai,...,a,.!° The properties for the
energy function used in the proof of Theorem 9 (viewed from the standpoint of the new version
of the Nussinov-Jacobson energy model) are: (i) subadditivity and (i) the existence of a lower
bound —Bn for the minimum free energy of random RNA of length n, i.e. Inequality 18. Clearly
the Nussinov-Jacobson energy model is subadditive and the Nussinov-Jacobson energy of an RNA
sequence of length 7 is greater than or equal to —n/2 (a sequence of length n can have at most
n/2 base pairs). The Turner energy model [32, 19] is subadditive and the Turner energy of an RNA
sequence of length n is greater than or equal to —3.42-n/2 (a sequence of length n has at most n/2
stacked base pairs, and the stacking free energy per base pair is at least —3.42).

Define random variable X by setting X (n) to equal the minimum free energy (according to
either the Nussinov-Jacobson or the Turner energy model) of random RNA of length n, which is
generated by Algorithm 1, Algorithm 2 or by a k-th order Markov process. Given random RNA
sequences a = ai,...,a, and b = by,..., by, clearly the minimum free energy of a concatenated
with b is at most the minimum free energy of a plus the minimum free energy of b; i.e. subadditivity

10Tn the main body of the text, we had defined Nussinov-Jacobson energy to be the maximum number of base
pairs in any secondary structure on ai,...,an, (a positive number). The trivial change made here entails that energy
is negative, and that the Nussinov-Jacobson energy is the minimum free energy according to the Nussinov-Jacobson
energy model.
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X(n+m) < X(n)+ X(m). If we apply Theorems 25 and Theorem 26 to the random variable X,
then we obtain the existence of an asymptotic limit for the expectation and standard deviation (as
well as higher moments) per nucleotide of random RNA. Here, random RNA can be generated by
Algorithm 1, Algorithm 2, or even by a k-th order Markov process.

The ability to compute mean and standard deviation of the minimum free energy (mfe) per
nucleotide, according to the Turner energy model, of random RNA generated by Algorithm 2 permits
us to define the novel notion of asymptotic Z-score[6].! Let gzy = (gzy : z,y € {4,C, G,U}) be any
complete set of dinucleotide frequencies; i.e. 0 < ¢gy < 1forallz,y € {4,C,G,U} and Zx,y Qzy = 1,
where the sum is taken over all z,y € {A,C,G,U}. Let p1(qzy) (resp. o(gzy)) denote the mean
(resp. standard deviation o) of minimum free energy per nucleotide of random RNA, whose limit
values 1,0 we have just proved to exist and to depend only on the given dinucleotide frequencies
gry- In practice, this can be approximated by generating according to Algorithm 2 many random
RNAs of length n (for n sufficiently large), then computing the mean and standard deviation of the
minimum free energies of the random RNA, and finally dividing by n.

Definition 27 Given RNA sequence s of length ng, compute the dinucleotide frequencies qzy of s.
Define

sy mfe(s)/mo = play)
Zs) (a5

An alternative and more detailed proof, using Kingman’s ergodocity theorem for subadditive stochas-
tic processes [18], for the existence of an asymptotic limit for the mean and standard deviation of
the minimum free energy per nucleotide for random RNA, generated by Algorithm 2, is given in
[6]. The proofs given in this appendix are new and extend both Theorem 9 and the limit theorem
proved in [6]. See [6] for details concerning asymptotic Z-scores and applications to RNA.

" Eollowing Workman and Krogh [31], in Z-score computations involving minimum free energy of RNA secondary
structures, also called folding energy, it is important to generate random RNA so as to conserve given dinucleotide
frequencies. This can be done by Algorithm 2, but not by Algorithm 1.
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Nussinov-Jacobson, threshold 1, Pr{C]=0.5=Pr{G]

N BP StDev  BP/N Error Max Min
N bp StDev  BP/N  Error Max Min
10 3.1800  0.7795 0.3180 0.0779 4 1
100 44.1200 1.9610 04412 0.0196 46 35
200 90.2900 2.0312 0.4515 0.0102 92 82 "
300 136.8600 1.9850 0.4562 0.0066 140 127 1 R e
400 183.0200 1.9848 0.4576 0.0050 186 175 S s
500 229.6200 1.9939 0.4592 0.0040 233 220
600  276.2100 2.3845 0.4603 0.0040 280 266
700 322.8600 2.1449 0.4612 0.0031 326 311
800  369.3800 2.0188 0.4617 0.0025 372 358
900  416.0800 1.9114 0.4623 0.0021 420 411
1000 4625500 2.1325 0.4626 0.0021 466 457

NumBasePairs/SequenceLength

Figure 7: Table of number BP of base pairs, ratio of base pairs to sequence length, etc. for random binary
sequences of length N generated by Algorithm 1 to have expected mononucleotide frequencies: go = gg = 0.5.
Our implementation of the Nussinov-Jacobson algorithm was used with threshold 1, and sequence length up
to 1000. Average values were taken over 100 iterations, where error means Stdev/N; points are indicated
along with error bars. The asymptotic limit appears to be at least 0.4626.

Nussinov-Jacobson, threshold 0, Pr{G]=0.5=Pr[C]

TGN
eSS

N BP StDev BP/N Error Max Min
10 3.7000  1.0724 0.3700 0.1072 5 1
100  46.4200 3.2716 0.4642 0.0327 50 35
200 947000 4.3070 0.4735 0.0215 100 82
300  143.2900 5.2293 0.4776 0.0174 150 127 oo
400 191.3900 6.1788 0.4785 0.0154 200 175 U0 w0 ae a0 a0 0 w0 w0 w0 w0 w000
500  240.0300 7.0999 0.4801 0.0142 250 220

600  289.2600 7.9531 0.4821 0.0133 300 266
700 338.7600 8.3751 0.4839 0.0120 350 311
800  388.5900 8.5687 0.4857 0.0107 400 358
900  437.2800 9.0278 0.4859 0.0100 450 414
1000 485.3800 9.7445 0.4854 0.0097 500 462

NumBasePairs/SequenceLength

Figure 8: Table of number BP of base pairs, ratio of base pairs to sequence length, etc. for random binary
sequences of length N generated by Algorithm 1 to have expected mononucleotide frequencies: gg = go = 0.5.
Our implementation of the Nussinov-Jacobson algorithm was used with Watson-Crick base pairs (no GU base
pairs), threshold 0, and sequence length up to 1000. Average values were taken over 100 iterations, where
error means Stdev/N; points are indicated along with error bars. By Theorem 11, the asymptotic limit is
0.5.
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Mean StDev Max Min
miRNA 0.396588 0.017623 0.445783 0.353535
Markov0 0.365564 0.019093 0.424242 0.247312
Markovl 0.366969 0.020685 0.427083 0.154930
Shuffle 0.371138 0.012318 0.418919 0.319444
Dishuffle 0.374058 0.012256 0.430380 0.323529

Table 1: Descriptional statistics for the number of base pairs divided by sequence length for a collection of
506 precursor miRNAs (miRNA sequence data from [3]) and for random RNA, according to Algorithms 1,
2, 3, 4. For each miRNA, 100 random RNAs of the same size were generated, and the number of basepairs
was computed, using our implementation of the Nussinov-Jacobson algorithm, where Watson-Crick and GU
base pairs are allowed, with threshold set to 3. Table values concern the ratio of number of base pairs over
sequence length. The theoretical analysis of the current paper concerns random RNA generated by Algorithm
1. For each method of generating random RNA, the mean number of base pairs is less than that of real RNA.

Mean StDev Max Min
miRNA 0.436927 0.017835 0.484536 0.368421
Markov0 0.424635 0.032262 0.494737 0.225806
Markovl 0.421845 0.034673 0.500000 0.140845
Shuffle 0.439826 0.017681 0.494118 0.363636
Dishuffle 0.437898 0.018040 0.494118 0.355263

Table 2: Descriptional statistics generated in an identical manner to those from Table 1, with the exception
that threshold is set to 0. Note the anomoly in this case of threshold 0, that random RNA obtained by both
shuffling methods has a larger average number of base pairs divided by sequence length. See the text for an
interpretation of his unexpected finding (which occurs for other data sets not shown here).

miRNA, Threshold 3
0.45

‘"MarkovO" A
04 "MIRNA" ---%--- L4
"Dishuffle" -~

[ Nl
i

03

0.25 -

Relative Frequency

0.15 -

01

0 ) ! L - - W
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
NumBasePairs/SequenceLength

Figure 9: This figure displays the ratio of number of base pairs over sequence length, for 506 precursor
miRNAs (sequence data taken from [3]). Number of base pairs was computed using our implementation of
the Nussinov-Jacobson algorithm, allowing Watson-Crick and GU wobble pairs with threshold of 3. The
histogram of number of base pairs divided by sequence length for precursor miRNA lies to the right of the
histograms produced by each of the four methods for generating random RNA — Algorithms 1, 2, 3 and 4.
Histograms were obtained by generating, for each miRNA sequence, 100 random RNAs per real RNA, using
each of the four methods discussed. Descriptional statistics for these graphs are given in Table 1.
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miRNA, Threshold 0
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Figure 10: This figure differs from Figure 9 only in that threshold 0 was taken in the Nussinov-Jacobson
algorithm, rather than threshold 3. Descriptional statistics are given in Table 2.

N BP StDev BP/N  Error Max Min
10 2.9600 0.8823 0.2960 0.0882 5 1

20 7.2800 1.1754 0.3640 0.0588 9 3

30 11.4700 1.5064 0.3823 0.0502 14 5

40 15.7700  1.4687 0.3942 0.0367 19 13 01 - T e A
50 19.9000 2.0322 0.3980 0.0406 23 11
100 42.4200 2.2635 0.4242 0.0226 46 35
200 87.9100 2.3499 0.4395 0.0117 92 82
300 133.9500 2.6434 0.4465 0.0088 139 127
350 156.4900 3.0414 0.4471 0.0087 162 147

Figure 11: Similar table and graph as that in Figure 8, with the exception that expected mononucleotide
frequencies are g4 = go = gg = qu = 0.25. (Error bars are not indicated.)
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qa qc qc qu Mean StDev.  Max Min Ratio

0.0000 0.5000 0.5000 0.0000 240.0300 7.0999 250 220 0.480060
0.0156 0.4844 0.4844 0.0156 238.4600 6.6550 249 219  0.476920
0.0312 0.4688 0.4688 0.0312 237.6100 6.6210 247 222  0.475220
0.0469 0.4531 0.4531 0.0469 236.5900 6.4095 247 222 0.473180
0.0625 0.4375 0.4375 0.0625 236.0400 5.9547 246 220 0.472080
0.0781 0.4219 0.4219 0.0781 234.9800 5.5479 244 219 0.469960
0.0938 0.4062 0.4062 0.0938 234.2100 5.6909 243 216 0.468420
0.1094 0.3906 0.3906 0.1094 233.6500 5.6752 244 216 0.467300
0.1250 0.3750 0.3750 0.1250 232.9300 5.5177 242 217 0.465860
0.1406 0.3594 0.3594 0.1406 232.4200 5.6217 242 217  0.464840
0.1562 0.3438 0.3438 0.1562 232.0500 5.3859 241 217 0.464100
0.1719 0.3281 0.3281 0.1719 231.7900 5.2140 241 217 0.463580
0.1875 0.3125 0.3125 0.1875 231.4400 4.9302 241 220  0.462880
0.2031  0.2969 0.2969 0.2031 231.0700 4.9925 241 219  0.462140
0.2188 0.2812 0.2812 0.2188 231.0100 4.9163 242 217 0.462020
0.2344 0.2656 0.26566 0.2344 231.1300 5.0807 242 219  0.462260
0.2500 0.2500 0.2500 0.2500 231.0500 4.7167 241 221  0.462100
0.2666 0.2344 0.2344 0.2656 231.3900 4.4898 241 222 0.462780
0.2812 0.2188 0.2188 0.2812 231.3600 4.6444 241 222 0.462720
0.2969 0.2031 0.2031 0.2969 231.3500 4.7463 241 221  0.462700
0.3125 0.1875 0.1875 0.3125 231.5700 4.5503 240 222 0.463140
0.3281 0.1719 0.1719 0.3281 231.9200 4.7972 241 223  0.463840
0.3438 0.1562 0.1562 0.3438 232.2600 5.1529 241 217 0.464520
0.3594 0.1406 0.1406 0.3594 232.6500 5.3224 243 216 0.465300
0.3750 0.1250 0.1250 0.3750 233.0400 5.2305 246 218 0.466080
0.3906 0.1094 0.1094 0.3906 233.6700 5.4223 245 221  0.467340
0.4062 0.0938 0.0938 0.4062 234.5400 5.3989 245 220 0.469080
0.4219 0.0781 0.0781 0.4219 234.9500 5.4118 243 221  0.469900
0.4375 0.0625 0.0625 0.4375 236.0400 5.3646 245 223  0.472080
0.4531 0.0469 0.0469 0.4531 237.1000 5.7541 245 222 0.474200
0.4688 0.0312 0.0312 0.4688 237.6200 6.0527 247 221  0.475240
0.4844 0.0156 0.0156 0.4844 238.4600 6.5459 249 218 0.476920
0.5000 0.0000 0.0000 0.5000 240.0300 7.0999 250 220 0.480060

Table 3: Table of expected number BP of base pairs in random RNA with varying compositional frequency,
no GU bonds, threshold 0, string length 500, average values were taken over 100 iterations.
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qa qc qc qu Mean StDev.  Max Min Ratio

0.0000 0.5000 0.5000 0.0000 -475.5846  8.5438 -458 -495 -0.951169
0.0156 0.4844 0.4844 0.0156 -436.4168 12.5359 -402 -460 -0.872834
0.0312 0.4688 0.4688 0.0312 -408.6424 16.4497 -371 -441 -0.817285
0.0469 0.4531 0.4531 0.0469 -372.4908 14.5766 -333 -410 -0.744982
0.0625 0.4375 0.4375 0.0625 -348.0432 15.4277 -311 -377 -0.696086
0.0781 0.4219 0.4219 0.0781 -322.3006 13.6317 -294 -353 -0.644601
0.0938 0.4062 0.4062 0.0938 -296.3844 15.8813 -266 -339 -0.592769
0.1094 0.3906 0.3906 0.1094 -273.6242 14.7602 -230 -305 -0.547248
0.1250 0.3750 0.3750 0.1250 -251.7838 16.8178 -207 -285 -0.503568
0.1406 0.3594 0.3594 0.1406 -235.4784 14.4806 -198 -271 -0.470957
0.1562 0.3438 0.3438 0.1562 -214.0264 12.2795 -187 -245 -0.428053
0.1719 0.3281 0.3281 0.1719 -200.9744 12.8800 -171 -236 -0.401949
0.1875 0.3125 0.3125 0.1875 -185.1242 10.8777 -162 -205 -0.370248
0.2031 0.2969 0.2969 0.2031 -170.3640 13.3179 -146 -204 -0.340728
0.2188 0.2812 0.2812 0.2188 -156.9842 14.6035 -125 -196 -0.313968
0.2344 0.2656 0.2656 0.2344 -143.9242 11.6329 -123 -167 -0.287848
0.2500 0.2500 0.2500 0.2500 -132.1930 10.2426 -112 -157 -0.264386
0.2656 0.2344 0.2344 0.2656 -120.3692  7.8277 -103 -140 -0.240738
0.2812 0.2188 0.2188 0.2812 -109.9630  8.2964 -97  -127  -0.219926
0.2969 0.2031 0.2031 0.2969 -101.8248  9.4531 -76  -120 -0.203650
0.3125 0.1875 0.1875 0.3125 -93.6436  7.6687 -76  -112  -0.187287
0.3281 0.1719 0.1719 0.3281  -84.3984  7.3432 -72 -99  -0.168797
0.3438 0.1562 0.1562 0.3438 -78.6708  7.2501 -61 -93  -0.157342
0.3594 0.1406 0.1406 0.3594 -71.9054  7.5020 -b4 -85  -0.143811
0.3750 0.1250 0.1250 0.3750 -65.8294  6.2562 -b4 -85  -0.131659
0.3906 0.1094 0.1094 0.3906 -61.3780  5.3742 -50  -71  -0.122756
0.4062 0.0938 0.0938 0.4062 -59.4470  5.6267 -44  -76  -0.118894
0.4219 0.0781 0.0781 0.4219 -56.9226  4.0502 -44 66  -0.113845
0.4375 0.0625 0.0625 0.4375 -56.4236  4.8504 -47  -68  -0.112847
0.4531 0.0469 0.0469 0.4531 -57.3960  4.4266 -50  -71  -0.114792
0.4688 0.0312 0.0312 0.4688 -62.3824  5.4518 -51 -75  -0.124765
0.4844 0.0156 0.0156 0.4844 -68.1114 4.8157 -57 -81  -0.136223
0.5000 0.0000 0.0000 0.5000 -79.6382  4.9443 -66  -88  -0.159276

Table 4: Table of expected minimum free energy (MFE) in random RNA with varying compositional fre-
quency, no GU bonds, threshold 3, string length 500, average values over 100 iterations, using Vienna RNA
Package RNAfold. Note that while Table 3 illustrates our conjecture that the uniform compositional frequency
pa = pc = pe = pu = 0.25 yields the fewest base pairs as computed by the Nussinov-Jacobson algorithm,
the situation is radically different when computing with Zuker’s algorithm, as implemented in Vienna RNA
Package. For the latter, py = 0.4375 = py, pc = 0.0625 = pg appears to yield the highest (i.e. negative with
footnotesizeest absolute value) minimum free energy. This is in part because AU bonds are weaker than GC
bonds (for this experiment we have disallowed GU base pairs, to allow comparison of results between Table

3 and Table 4.
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