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Abstract— For the purpose of anomaly-based intrusion de-
tection in mobile networks, the utilization of profiles based on
hardware signatures, calling patterns, service usage and mobility
patterns have been explored by various research teams and
commercial systems, namely the Fraud Management System
by Hewlett-Packard and Compaq. This paper examines the
feasibility of using profiles, which are based on the mobility
patterns of mobile users, who make use of public transportation,
e.g. bus. More specifically, a novel framework, which makes
use of an instance based learning technique, for classification
purposes, is presented. In addition, an empirical analysis is
conducted in order to assess the impact of two key parameters,
namely the sequence length and precision level, on the false
alarm and detection rates. Moreover, a strategy for enhancing the
characterization of users is also proposed. Based on simulation
results, it is feasible to use mobility profiles to enhance anomaly-
based intrusion detection in mobile wireless networks, provided
that the user mobility profiles adequately reflect the mobility
behavior of users.

Keywords: Mobile Networking, Security, Intrusion Detec-
tion, IBL, and Mobility Profiles.1

I. I NTRODUCTION

Mobile wireless networks continue to be plagued by theft of
identity and intrusion. Both problems can be addressed in two
different ways, either by misuse detection or anomaly-based
detection. Misuse detection is carried out by recognizing in-
stances of well known patterns of attacks. The main limitation
of this approach is that the system fails to uncover new kinds
of attacks unless it has been instructed to do so. Anomaly-
based intrusion detection (ABID) consists of observing and
recognizing deviations from normal behaviour, which has been
captured and maintained in electronic profiles. It is generally
acknowledged that the main limitation of the anomaly-based
detection approach is that it generates a higher rate of false
positives than the misuse detection approach.

The limitation imposed by anomaly-based detection ap-
proach can be minimized by combining observations across
time and across domains. When intrusion detection is car-
ried out using a given profile, multiple observations can be
correlated in time using a state-probabilistic model such as
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Bayes filters [1]. This strategy accommodates a moderate
degree of variability in normal behaviour, as indicated by
Morin and Debar in [2], and consequently reduces the rate
of false alarms. Furthermore, using a statistical tool such as
multivariate analysis [3], the detection results, associated with
multiple profiles from different domains, can also be combined
to further reduce the rate of false alarms. Examples of intrusion
detection systems (IDSs), which make use of multi-sensor data
for enhanced detection, include AAFID by Balasubramaniyan
[4] and EMERALD by Porras and Neumann [5].

The use of different profiles for ABID has been inves-
tigated by various groups. Node/device profiles are created
by exploiting the unique hardware signature of their wireless
interface [6], operating system (proposed by Taleck [7]) and
other characteristics of a wireless device. In terms of user-
based profiling, the use of calling patterns for fraud detection
in cellular networks is explored by Boukerche et al. [8]. Calls
are classified into the normal category or anomalous category
based to whether or not the time and location of the calls
match the profile of the user. If the probability of fraud is
high, then a warning message is sent to the client who owns
the phone.

Commercial systems, namely the Fraud Management Sys-
tem by Hewlett-Packard (FMS-HP) [9] and Compaq (FMS-
C) [10] also make use of service usage profiles, which are
built using calling patterns, call frequency, call times and
duration, wireless home/roaming behaviour and other call-
related information. Although both FMSs offer some services,
which permit them to be differentiated, they both detect
multiple types of fraud by examining all calls (e.g. streams of
call detail records used for billing purposes) and other-related
events (event records).

Indeed, an intrusion unfolds in many aspects of a network.
Referring to the ISO/OSI seven-layer model, anomaly de-
tection in a communication system can be conducted from
the application down to the physical layer. Research in the
area of network routing misbehaviour detection has been
conducted, for example, by Just, Kranakis and Wan [11] and
Zhang and Lee [12]. At the link layer, medium access control
misbehaviour detection, has been investigated by Kyasanur and
Vaidya [13]. Work associated with identity theft detection, at
the physical layer, has been carried out by Hall, Barbeau and
Kranakis [14].



In this paper, we examine the feasibility of using profiles,
which are based on the mobility patterns of users, for ABID
at the application layer. In particular, a novel framework that
makes use of a statistical classifier is presented. The instance
based learning (IBL) classification system [15] used is a
general class of machine learning techniques. In addition, we
focus on the analysis of two key system parameters, namely
the sequence length and precision level, in order to determine
their impact on the false alarm and detection rates. The
mobility behaviour of users is also taken into consideration.
A strategy for enhancing the characterization of users is also
proposed. Finally, simulations, which were conducted, are
based on location broadcasts (LBs) from users, who make use
of public transportation, e.g. bus, in the area of Los Angeles.
The high density of these users promotes a high probability of
intrusions, a necessary prerequisite for a meaningful analysis.

Our objective is to supplement existing user and device-
based profiles, with those based on mobility, in order to further
enhance ABID in mobile wireless networks. Moreover, the use
of mobility profiles is particularly applicable for addressing
the problem of stolen cell phones, given that the mobility
behavior of the thief and the authorized user are likely to be
different. Lastly, we believe that the underlying framework can
be applied, with minimal translation (e.g. use of cells instead
of geographical coordinates), to the mobile wireless network.

The remaining sections of the paper are organized as
follows. Section 2 presents the framework for the application
of mobility profiles to intrusion detection. Whereas Section
3 discusses the analysis of the two key system parameters,
simulation results are presented in Section 4. Other related
work are identified in Section 5, followed by the conclusions
and future research initiatives in Section 6.

II. ABID USING MOBILITY PROFILES

This section provides an overview of the ABID system,
which makes use of mobility profiles of authorized users.
As with most IDSs, the two key objectives are to define the
user mobility profiles (UMPs) and to design an appropriate
classification system.

A. Framework

Details of the framework, which is used for the implemen-
tation of the ABID system, are provided in this subsection. It
is important to note that the detection process, as described
in the sequel, is applied to each authorized user. Moreover,
during the profiling phase, the subset of the activities, from
data collection to the definition of the UMP, is typically carried
out on a one-time basis and prior to classification. However, in
order to address the issue of concept drift, where the mobility
patterns of users change with time, it is essential that the
profiles be updated periodically. One approach is to maintain
a window of the training patterns that is continuously shifted
in time as new sequences are added (analogous to the use of
exponentially weighted moving average). As the window is
shifted, the definition of UMP is updated accordingly. This

should reduce the rate of false alarms and correspondingly
increase the detection rate.

The intrusion detection process begins with the data collec-
tion exercise. Once the LBs, which contain location coordi-
nates (LCs) and other data, have been captured for a period
of 3-6 months, a high-level mapping (HLM) is applied. The
objective of the HLM is to decrease the granularity of the
data in order to accommodate minor deviations or intra-user
variability between successive LBs. Specifically, a mapping
from a LC with high granularity to a cluster-based (lower
granularity) model is used. Upon completion of this phase,
the LCs (feature) are extracted from each broadcast during
feature extraction. A set (defined by sequence length) of these
chronologically-ordered LCs are subsequently concatenated to
define a mobility sequence. This process continues until all the
mobility sequences (data set) have been created. The unique
sequences (training patterns) from the first four of the six
partitions of the data set is stored in the UMP, along with
other user-related information. During the classification phase,
an observed set of mobility sequences of a user is compared to
the training patterns in his/her profile. If the average similarity
measure to profile (SMP) value falls within the pre-established
thresholds, the mobility sequences are considered normal,
otherwise a flag is raised.

B. High-Level Mapping

The termintra-uservariability refers to the difference in the
LCs (j represents the latitude andi represents the longitude)
that are transmitted by user A as he/she travels using routes
one (solid line) and two (dashed line), see Fig. 1. So, for
example, if a LC, in the area of (j + 5, i + 4), is sent while
on routes one and two, these coordinates could potentially
be different. Let us assume that the full sequence of LCs,
associated with route one, have been captured and stored in
the profile (training patterns) of user A. If the sequence of
LCs, which are transmitted while user A is on route two, is
compared to those in the training patterns, it would result in
a similarity value of zero. Thus, altering the representation of
the sensor data (e.g. LCs), using an appropriate HLM scheme,
becomes necessary in order to decrease the granularity of the
LCs. In another words, the HLM converts LCs, which are in
close proximity, to a cluster (size of cluster is based on one
of three precision levels). As a result, the similarity between
the corresponding LCS in two sequences is increased.

This mapping process, which is applied to the LC in each
LB, is carried out as follows. The original format of the LC is
(###.#####) and (###.#####), where the first and second terms
(###.#####) represent the latitude and longitude respectively.
Based on the precision level (PL), the LC is truncated and
rounded to the specified number of digits after the decimal
point. For example, with level three, the specified digit of the
first and second terms (###.##) is rounded to 0 if it is within
0-4 and to 5 if it is within 5-9 range. Thus, for example, the
LC 33.14623,114.26874 is mapped to 33.10,114.25. Similarly,
the HLM for levels two and one are (###.#) and (###.0)
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Fig. 1. Intra-user and inter-user variability

respectively. The choice of PL or cluster size is explored in
Section 3, see Fig. 1.

Caution must nevertheless be exercised since minimizing
intra-user variability will also minimizeinter-uservariability
(deviations between location broadcasts from different users).
As depicted in Fig. 1, the same logic would apply to potential
intruders as well, resulting in a potentially successful imper-
sonation attempt.

In general, inter-user variability must be maximized in order
to correctly distinguish between legitimate users and intruders.

C. Feature Extraction

The extraction of LCs (feature) from the HLM data is
required in order to create mobility sequences. A mobility
sequence is defined as a sequence of LCs. The selection of
the appropriate sequence length is also addressed in Section
3.

The feature extraction process concatenates the first set
(e.g. ten) of chronologically-based LCs into a single sequence.
Furthermore, each subsequent sequence is created by using the
LCs at thei+1 to j+1 indexes of the HLM data stream, where
i (LC1) and j (LC10) represent the first and last LC of the
first sequence. Hence, a sequence of ten location coordinates is
obtained by shiftingi andj by one, as suggested by Lane and
Brodlay [16]. The purpose of using an overlapping window
(shifted by one) is to accommodate different sequences that
begin with different LCs. In other words, it permits each
location coordinate to become a starting point of a sequence.

This process is repeated until all the LCs in the data
stream have been exhausted. The resulting set of sequences,
henceforth referred to as original sequences, serves as input
to the profile definition and classification phases.

The use of LCs only in the current feature set is intentional
and supports our objective of determining the maximum
success rate possible. Additional features, such as timeframe,
will be investigated in the future for maximizing theinter-user
variability.

D. Profile Definition

Once the mobility sequences have been obtained, the next
step is to create the UMPs. A detailed description of each
component in the UMP ensues.

Identifier represents the unique identification of the user,
which has been issued by Industry Canada. It is transmitted
with all LBs. Training Patterns characterize the mobility
behaviour of a user. Due to factors, such as traffic and
weather, a mobility sequence of a user may deviate from the
norm. This deviation is referred to as noise, which must be
minimized. The termwindow sizerefers to the number of
mobility sequences to be used for obtaining the average or
noise-suppressed NSMP value. In addition to the reduction of
noise, the size of the window also influences the length of time,
corresponding to the number of location coordinates, required
before a detection verdict can be rendered. While the window
size is identical for all users (in this iteration), it is feasible that
this value can be customized to reflect the level of noise within
the mobility patterns of a given user. One possible strategy
for identifying the level of noise or intra-user variability is
to determine the number and frequency of unique location
sequences in the training data. Whereas a small number of
unique sequences with high frequencies supports the notion of
consistent behaviour, the reverse exemplifies a more chaotic
behaviour. Whether or not these mobility sequences reflect
normal behaviour is based on theminimum and maximum
thresholds. If the NSMP value falls within the thresholds,
it is considered normal, otherwise, a potential intrusion is
suspected. The values of the thresholds are determined by
obtaining a distribution of the NSMP values, between the
training patterns and parameter sequences (5th partition of
the data set), and by applying the desired false alarm rate
(application-dependent) to the distribution.

E. Classification

The final step, in anomaly-based detection, is the classifi-
cation of an observed behaviour as normal or anomalous.

As stated earlier, during the classification phase, an observed
set of mobility sequences of a user is compared to his/her
profile, which contains a set of training patterns. For each
mobility sequence being compared to the training patterns,
the maximum similarity value (discussed in the sequel) is
obtained. If the average of these values falls within the pre-
established thresholds, then the user is considered legitimate,
otherwise a flag is raised. The following subsection provides
a brief overview of the key concepts defined in IBL. Readers
are encouraged to consult the paper by Lane and Brodlay [16]
for a more detailed discussion of the IBL framework.

The IBL framework requires the application of key
concepts, which are enumerated in Table I.

Similarity Measure
As you may recall, a mobility sequence is composed of

a chronologically ordered sequence of LCs and that these
sequences are used for training, establishment of parameters
and test/simulation (final partition of the data set) purposes.



TABLE I

KEY CONCEPTS ASSOCIATED WITHIBL CLASSIFICATION

Concepts Description

Similarity Measure (SM) Similarity between a test
and a training pattern

Similarity Measure to Profile SM between a test and all
(SMP ) training patterns
Noise Suppression Mean SMP for 10 consecutive

test sequences
Decision Rule Classification of test sequence as

normal or anomalous

Therefore, thesimilarity of two sequencesX (from the set
of test sequences) andY (from the set of training patterns) of
equal lengthl is defined as follows:

sim(X, Y ) =
l−1∑

i=0

w(X, Y, i)

with:

w(X,Y, i) =
{

0 if i < 0 or xi 6= yi

1 + w(X, Y, i− 1) if xi = yi

where i represents the index of the sequence of LCs. Thus
w(X, Y, i) equals zero if the LCs of theX andY sequences
at index i are not identical. Otherwise, a value of one is
added to the outcome ofw(X, Y, i) at i− 1.

Similarity Measure to Profile
As aforementioned, a user profileD contains user-related

information, which includes a set of training patterns. Whereas
the SM is determined based on a one to one comparison of
the LCs of a test sequence and training pattern, the SMP is
calculated by performing a one to many comparison of an
observed test sequenceX with all the training patterns in a
profile D. It is defined as:

simD(X) = maxY ∈Dsim(Y, X).

The maximum value ofsimD(X) is:

l∑

i=1

i =
l(l + 1)

2
.

Thus, the SMP is the maximum of the SM values.

Noise Suppression
In the subsection on feature extraction, the notion of using

each LC (from a long stream of coordinates) as a starting
point i of a sequence of lengthl was introduced. This form of
segmentation results in a set of sequences (original sequences),
whereby a sequence, starting at location coordinatei, is called
the i-th sequence.

As with all chaotic systems, noise is inherent and reflects
the deviation of a test sequence from the patterns stored
in the profile. A degree ofintra-user variability is to be
expected, since it is a function of many factors including traffic

conditions and weather. Nevertheless, noise can be suppressed,
to some extent, by calculating the average SMP of a set ofW
test sequences, whereW represents the size of the window.
Thus, the average SMP over a window of lengthW ending at
position i is defined as:

vD(i) =
1
W

i∑

j=i−W+1

simD(j).

The termvD(i) is referred to as thenoise-suppressed SMP
(NSMP) value.

Decision Rule
Whether or not a given set of test sequences exhibit

normal mobility behaviour can be determined by comparing
the resulting NSMP value to the pre-established minimum
tmin and maximumtmax thresholds. Whiletmin is used to
detect sequences, which have low NSMP values,tmax proves
beneficial in detecting sequences that have unusually high
similarity to the profiled behaviour, perhaps an indication of
a replay attack.

The calculation oftmin and tmax, for each user, is carried
out by applying an acceptable false alarm rater (application-
specific) to a normalized probability distribution (NPD) of
NSMP values. Thus,tmin and tmax are dependent onr and
NPD.

The parameterr dictates the width of the acceptance region
(between tmin and tmax) on the NSMP axis, see??. It
represents a trade-off between false alarm and detection error
rates. Hence, a smaller value ofr corresponds to a wider
acceptance range. As a result, the rate of false alarms is
decreased. However, the increased acceptance region also
causes the detection error rate to increase.

As far as the NPD is concerned, it is obtained by using the
parameter sequences and the training patterns, obtaining a dis-
tribution/histogram of NSMP (in the range of0, . . . , l(l+1)/2)
and normalizing this distribution based on the probability of
each NSMP value.

Finally, tmax and tmin are established usingr/2 quantiles
(upper and lower) of the NPD, as proposed by Lane and
Brodlay [16]. The number of sequences and the actual se-
quences (training vs parameter) used for the calculation of
NPD are important factors to be considered. As far as the
number of sequences are concerned, it is dependent on the
variability of the original LCs and the level of HLM used to
minimize this variability. Using a high level of HLM (coarse
granularity) results in location coordinates being more similar,
and thus, reduces the number of sequences in the training set.
The number of sequences to be used in the parameter set is
not as significant so long as they reflect the mobility behaviour
of the user.

As to which sequences, from the initial set of sequences,
should be used for training, parameter and test data represents
a more challenging problem. One option, which has been
implemented in this iteration, is to divide the initial set of
sequences into partitions of4/1/1 with the first 4/6 of the
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sequences (with respect to time) being allocated to the training
data, followed by1/6 to parameter and the last1/6 to test
data. By allocating the first and the largest set of sequences
to training, the probability of accurately characterizing the
mobility behaviour of a user is increased. This is, of course,
based on the assumption that the mobility patterns of a user
is typically established within a given timeframe. The shape
of the NPD reflects the accuracy with which the mobility
behaviour of a user has been characterized. Regardless of
the strategy being used, it is clear that the profile of users,
which includes the set of training patterns, must be updated
on a continual basis. Moreover, a replacement strategy, which
favors the most recent patterns, should be employed in order
to limit the storage space and to maintain an acceptable level
of performance (currently being investigated).

Fig. 2 illustrates the application ofr = 0.05 to the NPD of
user 19, who was selected at random. In this figure, the x-axis
represents the spectrum(0, . . . , l(l + 1)/2) of the similarity
values that are possible for a sequence of LCs of length
10. Please note that the actual values are in the range of
(1, . . . , l(l + 1)/2) + 1 for improved graphical representation.
The y-axis represents the probability of each NSMP value in
the normalized probability distribution. Both the minimum and
the maximum thresholds are indicated using vertical lines.
What is illustrated in the figure is the width of the accep-
tance region (from the minimum threshold to the maximum
threshold), which is a function of the NPD and the false alarm
rate r. The narrow acceptance region, located at the higher
end of the spectrum, is a desirable property. In particular,
the location of the minimum and maximum thresholds at
NSMP values of 38 and 56 respectively, reflects the accuracy
of mobility characterization. As a result, the true detect rate
should increase while the detection error rate should decrease
correspondingly.

III. E MPIRICAL ANALYSIS OF SYSTEM PARAMETERS

In the previous sections on HLM and feature extraction, we
had indicated that the two key parameters, namely the cluster
size or PL and sequence length, are of significance and that an
appropriate value had to be selected. The PL, used in HLM,
determines the degree to which the intra-user variability is
being minimized in order to reduce the number of false alarms.
On the other hand, sequence length not only specifies the
number of LCs in a mobility sequence, but more importantly,
the maximum similarity value attainable for a given length.

Aside from stating the obvious, our first objective is to deter-
mine the impact of these parameters on the characterization of
users (distribution of the NSMP values) and detection errors or
intrusions (successful impersonation attempts against a user).
We address the impact of these parameters on false alarm and
detection rates in the section on simulation.

Given that the mobility behavior of the 50 users does differ
to some extent, and that this variability is likely to influence
the analysis of both parameters, we have categorized these
users based on the precision with which the training patterns
are being followed (repetitions). The three classes are defined
as follows. Whereas class one represents users with the highest
level of similarity (consistent behaviour), class two and three
are associated with those with progressively lower levels of
similarity (chaotic behaviour). Due to space constraints, we
focus on the results obtained for user 19 (class 1 with 40% of
users) as they illustrate the expected behaviour, associated with
proper characterization. Nevertheless, we briefly comment on
results (figures not shown) obtained for user 23 (class 2 with
56%) and user 41 (class 3 with 4%).

A. Sequence Length

Fig. 3 illustrates the use of three different lengths (5,10,15)
for sequences and the impact on the characterization of user
19. Values of NSMP, which are located at the lower-end of
the SM spectrum are vulnerable to the choice ofr. Sincer
dictates the width of the acceptance region, in particular the
minimum threshold, all values of NSMP that are less than the
threshold are treated as false alarms.

Other static parameters used include the window size of 100,
cluster size with the precision level of one (only the integer
portion of the LCs were used), and minimum threshold of two.
The maximum threshold, however, was based on the sequence
length being used.

In Fig. 3, the x-axis represents the range or spectrum of
similarity values for a given sequence length. However, since
the results, associated with each length, have been incorporated
into one plot, the range of the x-axis is actually from 1-121.
In other words, results obtained for length of five are localized
towards the lower end of the similarity value spectrum. NSMP
values, which have been normalized, are indicated by the y-
axis.

What is being illustrated is as follows: as the sequence
length is increased, the percentage of NSMP values, located at
the higher-end of the SM spectrum starts to decrease. In this
case, the NSMP values are located precisely at 15, 55 and 120
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on the x-axis. Furthermore, as the percentage of these values
decreases, they are distributed towards the lower end of the
spectrum. This behaviour is logical since the probability of
achieving a high NSMP value decreases as the sequence length
is increased. Therefore, should the NPD of a user be localized
at the higher end of the spectrum, selecting a larger sequence
length would be not be advisable since it shifts the NPD further
towards the left. However, if the NPD is located at the lower
end of the spectrum (user 41), it is advantageous to use a
larger sequence length, since this results in the NPD being
shifted towards the higher end of the spectrum. On the other
hand, when the NPD is distributed between the lowest and
highest similarity values (user 23), a larger sequence length is
also desirable for shifting the NPD towards the center of the
spectrum.

We continue our analysis of the impact of sequence length
on the distribution of intrusions (detection errors). All pa-
rameters, which were used in the previous test, remain the
same, with the exception that the NSMP values of potential
intrusions, are calculated using the training data of user 19
and test data from the remaining 49 users.

Fig. 4 depicts the distribution of intrusions associated with
each of the three sequence lengths used. It is important to note
that we have emphasized the range of SM values between
1-16, since most of the intrusions are located in this range.
The original x-axis does cover the range of 1-121. This
figure demonstrates the fact that, as the sequence length is
increased, the distribution shifts towards the higher end of
the SM spectrum. This behaviour is justified since there is
a higher probability of achieving a high NSMP value when
the sequence length is longer. In terms of users 23 and 41, the
key difference is the magnitude of the distribution. Due to the
more chaotic behaviour, the magnitude is higher for user 23
and even more so for user 41.

The last detail to note is the number of intrusions at location
16 on the x-axis. It is an indication that one or more of the 49
users have mobility patterns that are identical (based on the
HLM being used) to user 19. In fact, most of these intrusions
are caused by user 13. Varying the cluster size to increase the
granularity of the LCs, discussed next, addresses this problem.

B. Precision Level

We proceed with the analysis of the PL and its impact on the
characterization of users and number of potential intrusions.
Given that our focus is to minimize the number of intrusions
first and then address the problem of characterization, we have
used a sequence length of 5.

Fig. 5 indicates that the distribution of NSMP, associated
with a given precision, shifts towards the lower end of the
spectrum as the PL or granularity is increased, e.g. from
PL2 to PL3. This behavior is consistent with all three classes
of users. Therefore, a lower PL (larger cluster size) can be
used for HLM in order to improve characterization. Using a
lower PL decreases the distance between similar LCs. Thus,
the probability of a match between a training pattern and a
parameter sequence is higher, resulting in higher NSMP value.

Although the use of a smaller PL is desirable for charac-
terization purposes, it becomes problematic where intrusions
are concerned, see Fig. 6. What is evident, in this figure and
applicable to all classes of users, is that the distribution shifts
towards the lower end of the spectrum as the PL is increased
(smaller cluster size). Moreover, the intrusions at SM value of
15 are eliminated. This should not come as a surprise since
increasing the PL also increases the distance between two LCs.
As a result, the probability of obtaining a high NSMP value is
reduced, as indicated by the distribution of intrusions for PL3.
Thus the use of a smaller PL would result in an increase in the
detection error (intrusion) rate and a corresponding decrease
in the detection rate.

In summary, the selection of values for both the sequence
length and cluster size is a challenging task since all of the
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possible values produce results that are negatively correlated.

IV. SIMULATION

The primary objective of the simulation exercise was to
determine the impact of PL on the false alarm and detection
rates (metrics). We relaxed the use of various sequence lengths
for the time being, given that a smaller sequence length is
preferable for for improving the detection rate. We were also
interested in the correlation between the quality of characteri-
zation, attainable using IBL, and the resulting false alarm and
detection rates.

A. Simulation Infrastructure

Details of the simulation infrastructure are as follows. The
acquisition of the LBs was carried out using the Automatic
Position Reporting System (APRS) and appropriate hardware

(e.g. receiver and antenna). The APRS is an internet-based
system (open-source) that tracks objects and users using
amateur radio.

It has been specified by Markoulidakis in [17] (follow-up on
the UMTS RACE specification) that nearly 50% of all mobile
users use public transportation, e.g. bus, and that they can be
characterized. Furthermore, this statistic has been confirmed to
some extent by Wu in [18]. Hence, we targeted users who took
the bus in the area of Los Angeles. This city was selected due
to the high density of APRS users. Finally, the top 50 users
(those who had transmitted the highest number of LBs) were
selected to participate in the simulation.

The captured LBs (approx. 2 million) were transferred from
the APRS to a MySQL database for further processing. All
subsequent analysis and simulation were carried out using
Matlab software.

B. Details of Simulation

The simulation exercise was carried out for each of the
50 profiled users in the IDS. In order to determine the
percentage of false alarms, a comparison or classification was
made between the sequences in the test data of user A and
his/her training patterns. The resulting NSMP values, which
were outside the minimum and maximum thresholds (r=0.05),
were considered false alarms (FAs). As with the FAs, the
percentage of true detect (TD) (detection) was obtained by
comparing the test sequences of the remaining 49 users to
the training patterns of user A. The resulting NSMP values,
which fell outside the thresholds (r=0.05), were considered
TDs. Statistics, corresponding to the metrics, were obtained
for all profiled users.

C. Simulation Results

We limit the discussion and focus on the results obtained
for the representatives of each class, namely users 19, 23
and 41. Although an attempt was made to generalize the
results for each class, the end result did not fully highlight
the nuances found within each class.

False Alarm and Detection Rates
Fig. 7 illustrates the percentage of FAs and TDs correspond-

ing to the three PLs.
We begin with the discussion of user 19 (class 1) and

observe that there are no FAs for all three PLs. This is due
to the fact that the three minimum thresholds of (16,5,2)
associated with PLs 1,2, and 3, see Fig. 5, are all greater
than the value of one. This is an indication that the mobility
sequences in the test data are similar to those in the parameter
data, which had been used to establish the thresholds. In terms
of TDs, the percentage of TDs decreases as the PL is increased.
Further scrutiny reveals that this behaviour is appropriate in
light of the fact that the distribution of NSMP values shifts to
the lower end of the SM spectrum, see Fig. 5. Therefore, as
the minimum thresholds shift towards the lower end of the SM
spectrum, the probability of intrusions, within the acceptance



range, is higher. This results in an increase in the detection
error rate and a corresponding decrease in the TD rate.

The characterization of user 23 (class 2), on the other hand,
is not as optimal. In fact, the NSMP values are distributed
between the SM values of 1 and 16 (figure not shown) for
the PL of one. The wide acceptance region and the fact that
the minimum threshold has a value of one (actual value is
zero) reflects the absence of sequences (parameter data) in the
training data. Although the test sequences may or may not
be similar to those in the parameter data, all of them have
fallen within the thresholds, resulting in zero FAs. These two
factors (wide region and value of minimum threshold) have
also permitted all intrusions to take place resulting in a TD
rate of zero. As the precision level is increased to PL2 and
the maximum threshold becomes equivalent to the minimum
threshold, it becomes more evident that the test sequences are
dissimilar to those in the parameter data, but are nevertheless
similar, to some degree, to those in the training patterns. As a
result, the FA rate becomes 100%. The corresponding TD rate
at PL2 also increases due to the fact that the intrusions, which
fell outside the minimum and maximum threshold of one, are
now being detected at this level. Finally, as the PL is increased
to three, the number of FAs decreases as a result of the increase
in intra-user variability between the test sequences and the
training patterns. As expected, the TD rate also decreases as
the PL is increased. Simply stated, the increase in the inter-
user variability has caused fewer intrusions (being considered
detections) to take place.

Results for user 41 (class 3) are very interesting, although
somewhat misleading. We observe that, as with user 19,
there are zero FAs for all three PLs. However, unlike user
19, the minimum and maximum thresholds of one and
four respectively, for all precision levels, has permitted all
test sequences to fall within the narrow acceptance region.
Similarly, the minimum threshold of one has also permitted
all intrusions to take place, even when the test sequences of
all other users are dissimilar to the training patterns of user 41.

Enhanced Characterization
What is clearly evident, from the previous simulation exer-

cise, is the need to shift the minimum threshold towards the
higher end of the spectrum, such that it is greater than one.
One simple strategy is to add the mobility sequences in the
parameter data, which have a similarity value of one, to those
in the training data. This strategy reduces the width of the
acceptance region and shifts the NPD, especially the minimum
threshold, towards the higher-end of the spectrum.

Fig. 8 demonstrates the application of this strategy and the
resulting impact on the FA and TD rates. With user 19 (class
1), the FAs remain the same whereas the TD rates (for all PLs)
are increased, as expected. Moreover, the largest increase of
19% is associated with PL3, a desirable outcome. As far as
user 23 (class 2) is concerned, the three TD rates, associated
with PL1,PL2 and PL3 are increased by 20%, 33% and 233%
respectively. However, the FAs for PL3 is also increased due
to the dissimilarity of some of the test sequences to those
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Fig. 7. False alarms and detections for different precision levels
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Fig. 8. False alarms and detections using enhanced characterization

in the parameter set. Finally, the results for user 41 (class
3) exemplify the effectiveness of this strategy. Although a
5% increase in the FAs (at PL1) has been incurred, there
is, nevertheless, a significant improvement in the TDs (85%,
100%, 100%), associated with the three PLs.

V. RELATED WORK

The use of user mobility profiles for ABID in mobile net-
works has not been researched extensively. However, research
initiatives, which have been undertaken by researches include
Buschkes, Kesdogan, and Reichl [19], Samfat and Molva [20]
and Sun and Yu [21]. The work conducted by Buschkes
makes use of sequences of cells traversed by users as a
feature of the profile. Intrusion detection of users, using cloned
phones, is carried out by analyzing major deviations from the
route. Similarly, the behaviour of users is modeled based on
the telephony activity and migration patterns by Samfat and



Molva. The implementation of multi-level intrusion detection,
at the visitor location and using multiple profiles, differentiates
their work from the others. Finally, the most recent work by
Sun and Yu also makes use of sequences of cells as a feature.
However, the characterization is accomplished via a high order
Markov model [22]. Furthermore, the sequences, which are
stored in a mobility trie (an acceptable solution given that the
size of the alphabet is small) is updated using the technique
of Exponentially Weighted Moving Average.

Of course, user mobility profiles have also been used to ad-
dress the inefficiencies of location-area based update schemes.
Details can be found in the work by Wong [23] and Ma [24].
Finally, the use of profile-based protocols for enhanced routing
in wireless Mobile Ad Hoc Networks is addressed by Wu in
[18].

VI. CONCLUSIONS ANDFUTURE RESEARCHINITIATIVES

Based on simulation results, it is feasible to use mobility
profiles for enhancing ABID in mobile wireless networks,
so long as the mobility behaviour of users has been accu-
rately characterized. One simply strategy, which enhances the
characterization of users and increases the detection rate at a
minimal cost (low percentage of FAs), is to incorporate the
missing sequences, from the parameter set into the training
set. Furthermore, the issue of concept drift (accommodating
variability in mobility behavior over time) can also be ad-
dressed by continuously monitoring the false alarm rate and
selectively incorporating newly observed mobility sequences
into the training set, using a window that is shifted in time
(analogous to exponentially weighted moving average). The
selection criteria can be based on pre-established thresholds,
such as the frequency of sequences encountered.

Once the characterization of users has been adequately
addressed, the selection of specific values for sequence length
and precision level should be based on the level of intra-
user variability, which can be specified in the user’s profile.
Categorizing users into different classes, based on the level of
variability, represents an alternate strategy.

Finally, the use of the IBL classification technique, within
the framework, is suitable since the definition of the similarity
measure is comparable to that of the euclidian distance. Sup-
plemented by the high level mapping exercise, which reduces
the intra-user variability between mobility sequences and
training patterns, this technique performs well, as indicated
by the false alarm and detection rates obtained for all three
classes of users.

As far as future research initiatives are concerned, the fol-
lowing issues will be explored in the near future: user privacy;
concept drift; the expansion of the feature set, to include
timeframe and other relevant features, for improving detection
rate; a comprehensive analysis of the system performance for
comparison purposes; and the allocation of different parameter
values to users based on their mobility behaviour.
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