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Abstract

In this paper we present lower bounds for compact routing schemes.
We give (1) networks on n vertices which for any interval routing
scheme, Q(n) routers of the network require (n) intervals on some
out-going link and (2) for each d > 3, networks of maximal degree
d which for any interval routing scheme, Q(n) routers each require
Q(n/logn) intervals on some out-going link. Our results give the best
known worst-case lower bounds for interval routing. For the case of
universal routing schemes we give (3) networks on n vertices which for
any near optimal routing scheme with stretch factor < 2 a total of
Q(n?) memory bits are required, and (4) for each d > 3, networks of
maximal degree d for which any optimal (resp., near optimal) routing
scheme (resp., with stretch factor < 2) requires a total of Q(n?/logn)
(resp. Q(n?/log?n)) memory bits.
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1 Introduction

One of the most important measures of complexity of a routing scheme is
the size of the routing information that must be stored locally and globally
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in the network. In general, in a universal routing scheme we are intersested
in the number of bits stored, while in an interval routing scheme we are
interested in the total number of intervals stored by the routers.

1.1 Interval routing model

In an interval labeling scheme of an n vertex network, node labels belong to
the set {1,2,...,n} and link labels are pairs of node labels representing dis-
joint intervals (possibly) with wrap-around. Such a scheme represents only
one shortest path from the router to any node in the interval. Interval rout-
ing has been very successful in reducing the space requirements for routing
in many standard networks, like rings, tori, hypercubes, ete. [14, 15, 11],
as well as outerplanar [6], etc. In general, it is easy to see that an interval
routing scheme can be implemented on any n vertex network with at most
O(n) intervals per router, hence a total of O(n?) intervals.

There have been several papers studying interval routing, e.g., [14, 15,
11, 6, 9, 10]. Kranakis, Krizanc and Ravi [11] considered lower bounds on
the number of intervals needed per router and gave networks that have a
router requiring Q(n'/?) intervals at some link. Gavoille and Guévremont
[10] proved an ©(n) lower bound for a single router on a degree ©(n) graph.
Flammini, van Leeuwen and Marchetti-Spaccamela [4] proved that for an
appropriately chosen class of (unbounded degree) graphs, with probabil-
ity exceeding 1 — o(1), a randomly chosen graph contains a router requir-

ing Q(nl_l/ log! /2 ") intervals. For bounded degree graphs, Gavoille and
Guévremont [9] show the existence of a degree 3 graph requiring Q(n/log?n)
interval at some router and and Braune [1] presents a degree 3 graph for
which a single router requires 2(n/logn) intervals.

In this paper we prove optimal worst-case lower bounds for interval rout-
ing. We prove the existence of graphs satisfying the following conditions:

# Intervals | # Routers | # edges | Degree
& (n) & (n) O(n®) | 6(n)
o) | em o) |d>3

The first column represents a lower bound on the number of intervals re-
quired on a link of a router of the network and the second column is the
number of routers guaranteed to have this property. The fourth column is
the maximal degree of the network.



1.2 Universal routing model

The routing model we use for our lower bounds is the model of Peleg and
Upfal [13]. A routing function RF is a triple (I, H, P) consisting of an
matialization, header, and port functions, respectively. For any two distinct
vertices u, v, RF produces a walk ug := u,uq,...,u; := v of vertices and a
sequence hg, hq, ...,y := v of headers such that hg = I(u,v), P(ug, hi) =
0, and for all ¢ < k, H(us, hi) = hiy1, P(ui, hy) = (wi,ui41). A routing
scheme is a distributed algorithm that computes a routing function for a
given network; it is called near optimal with stretch factor s if the length of
each of the walks it generates is at most s times the optimal length path.
As in [13] the total memory requirement of a routing scheme is the number
of memory bits required to store the functions I, H, and P, as well as the
names given to the nodes of the network.

The hierarchical routing schemes of Peleg and Upfal [13] require storing
a total of O(n1+%) bits of routing information, for near-optimal routing
schemes with strech factor O(s), where s > 1 is fixed. In the same paper
they also give an Q(n'*T'/(25+4)) lower bound for such near optimal routing
schemes. For planar networks, Frederickson and Janardan [7, 8] give near
optimal routing schemes with stretch factor < 7 such that for all ¢ < 1/3
the total memory requirement of the network is O(n'**logn/€) bits and the
processor names are O(logn/e) bits long. For Kolmogorov random graphs,
Buhrman, Hoepman and Vitanyi [2] show how to do near optimal routing
with stretch factor 2 with a total of O(nlogn) memory bits for storing
processor names plus O(nloglogn) for storing routing information.

Fraigniaud and Gavoille in a recent paper [5] proved an Q(n?) lower
bound for near optimal universal routing schemes with stretch factor < 2
for a O(n) degree graph. As a result of our method we give a new simpler
proof of this result using Kolmogorov complexity. We also extend this to
near optimal universal routing schemes with stretch factor < 2, for bounded
degree graphs.

For near optimal routing, we prove the existence of graphs satisfying the
following conditions:



# Bits # Edges | Stretch | Degree
Q(n?) O(n?) 5<2 O(n)
n2 n
Q (1og2n) o(n) s<2 | 0()
(lgjg;) O(n) |s=1 |d>3
Q (107;2n) O(n) s<2 | d>3

The first column represents a lower bound on the total memory requirements
of the network, represented by the number of bits and the fourth column is
the maximal degree of the network.

1.3 Outline of the paper

In section 2 we give the lemmas from Kolmogorov complexity that will
be necessary for the remaining sections and also remind the reader of the
technique of matrix of constraints (introduced by [4, 5]) which is crucial for
the lower bounds we obtain. In section 3 we define the network and give
lower bounds for near optimal and interval routing schemes. In section 4 we
construct networks with bounded degree.

2 Preliminaries

2.1 Kolmogorov Complexity

In this section we apply the technique of Kolmogorov complexity to prove
two lemmas that will be used in the sequel for the study of interval routing.
Consider a Kolmogorov random string M consisting of n? bits, i.e.

K(M) =2*+ O(logn). (1)

In the sequel it will be convenient to think of M as an n X n matrix M =
(m; ;); this will enable us to refer to rows and columns of M in the obvious
way.

LEMMA 1 For any permutation of the rows (respectively, columns) of the
matric M the resulting matriz has $(n) columns (respectively, rows) each
of which has Kolmogorov complexity §(n).

ProOF By assumption K(M) = n? + O(logn). Let M = [my,...,m,]
denote the successive rows of the matrix listed from top to bottom. For a
permutation 7 let M™ = [mr(l), .. .,mr(n)]. Since we can encode M from
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the permutation 7 and the permuted matrix M™ it follows that K(M7™) >
n? — nlogn + O(logn). Let K; denote the Kolmogorov complexity of the
jth column of the matrix M™. Since the matrix M™ can be reconstructed
from a description of its columns, it follows that

K; > K(M™) — nlogn € Q(n?).
—

J

Let ¢ be a constant such that 377 K; > cn? and let J be the set of indices
j such that K; > en/2. We have that

ZKJ +en?/2 > ZKJ + | Jen/2 >

JjeJ JjeJ
i3 i3
UK YK > ent,
Jjed JI¢J

It follows that .
171> K; > cn?/2.
jed
This last inequality implies that K, = ¢n/2, for at least ¢n/2 columns j.
This proves the lemma. m

LEMMA 2 For any permutation of the rows (respectively, columns) of the
matric M the resulting matriz has $(n) columns (respectively, rows) each
of which has Q(n) occurrences of the block 01.

ProoF By Lemma 1 there exist €(n) columns (respectively, rows) each
of which has Kolmogorov complexity (n). By [12][Theorem 2.15, page
131] the number of occurrences of the block 01 in these columns is at least
Q(n) — O(y/n) € Q(n). This completes the proof of the lemma. m

The results extend to arbitrary px ¢ matrices such that p, ¢ € Q(log(pq)).
Let P = (p;;) be a Kolmogorov random p X ¢ matrix satisfying K(P) =

pq + O(log(pq)).

LEMMA 38 For any permutation of the rows (respectively, columns) of the
matriz P the resulting matriz has Q(q) columns (respectively, rows) each of

which has Kolmogorov complexity Q(p), and hence also Q(p) occurrences of
the block 01. =



2.2 Matrices of Constraints

Our lower bound technique is based on the matrix of s-constraints of a graph
G developed by [4] and extended by [5]. A matrix of s-constraints for G is
a p X ¢ boolean matrix P = (p;;) whose rows are labeled with a subset
V1,2, ...,V, of the set of vertices and its columns by a subset ej,e3,...,¢,
of the set of edges such that

e p,; = 1 & “every near optimal shortest path with stretch factor s
from the tail of e; to v; uses arc e;”, and

e p;,; = 0 & “no near optimal shortest path with stretch factor s from
the tail of e; to v; uses arc e;”.

A matrix of constraints is the special case of a matrix of s-constraints,
when s = 1. Let R(P,e;) be the number of occurrences of blocks of 01 in
the column e; of P. Then the following result is proved in [4].

LemMmA 4 If P is a matriz of constraints of the graph G then for any in-
terval routing scheme the number of intervals required by the router on the
tail of edge e; is at least min, R(P7,e;), the minimum taken over all row
permutations of P. m

We can use the matrix of s-constraints to obtain lower bounds for near
optimal routing schemes with stretch factor s. Let P = (p;;) be a Kol-
mogorov random p X ¢ matrix satisfying K(P) = pg + O(log(pq)), where
P, q € (log(pq)). We can prove the following result.

LemMA 5 If P is a Kolmogorov random p X q matriz of s-constraints of the
graph G then the total number of memory bits required by all the routers is
bounded below by (pq).

Proor (OUTLINE) Recall the definition of a routing schemes memory re-
quirements includes the processor names in the the memory. Hence, we can
assume without loss of generality that the sum of the number of bits used by
all the processor names of the nodes {vy, vy, ..., v,} and the tails of the links
{e1,€3,...,e,} 18 O(pg). (If that were not true the result would be obvious.)
Assume on the contrary that we have a near optimal routing function with
stretch factor s, say RF, whose total memory bits required is O(pg). Then it
is easy to see that we can use the routing information supplied by the routing
function RF on the tails of the vertices ey, e,..., e, with destination the



Figure 1: The (¢, 7)th component of the network Gjy.

vertices vy, vy, ..., vy, in order to reconstruct the matrix P of s-constraints.
The extra overhead used is bounded from above by

P q

Z |name(v;)| + Z |name(tail(e;))|.

=1 7=1

This contradicts the fact that the matrix P is incompressible. We note that
the constants involved in the previous arguments are easily seen to depend
only on the definition of incompressibility [12]. =

3 Unbounded Degree Networks

In this section we give the lower bound proofs for near optimal and interval
routing. We construct the network and subsequently prove the lower bounds
for interval routing and near optimal routing.

Let M = (m; ;) be a Kolmogorov random n X n matrix satisfying (1).
The network we construct, denoted by Gjy, is based on the construction
of Fraigniaud and Gavoille [5] (depicted in Figure 1) and consists of the
following:

1. A collection of 4n vertices consisting of

e an independent set wy,us, ..., Uy,

o aseta},ad},...,ab, where b= 0,1, and



e aset by,by,....0,.

A collection of n copies of a three vertex chain Lg; the jth copy con-
sists of the vertices a?,bj,a} and the edges {a?,bj},ej = (bj,a}),
Jj =1,2,...,n (note we assume that the edge e; = (b;, a}) is directed).

2. Foreach7,5=1,2,...,nand b= 0,1,

{ui,a?} is an edge & m,;; =b.

Clearly, the network Gjs has 4n vertices and ©(n?) edges.
THEOREM 6 Gy is a connected network of diameter 4.

Proor (OUuTLINE) Our proof uses the randomness of the matrix M in an
essential manner. It is easy to see that the result follows from the following
claim.

Claim: For any a,b there exists a ¢ such that m, . = my . and m., = mep.
ProoF of Claim. We prove the first part of the claim. The second part is
similar. Let a,b be given indices. Assume on the contrary that for all ¢,
Mg, # Mp . This means we can reconstruct the ath row of the matrix from
its bth row. Hence, we can encode the matrix M as follows:

e the 2logn bits representing the indices a,b, and
e the matrix M minus its ath row.

The number of bits in the above description is at most n? — n + O(logn),
contradicting the incompressibility of the matrix M. m
3.1 Interval routing

In the sequel we prove a lower bound on interval routing schemes.*

THEOREM T In the n vertex network Gy, for every interval routing scheme
there exist Q(n) routers each requiring at least Q(n) intervals in at least one
of its links.

*A simpler graph would be sufficient for the case of interval routing. For example, we
could replace the length 3 chain in Figure 1 with the directed edge (a?,a;). The lower
bound proof is the same. We chose the same graph as for the case of universal near optimal

routing in order to shorten the overall proof.



ProoOF We use the idea of matrix of constraints from subsection 2.2. The
main theorem follows from Lemmas 2 and 4 and the Lemma below.

LeMMA 8 M is a matriz of constraints for the graph Gas.

ProoOF Lemma 10 implies that M is a matrix of s-constraints for the graph
Gz, and hence it is also a matrix of constraints for the same graph. This
completes the proof of the Lemma and hence also of the theorem. =

3.2 Near optimal routing

The same network can also be used for near optimal routing. We have a
simpler proof of the following theorem, first proved in [5].

THEOREM 9 In then vertex network Gy, every near optimal routing scheme
with stretch factor < 2 requires a total of Q(n?) memory bits.

ProOF The main theorem follows easily from Lemma 5 and the Lemma
below which was first proved by Fraigniaud and Gavoille [5].

LeMMA 10 M is a matriz of s-constraints for the graph Gyr, for any s < 2.

ProoF For the given network Gj; we consider the matrix whose rows are
indexed by the vertices uq,us,...,u, and columns are indexed by the di-
rected edges e; = (bj,a}), 7 =1,2,...,n. The lemma follows easily since
if a routing function uses link (b;, a}) either when it should not or it does
not when it should then the resulting walk must have length > 4. Since the
optimal path has length 2 the stretch factor of the resulting path will be
> 2. It follows that the universal routing scheme encodes the above matrix

M of constraints. m

4 Bounded Degree Networks

In this subsection we construct bounded degree networks with high routing
requirements. To illustrate our technique we first give an unbounded de-
gree variant of the network constructed in section 3. Later we extend our
construction to bounded degree networks. From now on and for the rest of
this paper we assume that P = (p; ;) is a Kolmogorov random p X ¢ matrix
satisfying

K(P) = pq + O(log(pq)). (2)

where p, g € Q(log(pq)).



bjk

Figure 2: The (%, j)th component of the network Gp.

The network we construct, denoted by Gpy, is depicted in Figure 2 and
consists of the following.

1. A collection of p 4+ 2¢ + kq vertices consisting of

e an independent set uq,ug, ..., %y,

° al{,ag,...,ag, where b = 0,1, and

® bjiybjas bk, 7 =1,2,.00,0.

2. A collection of ¢ copies of the following graph; the jth copy consists

of the vertices a?, a}, bj1,b52,...,b;; and the edges

{a’?v bj,l}? {(1,?, bj,?}v SRR {(1,?, bj,k}v
ejr 1= (bjroag),r = 1,2,k

(note that the last & edges above are assumed to be directed).
3. Foreach:=1,2,....,p,7=1,2,...,qand b = 0,1,
{ui,a?} is an edge & p;; = b.
Clearly, the network Gpy, has p + (k 4 2)q vertices, O((p + 2k)q) edges (this

follows from [12][Theorem 2.15, page 131], and maximum degree max{q, k +
p}. Like Theorem 6 we can prove the following result.
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THEOREM 11 Gpy, is a connected network of diameter 4. m
The main theorem is the following.

TaEOREM 12 Consider the network Gpy, which has p + (k 4 2)q vertices
and O((p + 2k)q) edges. Then for every near optimal routing scheme with
stretch factor s < 2 the total number of memory bits is bounded below by
Q(kpg).
Proor (OUuTLINE) Similar to the proofs of Theorems 7 and 9 using the fact
that P is a matrix of s-constraints for the graph Gpy, for any s < 2 and
k > 1. One need only observe that we can prove the lower bound for k
identical copies of routers. The constants in p, ¢ € ©(log(pq)) depend on the
definition of incompressibility [12]. =

If p=F%k = O(n/logn) and ¢ = O(logn) then we obtain a network
having maximum degree p = ©(n/logn), and O(n) edges which requires
Q(n?/logn) memory bits for any near optimal routing scheme with stretch
factor < 2.

4.1 Bounding the degree

Next we prove lower bound results for bounded degree networks. The basic
network (depicted in Figure 3), denoted by Gp[Gy,...,G,], is based on
the construction of Gavoille and Guévremont [9, 10] and is defined from a
Kolmogorov random p x ¢ matrix P = (p; ;) (satisfying (2)) and ¢ subgraphs
Gi,...,G,. The graph Gp[Gy,...,G,] consists of the following.

1. Vertices w; j, w ng fore=1,...,pand j=1,....q.

a
27]7
2. Vertices v1,vs, ..., v,. For each 7 vertex v; is the root of a tree T'(v;) of

degree < d with leaves the vertices w; ;, 7 = 1,...,¢. The trees T(v;)
are isomorphic and vertex and edge disjoint.

3. Each graph G has degree < d and two distinguished edges A; =
{a;,a;} and B; = {b;,b;}. Vertex a; (respectively, b;) is the root of
a tree T'(a;) (respectively, T'(b;)) of degree < d — 1 with leaves the
vertices wy ; (respectively, wfd«), 1 =1,...,p. The trees are isomorphic
and vertex and edge disjoint.

4. Tn addition’ we assume that

{wi7j,wf’j} is an edge & p;; =1,

"1t will be convenient to think of the vertices wm,wﬁ],wlﬂbd as lying on the (3, j)th

quadrant of a ¢ X p mesh determined by the ith row and jth column (see Figure 4).
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Figure 3: The network Gp[Gy,...,Gy).

{wi7j,wf7j} is an edge & p;; = 0.

In the sequel we define the graphs G; which are appropriate for proving
strong lower bounds for interval and near optimal routing.

4.2 Interval routing

The graph G is depicted in Figure 5. It consists of two isomorphic trees
each of degree < d — 1 rooted at the vertices @; and b;, respectively, and &
leaves each, say,

Lia;),la(a), ... le(a;), 1i(b;), la(b;), . . ., Le(D;).

Leaves are joined by the directed edges e; . := (I.(b;),l,(a;)), 7 =1,2,... k.
As with Theorems 6, 11 we can prove the following result.

THEOREM 13 Gp[Gy,...,G,] is a connected network of degree < d and
diameter O(logy_1 k +logy_1p+1logysq). m

It is easy to see that the matrix of constraints having v, ..., v, as row-
indices and the directed edges (I.(b;),l,(a;)),7 = 1,2,...,q, as column-
indices, for each fixed r < k, is identical to the matrix P. Thus we obtain &
copies of the matrix of constraints and we have the following theorem.

12
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Wi, 5

Figure 4: The links of the (7, j)th quadrant of the network Gp[Gy,...,G,]

connecting vertices wy; ;,

b .
Wy s W5

TueorEM 14 GplGy,...,G,] has O(pq+ kq) vertices and the same number
of edges, and maximal degree < d. Moreover, for every interval routing
scheme there exist }(kq) routers each requiring (p) intervals at some link.
[

In particular, if we choose p = k = ©(n/logn) and ¢ = ©(logn) then the
resulting network has O(n) vertices, the same number of edges, maximal
degree < d, and ©(n) routers each requiring (n/logn) intervals on some
link of each of these routers for every interval routing scheme.

4.3 Optimal universal routing

The network of subsection 4.2 can also be used to analyze universal routing
with stretch factor s = 1.

TurorEM 15 GplGy,...,G,] has O(pq+ kq) vertices and the same number
of edges, and mazimal degree < d. Then every optimal routing scheme
requires a total of at least Q(kpq) memory bits. m

In particular, if we choose p = k = ©(n/logn) and ¢ = ©(logn) then the
resulting network has O(n) vertices, the same number of edges, maximal
degree < d, and requires a total of at least Q(n?/logn) memory bits, for
any optimal routing scheme.
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Figure 5: The (%, j)th component of the graph G; used for the lower bounds
on interval routing.

4.4 Near optimal universal routing

The construction in this case is based on a modification of the graphs
GplGy,...,G,). We transform the trees T'(a;),T’(b;) by replacing each
of their leaves with a chain of length b.% Let T'(a;),T'(b;) be the resulting
trees.

The graph G is depicted in Figure 6. It consists of two isomorphic trees
of degree < d — 1 rooted at the vertices @; and b;, respectively, each having
k leaves, say, li(a;),la(a;), ..., lx(a;), Li(b;),la(b;), ..., lx(b;). We join the
leaves with chains C,; = C(l,(b;),l,(a;)),r = 1,2,...,k each of length
2b + 1. We denote the resulting network by Gp[G1,...,G,]. Let e; be the
middle edge of this chain.

Unlike the case of interval routing we use the matrix of s-constraints,
s < 2, in the following slightly extended form. It will follow from the
argument of Theorem 17 that for fixed » = 1,2,...,k, from the routing
information of all the processors in all the chains C. ;,7 =1,2,...,q we can
reconstruct the matrix P. Thus the total number of memory bits required
on all the processors of all these chains is at least Q(kpq).

As with Theorems 6, 11, 13 we can prove the following result.

THEOREM 16 Gp[Gy,...,G,] is a connected network of degree < d and
diameter 2b+ O(log;_4 k + log;_1 p +1og;q). =

1t will follow from the proof of Theorem 17 that the value of the parameter b can be
chosen to be O(log n).

14



-~ 2b+1

Figure 6: The graph G; used for the lower bounds on near optimal routing.

The main theorem is the following.

THEOREM 17 Gp[Gr,...,G,] has O(pq+kqb) vertices and the same number
of edges, and mazimal degree < d. Moreover, for every near optimal routing
scheme with stretch factor s < 2 the total number of memory bits required
by all the routers on all the chains C,;,r = 1,2,...,k,7 = 1,2,...,q 1s
bounded below by Q(kpq).

Proor (OUTLINE) Assume that RF is a routing function for near optimal
shortest paths with stretch factor s sufficiently close to 2, but s < 2. Con-
sider routing from the tail of e; to v;. Define ¢; = log;p,t2 = log,;q,t3 =
log,;_ k. Notice that the trees T'(a;), T'(b;) have height t3+b. Observe that
regardless of the value of p; ; the shortest path from the tail of e; to v; has
length

2b+4t1 + 1ty + t3 + O(1).

A routing function either uses link {w; ;, w? .} when it should use {w; ;, w?

@ 7j 7j

or vice versa.
Let L, ; and R, ; be the left- and right-most endpoints of the chain C, ;,
respectively. We reconstruct the matrix P of constraints from the given

routing function RF by showing that

o p,; =1 & “every walk with stretch factor s from the tail of e; to v;
must exit from vertex L, ;”, and

o p,; =0 & “every walk with stretch factor s from the tail of e; to v;
must exit from vertex R, ;”.

15



This follows from the argument below.
Case 1: Assume that p; ; = 1.
Now consider a walk from the tail of e; to v; that does not exit from L, ;.
We have two cases.
Subcase la: walk uses vertex a;. It is easy to see that the resulting path
will have length at least 4b + ¢1 + t2 + ¢35 + O(1).
Subcase 1b: walk uses vertex b;. As before, it is easy to see that the
resulting walk will have length at least 4b + t; + ¢3 + t3 + O(1).
Case 2: Assume that p; ; = 0.
Now consider a walk from the tail of e; to »; that does not exit from R, ;.
We have two cases.
Subcase 2a: walk uses vertex a;. It is easy to see that the resulting path
will have length at least 4b + ¢1 + t2 + ¢35 + O(1).
Subcase 2b: walk uses vertex b;. As before, it is easy to see that the
resulting path will have length at least 4b + t; + ¢3 + t3 + O(1).

Combining the above inequalities we see that the resulting stretch factor
is at least

4b+t1 +t2 + t3 + O(1)
2b+ 1t +1t2 4+ t3 + O(1)
Now choose b = ¢(t1 + t2 + t3) and we obtain that the ratio of the resulting
path over the optimal path has stretch at least %
from the fact that the above number is arbitrarily close to 2 as ¢ approaches
sufficiently close to oo. The theorem now follows from Lemma 5. =
In particular, if we choose p = ©(n/logn),k = ©(n/log?n) and ¢ = b =
O(logn) then the resulting network has maximal degree < d and (n/logn)
routers each requiring ©(n/logn) bits at some link on every near optimal

Now the theorem follows

routing scheme with stretch factor < 2.

Conclusion

The main contribution of the present paper is to obtain the best known
worst-case bounds on interval routing on bounded and unbounded degree
networks. Our technique was also used to obtain bounds on near optimal
routing. The Kolmogorov complexity analysis provided is generally applica-
ble in a straightforward manner to other networks by randomizing over an
appropriate subset of their edge-set. Fraigniaud and Gavoille in [5] also give
an optimal lower bound on local storage by constructing a network which
has a single router requiring (nlogn) memory bits, for any near optimal
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routing scheme with stretch factor < 2. Our Kolmogorov complexity anal-
ysis is also appplicable here. For any d € Q(logn),d < n we can show the
existence of graphs which have (n/d) routers each requiring ©(nlog d) bits
of local memory. However, the general problem on whether Q(n?logn) is a
lower bound on universal routing still remains open.
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