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ABSTRACT. We look at the problem of coloring locally specially constructed
spanners of unit disk graphs. First we present a local approximation algorithm
for the vertex coloring problem in Unit Disk Graphs (UDGs) which uses at
most four times as many colors as an optimal solution requires. Next we
look at the colorability of spanners of UDGs. In particular we present a local
algorithm for constructing a 4-colorable spanner of a unit disk graph. The
output consists of the spanner and the 4-coloring. The computed spanner also
has the properties that it is planar, the degree of a vertex in the spanner is
at most 5 and the angles between two edges are at least 7/3. By enlarging
the locality distance (i.e. the size of the neighborhood which a vertex has to
explore in order to compute its color) we can ensure the total weight of the
spanner to be arbitrarily close to the weight of a minimum spanning tree.
We prove that a local algorithm cannot compute a bipartite spanner of
a unit disk graph and therefore our algorithm needs at most one color more
than any local algorithm for the task requires. Moreover, we prove that there
is no local algorithm for 3-coloring UDGs or spanners of UDGs, even if the 3-
colorability of the graph (or the spanner respectively) is guaranteed in advance.

1. INTRODUCTION

Graph coloring problems have numerous applications in scheduling and channel
assignment problems. For example in channel assignment, they are modeled by a
graph in which two vertices are connected by an edge if the broadcasting units of
their respective nodes interfere and therefore have to be assigned different channels.
Since channels in the frequency band are limited and expensive resources the aim
is to minimize the total number of used frequencies.

In the case of ad hoc networks, where there is no global entity which could
assign channels (colors) to the nodes, we are interested in local algorithms. These
are algorithms where the color of a vertex v depends only on the vertices which are
a constant number of hops (edges) away from v. This ensures that messages do not
propagate uncontrollably far through the network. This concept of locality is also
advantageous in dynamically changing networks, since if only local changes occur
we do not have to recompute the entire solution, but only parts of it. Also in the
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event of a disaster recovery we can take advantage of the fact that we can recover
parts of the solution without having to repeat the computation for the entire graph.

Unit Disk Graphs (UDGs) are widely used for modelling wireless networks. In
these graphs connectivity between two nodes is established if and only if their
Euclidean distance is not larger than one unit, i.e. we assume that the wireless
devices have an identical transmission range. In the graph model used in this
paper we also assume that each node knows about its geographic position in the
plane, e.g. from a GPS receiver or from virtual coordinates assigned by another
source. As GPS receivers become more and more customary this model seems to
be relevant.

Spanners of unit disk graphs are used for maintaining topology control of the
network. This is important for routing and conservation of resources like power and
memory which are often limited in wireless devices. There are several properties
which are desirable for a spanner, e.g. connectivity, planarity, small node degree,
small stretch factor and small total weight. As no spanner can perform well for all
of them, one wants to obtain the best possible trade-offs between these properties.

1.1. Related work. Graph coloring is a well studied subject in the literature. For
general graphs it is N P-complete and even approximating it within a constant ratio
is NP-hard [15]. For unit disk graphs the problem remains N P-complete [6], even
when it is restricted to a fixed number of colors k& > 3 [10]. However, for UDGs
it can be approximated within a constant factor. Marathe et al. [16] present an
offline-coloring algorithm with an approximation factor of 3 and an online-coloring
algorithm with an approximation ratio of 6. Both algorithms do not need the
embedding of the graph as part of the input. The online-algorithm is essentially
the sequential coloring algorithm (consider the vertices in any order and color a
vertex with the smallest color number allowed for this vertex). In [10] it is stated
that Peeters in [19] has shown that this method applied to a “lexicographic” vertex
ordering colors a unit disk graph G with at most 3w(G) — 2 colors (where w(G) is
the clique number of G).

Gréf et al. present a factor 3 approximation algorithm [10] for the case where
the embedding of the graph is known. Their algorithm exploits the topology of
the graph. For the setting of location aware nodes no algorithm has been known
before which outperforms the online algorithm mentioned above (whose idea could
be applied in this setting).

The problem of constructing spanning subgraphs (spanners) of geometric graphs
has been studied widely in the literature. There are many optimization results
for tradeoffs between size, diameter, maximum degree and strech factor of the
computed spanner, e.g. Eppstein [8], Arya et al. [2], Narasimhan and Smid [18]
and Bose et al. [3]. However, all these algorithms are global, i.e. they need the
whole graph as the input.

When looking for local algorithms for constructing spanners of unit disk graphs,
Bose et al. [4] address this problem by constructing a planar spanner using the
Gabriel test [9]. Li et al. [11] present a local algorithm which computes a planar
spanner with constant stretch factor. In [20, 12| Li and Wang introduce local algo-
rithms which compute planar spanners with constant stretch factor and a constant
maximum degree. However, the resulting maximum degree can be up to 20 and the
weight of the edges can be much higher than in a minimum spanning tree (MST).
Li et al. [13] present a local algorithm which computes a planar spanner of a unit
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disk graph with a node degree bounded by 6. Chavez et al. [5] further analysed this
algorithm when operating on quasi unit disk graphs, proved an upper bound for
the weight of the spanner in comparison with an MST, and improved the maximum
node degree to 5 for the case of unit disk graphs. Every planar graph and therefore
every planar spanner of a unit disk graph can be colored with at most 4 colors due
to the well known Four-Color-Theorem [1]. However, the algorithm presented there
cannot be implemented as a local algorithm. Czyzowicz et al. [7] present a local
algorithm which colors a given planar spanner of a unit disk graph with at most 7
colors.

1.2. Main result and outline of the paper. In this paper we present a local
algorithm with polynomial processing time which colors the vertices of a unit disk
graph and needs at most most 4 times as many colors as an optimal coloring re-
quires. It is the first local algorithm for this task. Its approximation ratio is better
than the ratio of 6 which is guaranteed by the online algorithm [16], but a bit higher
than the performance ratio of 3 which is achieved by the best global polynomial
time algorithms [16, 10]. Allowing exponential processing time we improve the
approximation ratio to 3.

We also present a local algorithm which computes a 5-colorable spanner of a
unit disk graph. It also finds a 5-coloring for the computed spanner. By employing
the local algorithm presented in [5] for preprocessing, we can guarantee that our
spanner is planar, the maximum node degree is bounded by 5 and any angle between
two edges is at least 7/3. As described in [5] we can also force its weight to be at
most (k+1)/(k—1) times the weight of a minimum spanning tree for an arbitrary
large k. The locality distance (the size of the neighborhood which a vertex has to
explore in order to compute its color) of the algorithm is 34 + k. We improve this
to a local algorithm which computes a 4-colorable spanner of a unit disk graph and
the 4-coloring for it but at the cost of using a higher locality distance of 136 + k.
This spanner also has the above properties. These are the first local algorithms
which compute spanners of unit disk graph while computing colorings for them.
Using at most 4 colors, we need fewer colors than the local 7-coloring algorithm in
[7] which colors an arbitrary planar spanner of a unit disk graph.

Further we show that there is no local algorithm for computing bipartite span-
ners, even if we do not compute the coloring but only the spanner itself. We also
show that there is no local algorithm for coloring 3-colorable unit disk graphs or
3-colorable spanners of unit disk graphs using at most 3 colors. Finally we prove a
lower bound for the approximation ratio of a local algorithm for vertex coloring.

The remainder of the paper is organized as follows: First we introduce some
preliminaries in Section 2. In Sections 3 and 4 we present our local algorithms for
vertex coloring with approximation ratios 4 and 3 respectively. In Sections 5 and 6
we present our algorithms for computing the 5- and 4-colorable spanners. We prove
the impossibility results for local algorithms mentioned above in Section 7. Finally
in Section 8 we summarize all our results and address open problems.

2. PRELIMINARIES

In this section we introduce some definitions and notations that we are going
to use, including the concept of local algorithms. All algorithms presented in this
paper are local algorithms for unit disk graphs. An undirected graph G = (V, E) is
a unit disk graph if there is an embedding in the plane for G such that two vertices
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u and v are connected by an edge if and only if the Euclidean distance between
them is at most 1. The graph G we consider for all our algorithms is a connected
unit disk graph.

Definition 1. For two vertices u and v let d(u,v) be the hop-distance between u
and v, that is the number of edges on a shortest path between these two vertices.

Note that the hop-distance between two vertices does not necessarily equal the
geometric distance between them. Denote by N"(v) = {u € V | d(u,v) < r} the
r-th neighborhood of a vertex v. For ease of notation we set N°(v) := {v}, N(v) :=
N'(v) and for a set V! C V we define N(V') = |J N(v'). Note that v € N(v).

v EV
We define the diameter of a set of vertices V! C V as diam(V’) := max d(u,v). It
u,veV’
is assumed that in all our algorithms an embedding for G is given. For a vertex v
we denote by v, its z-coordinate and by v, its y-coordinate. We denote by ht(G)
the height of G, defined by ht(G) := ma:‘v/{uy — vy}
u,ve

We denote by the locality distance (or short the locality) of an algorithm the
minimum « such that the status of any vertex v (e.g. its color, whether or not it is
in a computed set etc.) depends only on the vertices in N*(v). So for any vertex
v messages emanating from v never propagate beyond N (v). For all algorithms
presented in this paper we will prove that « is constant. In the graph model which
we use we assume that each vertex v is aware of its geographic position in the
plane. We also assume that each vertex v can find out the geographic position of
the vertices which are at most a hops away from v by message passing.

A coloring of a graph G is a map color : V. — {1, ..., ¢} such that (vy,v2) € E =
color(vy) # color(ve). For ease of notation we define |color| := ¢. We denote by
X(G) the chromatic number of G. That is the minimum number of colors that is
needed for a coloring of G. We define w(G) to be the clique number, i.e. the size
of the largest clique in G.

We denote by A(G) the maximum degree of a node in G. If G is a geometric
graph, we define cost(G) as the sum of Euclidean lengths of the edges of G. For a
graph G we denote by F(G) the set of its edges and by V(@) the set of its vertices.
For a set of vertices V' we denote by G[V’] the subgraph of G induced by V’. If
an embedding of G is given, then for a rectangle R in the plane we denote by G[R]
the subgraph of G induced by the vertices in R.

3. LocAL 4 - x(G) VERTEX COLORING OF UDGs

In this section we present a local approximation algorithm for vertex coloring in
a unit disk graph G. We prove that it achieves a competitive ratio of 4 and that the
processing time for each vertex is bounded by a polynomial. We employ a result by
Gréf et al. [10] that enables us to use an algorithm by Mohring [17] as a subroutine
which colors a unit disk graph optimally in polynomial time when its height is at
most v/3/2. Before we present the algorithm we introduce a tiling of the plane that
we are going to use.

3.1. Tiling of the plane. We divide the plane into rectangles and assign a class
number to each rectangle. The tiling achieves the following properties:

e Each vertex of G is in exactly one rectangle.
e The height of each rectangle is smaller than v/3/2.
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FIGURE 1. One tile of the tiling. The numbers in the rectangles
indicate the class number of the respective rectangle.

FIGURE 2. A part of the tiling of the plane used in Algorithm 1.

e Each rectangle has a class number between 1 and 4.
e The Euclidean distance between two rectangles with the same class number
is strictly greater than one.

We achieve these properties as follows: We divide the plane into a grid where
each grid cell is a rectangle with height 1/2 + € and width 1+ e. We choose € such
that 0 < e < é. We place tiles of rectangles into the grid. Figure 1 shows one
tile. The rectangles of class 1 have the size of 1 grid cell, the rectangles of classes
2,3 and 4 have the size of 5 grid cells (later, we use the different sizes of rectangles
in order to achieve a lower locality distance in our algorithm). The class numbers
of the rectangles are assigned according to Figure 1 (white=class 1, black=class 2,
dark gray=class 3 and light gray=class 4). We tile the whole plane with such tiles,
starting at an arbitrary position. Figure 2 shows an extract of this tiling.

Each vertex of GG is contained in exactly one rectangle. Ambiguities caused by
vertices on the border of a rectangle are resolved by assigning them to the rectangle
with the lowest class number which containes them. From the construction it follows
that two different rectangles of the same class have an Euclidean distance of strictly

more than one. So we conclude with the following proposition.

Proposition 1. Two vertices in different rectangles of the same class are not ad-
Jacent.

We observe that every vertex can determine its class number in constant time
by only using its coordinates.

3.2. The algorithm. Now we present our algorithm. The main idea is to solve the
coloring problem optimally for the rectangles of each class separately. First we color
the vertices in all class 1 rectangles optimally. Then we solve the problem for each
connected component C' in each class 2 rectangle R optimally under the condition
that we are not allowed to use colors that have been used by vertices which are
adjacent to any vertex in C. Then we do the same for all class 3 rectangles and
then for all class 4 rectangles.
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Now we present our algorithm in detail. We start with a coloring color defined
by color(v) := 0 for all v € V. For i := 1,2,3,4 we do the following: Consider
a connected component C' in a rectangle R of class ¢ and denote its vertices by
V. Denote by G¢ the subgraph induced by V. By construction of the tiling the
height of R is smaller than v/3/2 and thus ht(G¢) < v/3/2. In [10] Grif et al.
state an algorithm which computes an optimal coloring for a unit disk graph G¢
in time O (\Vc|w (Gc)2> if ht (G¢) < v/3/2%. We use this algorithm to compute
an optimal coloring colorc for Go. We might not be able to use the assignment
of colors in colorc directly in the coloring color which has been computed so far
since a vertex v € C might be adjacent to a vertex v’ (in another rectangle) such
that colorc(v) = color(v'). Let ¢ be the highest number of a color that has already

been assigned to any vertex in N (V) by color (ie. ¢ = rjnva(u‘)/< )color(v)). We
ve (el

define color(ve) := colorc(ve) + ¢ for all vo € Vio. We do this for all connected
components in all rectangles of class i. As two vertices in two different connected
components in rectangles of the same class number are not adjacent (see Proposition
1) the order in which the connected components are being processed does not
matter. We output the coloring color. We refer to the above as Algorithm 1.

Algorithm 1: Algorithm for finding a vertex-coloring in a unit disk graph G

for i:=1 to 4 do
// i denotes the class number of the current iteration;

// denote by R; the set of all rectangles of class ¢;
forall R € R; do

// denote by Vg the vertices in R;

find an optimal coloring colorc for the vertices Vg;

[ U VI

let ¢:= max color(v);
vEN (VR)

color(v) := colorc(v) + ¢ for all v € Vg;
end
10 end

output: Coloring color

~

3.3. Proof of correctness. In the following theorem we prove that Algorithm 1
is a local algorithm that computes a valid coloring with a competitive ratio of 4.

Theorem 1. Algorithm 1 has the following properties:

(1) The computed coloring is a valid coloring for G.

(2) It holds that |color| < 4 - x(G).

(3) The color of a vertex v depends only on the vertices which are at most 71
hops away from v, i.e. Algorithm 1 is local.

(4) The processing time for a vertex v is bounded by a cubic polynomial in the
number of vertices which are at most 71 hops away from v.

We will prove the four parts of this theorem in four steps.

Un [10] Graf et al. call such graphs 1/3/2-stripes. They show that a unit disk graph G¢ is a
cocomparability graph if ht(Gc) < v/3/2. This allows to employ an algorithm by Mohring [17]
for coloring cocomparability graphs in order to compute an optimal coloring for G¢.
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3.3.1. Correctness. We prove that the coloring color computed by Algorithm 1
above is a valid coloring, i.e. (v1,v2) € E = color (v1) # color (vs).

Proof. (of part 1 of Theorem 1): For the correctness of the subroutine for computing
an optimal coloring for one rectangle we refer to [10]. Now assume on the contrary
that there are two vertices v; and vy such that (vi,ve) € E and color (v1) =
color (v2). We distinguish three cases:

Case 1: the vertices v; and vy are in the same rectangle R of class 7. So they
are in the same connected component C. Then in iteration ¢ an optimal color-
ing colorc for C' was computed with colorc (v1) # colorc (ve). It follows that
colorc (v1) + ¢ # colore (v2) + ¢ for any ¢ and therefore color (vi) # color (vs)
which is a contradiction.

Case 2: the vertices v; and vy are in different rectangles of different classes Ry
and Rs respectively. W.l.o.g. let Ry be in a smaller class than Rs. Let V; be the
vertices in R; and let V5 be the vertices in Ry. Then in the iteration where the
rectangle Ry was considered, an optimal coloring colorp, for Ry was computed. Let
¢ be the highest number of a color that has been assigned to any vertex in N (V5)
by color so far. As vy € N(V3) it follows that color (v1) < ¢. As colorg, (v2) > 0
we have that color (v2) = colorg, (v2) + ¢ > color (v1) so color (v1) # color (vs)
which is a contradiction.

Case 3: the vertices v; and vy are in different rectangles of the same class. Then
from Proposition 1 it follows that (vi,vs) ¢ E which is a contradiction. O

3.3.2. Approzimation ratio. We prove that our algorithm has an approximation
ratio of 4, i.e. |color| < 4-x(G). The main idea is that the number of colors needed
for each rectangle class is a lower bound for the optimal coloring and as we have
four rectangle classes we achieve a competitive ratio of 4.

Proof. (of part 2 of Theorem 1): Let colory, be the coloring computed after the kth
iteration of the algorithm and let ¢ := |colorg|. We prove that ¢, < k- x(G) and
therefore |color| = c4 < 4 - x(G).

Proof by induction. Let k := 1. Let G; be the restriction of G to vertices in
class 1 rectangles. It holds that x (G1) < x(G). As the coloring for the vertices in
rectangles of class 1 is optimal, it follows that ¢; = x (G1) < x(G).

Assume the claim is true for all £ < ¢ — 1. Let GG; be the restriction of G to
vertices in class ¢ rectangles. It holds that x (G;) < x(G). As we color the vertices
in G; with the least number of colors as possible and do not skip any color numbers
between 1 and ¢; it follows that ¢; < ¢;_1+x (Gi) < (i—1)-x (G)+x (G) = i-x(G).

O

3.3.3. Locality. We prove that the color of a vertex v depends only on the vertices
which are at most 68 hops away from v, i.e. Algorithm 1 is local. First we prove an
upper bound for the diameter of the restriction of G to one rectangle. Note that
the rectangles of class 1 are smaller than rectangles of class 2, 3 and 4. This is the
only part of the proof where the different sizes of the rectangles matter.

Lemma 1. Let R be a rectangle of class 1 and G[R] the graph G restricted to R.
For each connected component C in G[R] it holds that diam(C) < 5. Let R’ be
a rectangle of class 2, 3 or 4 and G[|R'] the graph G restricted to R'. For each
connected component C' in G[R'] it holds that diam(C") < 21.
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Proof. We start with proving the claim for the rectangle R of class 1. First we derive
an upper bound for the maximum size of an independent set in G[R]. The area of
R plus a surrounding belt of width 1/2 around it is (2+¢€)-(1.5+¢) = (3+3.5e+¢€2).

3+3.5e+€2

So there can be at most {
/4

J centers of non-overlapping discs of radius 1/2

in R. Ase < 6%1 we compute that L%J = 3. It follows that the cardinality

of a maximum independent set in G[R] is at most 3. Now consider a connected
component C' in G[R] and two vertices u,v € C such that d(u,v) = diam(C).
Denote by p the shortest path between v and v in C. If we take every alternating
vertice in p we get an independent set in R. As the size of such a set is bounded
by 3, the length of p is bounded by 5 and therefore diam(C) < 5.

Applying the same reasoning to R’ we derive an upper bound of 11 for an in-

dependent set in G[R'] (as L(ME’?‘/&'E’“)J = {9“3:;?551 = 11 for € < 5;) and

therefore we get diam(C’) < 21 for any connected component C’ in G[R']. O

Proof. (of part 3 of Theorem 1): Let v be a vertex and k be the class number of its
rectangle. Let ay be the smallest integer such that the color of v depends only on the
vertices which are at most a; hops away from v. We prove that ar < 5+422-(k—1).

Proof by induction. Suppose k = 1. Let v be in a connected component C' of a
class 1 rectangle R. From Lemma 1 we know that the diameter of C' is at most 5.
So all other vertices in C are at most 5 hops away from v and the color of v only
depends on them. So a; < 5.

Suppose the claim is true for all vertices in classes k < ¢ — 1. Now let v be
in a connected component C' in a class i rectangle R with ¢ > 2. From Lemma
1 we know that the diameter of C is at most 21. The color of v depends only
on the vertices in C' and the colors of the vertices in rectangles of class i/ < ¢
in N(C) \ C. So the color of v depends only on the vertices which are at most
214+ 14a;—1 <21+1+(5+22-(:—1—1)) =5+22- (i — 1) hops away from v.
So a; <5422 (i —1). As we have four different classes of rectangles, the locality
distance of Algorithm 1 equals a4 and it holds that a4 < 71.

|

3.3.4. Processing time. The processing time is the time that a single vertex needs
in order to compute its color. As our algorithm is local it is not very suitable to
quantify the processing time in comparison to the total number of vertices in G.
Instead we measure it with respect to the number of vertices which are at most 71
hops away from a vertex v since these are all vertices that a vertex v needs to explore
when computing its status. We denote this number by 7i(v) (so 7i(v) = [N (v)]).
We show that the processing time is bounded by O (7i(v)?).

Proof. (of part 4 of Theorem 1): Denote by G the subgraph of G restricted to
N™(v). When computing the color for a vertex v, for some rectangles we need
to compute a perfect coloring for G restricted to the respective rectangle. With
the algorithm stated in [10] this can be done in time O (|VR| ‘w (GR)2) for one
rectangle R. The number of rectangles whose colorings need to be computed is
bounded by a constant (as there is only a limited number of rectangles which can
have vertices in G‘) The computation of the colorings for the rectangles dominates
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FIGURE 3. One tile for the tiling of the plane

the processing time of the entire algorithm. Thus we get an overall processing time

of O (ﬁ(v) ‘w (é)2> C 0 (n(v)?). O

4. LocAL 3 - x(G) VERTEX COLORING OF UDGSs

In Section 3 we presented a local algorithm with a performance ratio of 4. In
this section we present a local algorithm which has a performance ratio of 3, but
where the processing time of each node is exponential in the number of nodes in
its local neighborhood. Before we present the algorithm itself, we present a tiling
of the plane which we are going to use.

4.1. Tiling of the plane. The plane is divided into tiles of rectangles. Figure 3
shows one tile. A class number between 1 and 3 is assigned to each rectangle as
shown in Figure 3. The whole plane is tiled with such tiles, starting at an arbitrary
position. Figure 4 shows an extract of this. The width of each rectangle is 24¢, the
height of each rectangle is 1 + € for any fixed € with 0 < € < 1/32. Each vertex is
assigned to the rectangle which contains it. Ambiguities caused by vertices on the
edge of rectangles are being resolved by assigning them to the rectangle with the
smallest class number which contains them (any other resolving method works as
well). We observe that two rectangles of the same class have a Euclidean distance
of strictly more than one. So we conclude the following proposition:

Proposition 2. Two vertices in different rectangles of the same class are not ad-
jacent.

3 2 1 3

1 3 2 1
3 2 1 3

1 3 2 1
3 2 1 3

FIGURE 4. Tiling of the plane
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Each vertex can compute the rectangle that it belongs to from its coordinates in
the plane.

4.2. The algorithm. Essentially we use the same ideas as in Algorithm 1. How-
ever, in this algorithm we have three different class numbers rather than four as
in Algorithm 1. This leads us to an approximation ratio of 3. The price we have
to pay for this improved approximation factor is that the processing time in each
vertex is now exponential rather than polynomial as in Algorithm 1.

Now we present our algorithm in detail. We start with a coloring color defined by
color(v) :=0forallv € V. Fori := 1,2,3 we do the following: Consider a connected
component C' in a rectangle R of class ¢ and denote its vertices by V. Denote by
G ¢ the subgraph induced by V. We compute an optimal coloring color¢ for G¢ by
enumeration. We might not be able to use the assignment of colors in colore directly
in the coloring color which has been computed so far since a vertex v € C' might be
adjacent to a vertex v’ (in another rectangle) such that colorc(v) = color(v'). Let
¢ be the highest number of a color that has already been assigned to any vertex in
N(Ve) by color (ie. ¢ = m?x )color(v)). We define color(ve) := colore(ve) + ¢

C

veEN (V¢
for all ve € V. We do this for all connected components in all rectangles of class
1. As two vertices in two different connected components in rectangles of the same
class number are not adjacent (see Proposition 2) the order in which the connected
components are being processed does not matter. We output the coloring color.
We refer to the above as Algorithm 2.

Algorithm 2: Algorithm for finding a vertex-coloring in a unit disk graph G
1 for i:=1 to 3 do

2 // i denotes the class number of the current iteration;
3 // denote by R; the set of all rectangles of class ¢;

4 forall R € R; do
5

6

// denote by Vg the vertices in R;
find an optimal coloring colorc for the vertices Vg;

let ¢:= max color(v);
7 vEN(VR)
8 color(v) := colorc(v) + ¢ for all v € Vg;
9 end

10 end
output: Coloring color

4.3. Proof of correctness. In the following theorem we prove that Algorithm 2
is a local algorithm that computes a valid coloring with a competitive ratio of 3.

Theorem 2. Algorithm 1 has the following properties:

(1) The computed coloring is a valid coloring for G.

(2) It holds that |color| < 3 - x(G).

(3) The color of a vertex v depends only on the vertices which are at most 42
hops away from v, i.e. Algorithm 2 is local.

Note that in contrast to Algorithm 1 we cannot give a polynomial bound for the
processing time in each vertex. This is due to the exponential time that it takes to
compute an optimal vertex coloring for one rectangle.
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We will prove the four parts of this theorem in four steps. The proof uses
concepts which are similar to the proof of Theorem 1.

4.3.1. Correctness. We prove that the coloring color computed by Algorithm 2
above is a valid coloring, i.e. (v1,v2) € E = color (v1) # color (vs).

Proof. (of part 1 of Theorem 2): We assume that the enumeration subroutine which
computes optimal colorings for one rectangle is correct.

Now assume on the contrary that there are two vertices v; and vy such that
(v1,v2) € E and color (v1) = color (v2). We distinguish three cases:

Case 1: the vertices v; and vy are in the same rectangle R of class ¢. So they
are in the same connected component C'. Then in iteration i an optimal color-
ing colorc for C was computed with colorc (v1) # colore (va). It follows that
colore (v1) + ¢ # colore (v2) + ¢ for any ¢ and therefore color (vi) # color (ve)
which is a contradiction.

Case 2: the vertices v, and vy are in different rectangles of different classes Ry
and Ry respectively. W.l.o.g. let R; be in a smaller class than Rs. Let V7 be the
vertices in R; and let V5 be the vertices in Ry. Then in the iteration where the
rectangle Ry was considered, an optimal coloring colorg, for Ry was computed. Let
¢ be the highest number of a color that has been assigned to any vertex in N (V53)
by color so far. As vy € N(V2) it follows that color (v1) < ¢. As colorg, (v2) > 0
we have that color (v2) = colorg, (v2) + ¢ > color (v1) so color (v1) # color (vz)
which is a contradiction.

Case 3: the vertices v; and vy are in different rectangles of the same class. Then
from Proposition 2 it follows that (v1,vs) ¢ E which is a contradiction. O

4.3.2. Approzimation ratio. We prove that our algorithm has an approximation
ratio of 3, i.e. |color| < 3-x(G). The main idea is that the number of colors needed
for each rectangle class is a lower bound for the optimal coloring and as we have
three rectangle classes we achieve a competitive ratio of 3.

Proof. (of part 2 of Theorem 2): Let colory, be the coloring computed after the kth
iteration of the algorithm and let ¢y := |colorg|. We prove that ¢, < k- x(G) and
therefore |color| = c3 < 3 - x(G).

Proof by induction. Let k := 1. Let G; be the restriction of G to vertices in
class 1 rectangles. It holds that x (G1) < x(G). As the coloring for the vertices in
rectangles of class 1 is optimal, it follows that ¢; = x (G1) < x(G).

Assume the claim is true for all k < i — 1. Let G; be the restriction of G to
vertices in class ¢ rectangles. It holds that x (G;) < x(G). As we color the vertices
in G; with the least number of colors as possible and do not skip any color numbers
between 1 and ¢; it follows that ¢; < ¢;—1+x (G;) < (i—1)-x (G)+x (G) = i-x(G).

([

4.3.3. Locality. We prove that the color of a vertex v depends only on the vertices
which are at most 42 hops away from v, i.e. Algorithm 2 is local. First we prove an
upper bound for the diameter of the restriction of G to one rectangle. This lemma
uses the same technique as Lemma 1.

Lemma 2. Let R be a rectangle and let G[R] be the graph G restricted to R. For
each connected component C in G[R] it holds that diam(C) < 13.
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Proof. We start with proving the claim for the rectangle R of class 1. First we derive
an upper bound for the maximum size of an independent set in G[R]. The area of
R plus a surrounding belt of width 1/2 around it is (2+¢€) - (3 +¢€) = (6 + e + €2).

So there can be at most {%J centers of non-overlapping discs of radius 1/2

in R. Ase < 3% we compute that {%J = 7. It follows that the cardinality

of a maximum independent set in G[R] is at most 7. Now consider a connected
component C' in G[R] and two vertices u,v € C such that d(u,v) = diam(C).
Denote by p the shortest path between v and v in C. If we take every alternating
vertice in p we get an independent set in R. As the size of such a set is bounded
by 7, the length of p is bounded by 13 and therefore diam(C) < 13. O

Proof. (of part 3 of Theorem 2): Let v be a vertex and k be the class number of
its rectangle. Let a; be the smallest integer such that the color of v depends only
on the vertices which are at most a; hops away from v. We prove that a; < 14 - k.

Proof by induction. Suppose & = 1. Let v be in a connected component C of a
class 1 rectangle R. From Lemma 2 we know that the diameter of C' is at most 13.
So all other vertices in C' are at most 13 hops away from v and the color of v only
depends on them. So ay < 14.

Suppose the claim is true for all vertices in classes £k < i — 1. Now let v be
in a connected component C' in a class ¢ rectangle R with ¢ > 2. From Lemma
2 we know that the diameter of C' is at most 13. The color of v depends only
on the vertices in C' and the colors of the vertices in rectangles of class i/ < i
in N(C) \ C. So the color of v depends only on the vertices which are at most
134+ 1+4+a;-1 <134+1+4+14-(i—1) =14 -4 hops away from v. So a; < 14 -4. As
we have three different classes of rectangles, the locality distance of Algorithm 2
equals a3 and it holds that a3z < 42. O

5. LOCAL CONSTRUCTION OF 5 COLORABLE SPANNER

In this section we present a local algorithm for computing a 5-colorable spanner
of a given unit disk graph. It computes the spanner and the 5-coloring for it. For
preprocessing the graph we employ the local algorithm presented in [5, 13]. This
ensures that the resulting spanner is planar, it does not contain any angle smaller
than 7/3 and the degree of any node is at most 5. For arbitrarily large &k this
subroutine can also guarantee the weight of the spanner to be at most % times
the weight of a minimum spanning tree. The locality distance of the algorithm is

in O(k).

5.1. Outline of the algorithm. We consider a unit disk graph G = (V, E). The
algorithm colors the vertices of G in five colors and computes a set £/ C F such
that G’ = (V, E’) forms a spanner for G. The algorithm has three steps:

(1) We fix an integer k and compute a spanner Gy, of G using the algorithm
presented in [5, 13]. We continue the computation with Gy.

(2) The plane is divided into rectangles. A bipartite spanner for each rectangle
is computed and the vertices in each rectangle are colored using two colors.
We employ altogether four different colors in this step.

(3) Collisions (i.e. two adjacent vertices with the same color) are being resolved
by using an additional fifth color.
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FIGURE 5. The tiling of the plane in rectangles. The line segments
between two rectangles of the same class form the glues.

5.2. The algorithm. We consider a unit disk graph G = (V, E)). First we present
the tiling of the plane which we are going to use. Then we present the three steps
of the algorithm as outlined above. We will compute a set £/ C E such that
G' = (V, E’) forms a spanner for G. We will also compute a coloring color for G’
with |color| < 5.

5.2.1. Tiling of the plane. We divide the plane into a grid where each grid cell has a
height of 14 € and a width of 2+ ¢ (for any e with 0 < € < 1/128). Rectangles with
the size of 3 grid cells are placed in the grid according to Figure 5. Each vertex of G
is in exactly one rectangle. Ambiguities caused by vertices at the edge of rectangles
are resolved by assigning them to the rectangle whose upper left corner has the
lowest a-coordinate (any other resolving method works as well).

We see that the rectangles form rows. The rows are assigned to classes A and
B such that two adjacent rows have different class numbers. We say a rectangle is
of class A or B if it is in a row of class A or B respectively (see Figure 5). Denote
by class(R) the class of the rectangle R. We define by glue the line segment
between two rectangles of the same class (see Figure 6). We observe the following
proposition:

Proposition 3. Two different glues have an Euclidean distance of at least 2 + €.

Proposition 4. Two adjacent vertices in rectangles of the same class are in the
same Tow.

5.2.2. Step 1: Computing the spanner Gi. In this step we compute a spanner Gy,
for G. This routine is taken from [5, 13]. As the spanner which we output later
will be a subgraph of Gy, our spanner will inherit some properties from Gj. First
we need to define an ordering on the edges of G.

Definition 2. (Compatible Linear Order). Each edge (u,v) is assigned a 5-tuple
(lu,v|, 21, Y1, 22, y2), where |u,v| is the Euclidean length of the edge, x1,y; and
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FIGURE 6. Glue between two rectangles of class A

To,yo are the coordinates of the endnodes of the edge with either x; > x5 or both
x1 = x2 and y; > yo. Clearly this gives a unique 5-tuple to any edge, and 5-tuples
assigned to any two edges are distinct. The linear order < is defined using the
lexicographic ordering of the assigned 5-tuples.

A graph may have several minimum spanning trees (MST) when the Euclidean
length of the edges is the cost function. However, if we break the ties when an
edge is chosen in the MST-algorithm (e.g. in Kruskal’s algorithm) by the linear
order <, then the graph has a unique MST (which can be computed for example
by Kruskal’s algorithm).

In step 1 of our algorithm we do the following: First we fix an integer k > 2.
Then we compute the spanner Gy as explained in the description of the algorithm.

Step 1 of Algorithm 6: Computing a planar spanner with certain properties.
This algorithm was presented in [13, 5]

1 // Algorithm is executed independently by each node;

2 // the parameter k is fixed

3 Learn your distance k neighborhood N*(v);

4 Constuct locally the unique MST T*(v) of N*(v);

5 Broadcast in N*(v) the edges of N!(v) which have been retained in T%(v)
(i.e. N1(v)NT*(v));

6 The output spanner Gy is defined as follows: an edge is selected into Gy, if
and only if it was retained by both of its incident nodes;

5.2.3. Step 2: Bipartite spanner for each rectangle. In this step, we define a map
color : V.— N. We also define the set E’ C E. Note that after this step the map
color will not necessarily be a valid coloring for G’ = (V, E').

From now on, we ignore all edges which are not part of G,. We color the vertices
of each connected component in each rectangle independently. For each connected
component C' in a rectangle R do the following: Compute a spanning tree T for
C and compute a coloring colory for T which uses at most two colors. For the
two-coloring of C' we use colors 1 and 2 if class(R) = A and colors 3 and 4 if
class(R) = B. We define color(v) := colorp(v). Assign the edges of T to the set
E’. Do this for all connected components in all rectangles. Finally we add all edges
to E’ which connect two vertices which are in different rectangles. The above is
presented in step 2 of Algorithm 6.

5.2.4. Step 3: Resolving collisions. Now color(v) is well-defined for every vertex v.
However, color might not be a valid coloring for G’ yet as there might be collisions.
By a collision we mean an edge e = (v1,v2) € E’ with color (v1) = color (vs). Since
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Step 2 of Algorithm 6: Computation of bipartite spanners and two-colorings
for all connected components in all rectangles

=

// Algorithm is executed independently by each node v;
// Consider only edges from G} as computed in step 1, ignore all edges which
are not in Gy,
Let R be rectangle that v has been assigned to;
Determine whether R is of type A or B;
Explore the connected component C in R that v belongs to;
Compute a spanning tree T for C;
if R is of type A then compute a bipartite coloring colory for T" which uses
colors 1 and 2;
8 if R is of type B then compute a bipartite coloring colory for T" which uses
colors 3 and 4;
9 color(v) := colorp(v);
10 Add all edges from T to E’;
11 Add all edges to E’ which connect vertices in C' to vertices in rectangles other
than R;

N

i = L V]

vertices in different rows are assigned different colors, from Proposition 4 and the
way the plane is tiled we see that such a collision edge e has to cross exactly one
glue.

For all pairs of adjacent rectangles of the same class R; and R, which contain
vertices we do the following: Denote by V; the vertices in Ry and by V5 the vertices
in Ro. Consider all vertices in V; that are adjacent to a vertex in V5 and all vertices
in V5 that are adjacent to a vertex in V; (i.e. N(Vi) N N(V2) N (V3 UVs)). Denote
these vertices by Ve and denote by Ggiue the subgraph of G induced by Ve
(note that there is one glue which all edges in Gge cross). For every connected
component C e in Ggpye We compute a spanning tree Tgye. As Tgye is bipartite,
we can compute a coloring colorr for Ty, that uses at most two colors. Denote
these colors by T'1 and T'2. Now we recolor some of the vertices in V. as follows:
If for a vertex v it holds that colorp(v) = T'1 then color(v) := 5. We remove all
edges in E(Ggiye) \ E(Tyiue) from E'.

We output G’ = (V, E’) as the computed spanner and color as the computed
coloring. The above description of step 3 of Algorithm 6. We summarize the whole
computation in Algorithm 6.

5.3. Proof of correctness. We prove the correctness of Algorithm 6 and the
properties of the computed spanner G’ and the coloring color in Theorem 3.

Theorem 3. Let k > 2 be the integer which was fized at the beginning of Algorithm
6. For the computed spanner G' = (V, E’) and the computed coloring color it holds
that

) G’ is connected,

) color is a valid coloring for G’,

) |color| <5,

) G’ is planar,

) A(G') <5,

) no angle between two edges in G’ is smaller than /3,
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Step 3 of Algorithm 6: Resolving collisions by using an additional 5th color.

1 // The Algorithm is executed independently by each node v;
2 Let R; the rectangle that contains v;
3 Let V7 be the vertices in Ry;
4 Let ¢ be the class of Ry;
5 if there is a rectangle Ry with class(Rs) = ¢ and Ry # Ry and there is a
vertex v' € N(v) N V; then
6 Let V5 be the vertices in Ry;
7 Define Vglue = N(Vl) n N(VQ) n (‘/1 U ‘/2),
8 Let Ggiue be the subgraph induces by Vgjye;
9 Determine the connected component Cgjye 0f Ggrye Which contains v;
10 Find a spanning tree Tyye for Cyrye;
11 Find a two-coloring colorr for Tgjye;
12 // We assume that colorp uses the colors T1 and T2;
13 if colorp(v) = T1 then
14 | color(v) := 5;
15 end
16 Remove all edges E(Ggiue) \ E(Tgiue) from E’;
17 end

Algorithm 6: Local Algorithm for computing a spanner and a 5-coloring for
a unit disk graph

// The Algorithm is executed independently by each node v;

Fix an integer k > 2;

Compute the spanner Gy as stated in step 1;

For all vertices v compute color(v) and compute the spanner E’ according to
step 2;

5 For all vertices v check whether color(v) is changed in step 3 and what edges
of E' remain after step 3;

W N =

(7) for a minimum spanning tree T for G it holds that cost(G') < *1 . cost(T)

k—1
and
(8) the locality distance of Algorithm 6 is bounded by 34 + k, i.e. Algorithm 6
is local.

First we present a result from [5] for Gy in Lemma 3 and prove another property
of Gy in Lemma 4. Then we give an upper bound for the diameter of a connected
component similar to Lemma 5. Finally we prove the theorem.

Lemma 3. Let T be a minimum spanning tree for G and Gy, be the graph computed
in step 1. Then it holds that

o (i is connected,

Gy, is planar,

A(GE) <5 and
cost(Gy) < % - cost(T)
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FIGURE 7. The angle Zuvw is smaller than 7/3. The vertex v
finds a smaller spanning tree by replacing the edge (v,w) by the
edge (u,w).

Proof. In [5] the local algorithm which we employ in step 1 is presented and the
above lemma is presented as Corollary 1. a

Lemma 4. Let u,v,w € V be vertices. If (u,v) and (v,w) are edges in Gy, then
the angle Zu,v,w is at least 7/3.

Proof. Assume on the contrary that there are two edges (u,v), (v,w) in Gy that
form an angle of less than /3 (see Figure 7). In the triangle (u,v,w) one of the
angles Zwuv and Zvwu must be greater than 7/3 (as the sum of all angles is ).
Let w.l.o.g. Zwuwv be greater than Zvwu. From the law of sines it holds that

sinZuvw sinZwuv

luw|  |ow]

As Zwuv > Zuvw and the sum of angles in the triangle is =, it follows that
sinZwuv > sinZuvw and so |vw| > |uw|. As G is a unit disk graph and (v, w) is
an edge in G, there must be an edge (u,w) as well. So when the vertex v computes
the spanning tree 7" for N*(v), the edge (u,w) can ensure that there is a path from
v to w in T and therefore (v, w) is not part of T'. This contradicts the assumption
that (v,w) is part of Gy.

O

Lemma 5. Let R be a rectangle and G[R] the graph G restricted to R. For each
connected component C' in G[R] it holds that diam(C') < 33.

Proof. We employ a similar argument as used in Lemma 1. First we derive an
upper bound for the maximum size of an independent set in G[R]. The area of R
plus a surrounding belt of width 1/2 around it is (7+3¢)- (2+¢€) = (144 13e + 3€2).

144+13e+3€2

/ J centers of non-overlapping discs of radius 1/2 in

So we can fit at most L

R. Ase < ﬁ we compute that {%J = 17. It follows that the cardinality

of a maximum independent set in G[R] is at most 17. Now consider a connected
component C' in G[R] and two vertices u,v € C such that d(u,v) = diam(C).
Denote by p the shortest path between v and v in C. If we take every alternating
vertice in p we get an independent set in R. As the size of such a set is bounded
by 17, the length of p is bounded by 33 and therefore diam(C) < 33. O
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Proof. (of Theorem 3): As E' C E and Lemma 3 shows that Properties 4 through
7 hold for Gy, it follows that they hold for G’ = (V, E’) as well.

Now we prove that color is a valid coloring for G, i.e. no two vertices which are
connected by an edge in G’ = (V, E’) have the same color. Let e = (u,v) € E' be
an edge. We distinguish three cases.

e Case 1: u and v are in rectangles of different classes.

— Case la: w or v is colored in color 1,2,3 or 4. W.l.o.g. u is colored
in 1 or 2. As v is in a rectangle of a different class, it must hold that
color(v) € {3,4,5} and therefore color(u) # color(v).

— Case 1b: u and v are colored in color 5. It follows that v and v must
have an Euclidean distance of at most 1 to a glue in their respective
row. As u and v must be in different rows and two glues of different
rows are at least 2 4+ € away from each other, u and v cannot be
connected by an edge which is a contradiction.

e Case 2: u and v are in different rectangles of the same type. As the
rectangles have a width of at least 6 + 3¢ and heigth of at least 1 + ¢, the
rectangles which contain v and v must be adjacent. Then in the third step
u and v were part of the same graph Gg.e. As e € E’, it follows that e
must have been part of Tyiye. In the coloring of Ty, u and v have different
colors (T1 and T2) and therefore color(u) # color(v).

e Case 3: uw and v are in the same rectangle. As e € E’, in step 2, u and v
were given different colors among 1,2,3 and 4. In step 3 one of them might
have been colored in color 5. If both of them were colored with color 5, e
would have been eleminated from E’ which would be a contradiction.

This proves that color is a valid coloring for G’. From the algorithm it follows
directly that |color| <5 since only the colors {1,2,3,4,5} are used in the coloring.

Now we want to prove that G’ is connected. From Lemma 3 it follows that Gy
is connected. For each rectangle R consider its connected components C(R) in Gj,.
As for each connected component C' in a rectangle R a spanning tree is computed
and in step 3 only edges between connected components in different rectangles are
removed, it holds that the vertices in C' are connected in G’ as well. After step 2,
all connected components C' € C(R) and C’ € C(R’) which are connected by edges
in Gy, are connected in G’ = (V, E’) since all edges between vertices in different
rectangles were added to E’. Now consider an edge e = (u,v) € E(Gj) which
connects two connected components C' € C(R) and C’ € C(R’). If e € E’ there is
nothing to prove. If e ¢ E’ then in step 3 a spanning tree T, for a subgraph
Ggiue was computed such that e € E(Ggiye) but e ¢ E(Tye). But as Ty is
a spanning tree, there is a path in Ty between v and v. It follows that C' and
C’ are connected in G'. So after step 3, all connected components C' € C(R) and
C' € C(R') which were connected by an edge in Gy are connected in G’ as well.
This proves that G’ is connected.

Finally we prove that the algorithm is local. Consider a vertex v and let R be
the rectangle which v is assigned to. In step 1, we only need to explore the vertices
which are at most k£ + 1 hops away from v. In step 2, we need to explore the
connected component in Gi[R] which contains v. From Lemma 5 it follows that
for this we need to explore the vertices which are at most 33 hops away from v
and check if their adjacent edges are in G. So in this step we need to explore the
vertices which are at most 33 + k£ + 1 hops away from v. In step 3, we might need
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to explore a graph G, (if v is adjacent to vertices in another rectangle of the
same class as R). The vertices V(G gye) are at most one unit away from the same
glue and they are all in the same row. Therefore, they all fit in a rectangle of size
2-(1+ ¢€) which would fit in one of the other rectangles. So in order to explore it, it
is sufficient to explore the vertices which are at most 33 + k£ + 1 hops away from v.
So in the entire algorithm, we only need to explore the vertices which are at most
34 + k hops away from v. (I

6. LOCAL CONSTRUCTION OF 4 COLORABLE SPANNER

In this section we present a local algorithm for finding a 4-colorable spanner of
a given unit disk graph. It computes both the spanner and the 4-coloring for it.
It needs one color less than the algorithm presented in Section 5 but has a higher
locality distance.

Like in Algorithm 6, for preprocessing the graph we employ the local algorithm
presented in [5, 13]. This ensures that the resulting spanner is planar, it does not
contain any angle smaller than 7/3 and the degree of any node is at most 5. For k
arbitrarily large this subroutine can also guarantees the weight of the spanner to be
at most % times the weight of a minimum spanning tree. The locality distance
of the algorithm is in O(k).

6.1. Outline of the algorithm. The concept of this algorithm uses the method-
ology of Algorithm 6. However, we are going to use a different tiling of the plane
and we will only use four colors to color the vertices of the computed spanner.

We consider a unit disk graph G = (V, E). We compute a set £’ C E such
that G’ = (V, E’) forms a spanner for G. We also compute a coloring color : V —
{1,2,3,4} for G'. The algorithm has three steps:

(1) A planar spanner Gy, of G is created using the algorithm presented in [5, 13].

(2) The plane is divided into rectangles. A bipartite spanner for the vertices in
each rectangle is computed and the vertices are colored with colors 1 and
2 (note that this is different than in Algorithm 6 since there we used four
colors in the step which corresponds to this step).

(3) Collisions (two adjacent vertices with the same color) between vertices in
different rectangles are being resolved by using two more colors.

6.2. The algorithm. We consider a unit disk graph G = (V, E). First we present
the tiling of the plane which we are going to use. Then we present the three steps
of the algorithm as outlined above. We will compute a set £/ C E such that
G' = (V, E') forms a spanner for G with certain properties. We will also compute
a coloring color for G’ with |color| < 4.

6.2.1. Tiling of the plane. The plane is divided into tiles of rectangles. Figure 8
shows one tile. A class number between 1 and 3 is assigned to each rectangle as
shown in Figure 8. The whole plane is tiled with such tiles, starting at an arbitrary
position. Figure 9 shows an extract of this. The width of each rectangle is 6 + e,
the height of each rectangle is 3+ ¢ for any fixed € with 0 < € < ﬁ. Each vertex is
assigned to the rectangle which contains it. Ambiguities caused by vertices on the
edge of rectangles are being resolved by assigning them to the rectangle with the

smallest class number which contains them (any other resolving method works as
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FIGURE 8. One tile for the tiling of the plane

well). We observe that two rectangles of the same class have a Euclidean distance
of strictly more than three. So we conclude with the following propositions:

Proposition 5. Two vertices in different rectangles of the same class are not ad-
jacent.

Proposition 6. For a rectangle R let RT denote the area of R plus a surrounding
belt of width one. Let Ry and Rs be two rectangles of the same class. Then there
is no edge in G which connects two vertices in G[R}] and G[R3].

3 2 1 3

1 3 2 1
3 2 1 3

1 3 2 1
3 2 1 3

FicURE 9. Tiling of the plane

Each vertex can compute the rectangle that it belongs to from its coordinates in
the plane.

6.2.2. Step 1: Computing the spanner G. Like in Algorithm 6 we first fix an integer
k > 2 and then run step 1 of Algorithm 6 in order to compute a spanner Gy. For
a detailed description we refer to Section 5. This routine was originally presented
in [5, 13].

6.2.3. Step 2: Bipartite spanner for each rectangle. We compute a set E' and a
map color : V — N. Note that after this step the map color will not necessarily be
a valid coloring for G’ = (V, E’).

From now on, only edges that are part of G are considered. All other edges
are ignored. Let R be a rectangle. Let G[R] be the restriction of G to the vertices
in R. For each connected component C' in G[R] we do the following: Compute a
spanning tree T and a two-coloring colorc for T which uses only colors 1 and 2.
Assign all edges in T to E'. Define color(v) := colorec(v) for all vertices v in C.
Do this for all rectangles R which contain vertices of G. Finally we assign all edges
to B’ which connect vertices in different rectangles.
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Step 2 of Algorithm 9: Finding a bipartite spanner for each rectangle

// Algorithm is executed independently by each node;

// Consider only edges from Gy, ignore all edges that are not in Gy;

Let R be the rectangle which contains v;

Explore the connected component C' in G[R] which contains v;

Compute a spanning tree T¢ for C;

Compute a coloring colorc for T which only uses colors 1 and 2;

Define color(v) := colora(v);

Add all edges of T¢ to E;

Add all edges to E’ which connect vertices in C' to vertices in rectangles other
than R;

© O N O A W N =

6.2.4. Step 3: Resolving collisions. By a collision we denote an edge whose adjacent
vertices have the same color. From the size of the rectangles in the tiling of the
plane we conclude that such an edge must connect two vertices which are in adjacent
rectangles (as the length of an edge is at most one). We first resolve all collisions
where vertices in rectangles of class 1 are involved (step 3a). For that we need one
additional color. Then we resolve collisions between vertices in rectangles of class
2 and 3 (step 3b). We use a fourth color for this.

We start with step 3a. Consider a rectangle R of class 1. Denote by V" all
vertices which are adjacent to at least one vertex in R. Denote by V' vertices in R
which are adjacent to vertices in V”. Denote by Go;[R] the subgraph induced by
V'UV"”. For each connected component Ceo;[R] in Geoi[R] we compute a spanning
tree Teoy[R]. We compute a two-coloring colorr for Teoy. Assume colory uses the
colors T'1 and T2. For all vertices v with colorp(v) = T'1 we define color(v) := 3.
Then we remove all edges E(Ceou[R])\E(Tcou[R]) from E’. Do this for all rectangles
of class 1.

Resolving collisions between vertices in class 2 and 3 rectangles in step 3b works
similarly: Consider a rectangle R of class 2. Denote by V" all vertices in rectangles
of class 3 which are adjacent to at least one vertex in R. Denote by V' vertices in
R which are adjacent to vertices in V”. Denote by Go;[R] the subgraph induced
by V' UV”. For each connected component C,o;[R] in Geo[R] we compute a
spanning tree T.o;[R]. We compute a two-coloring colory for Teo;[R]. Assume
colory uses the colors T'1 and T'2. For all vertices v with colorr(v) = T'1 we define
color(v) := 4. Then we remove all edges E(Ceon[R]) \ E(Teon[R]) from E’. Do this
for all rectangles of class 2.

This ensures the connectivity of the spanner while only using four colors to color
it. We summarize the whole algorithm in Algorithm 9.

6.3. Proof of correctness. We prove the correctness of Algorithm 9 and the
properties of the computed spanner G’ and the coloring color in Theorem 4.

Theorem 4. Let k > 2 be the integer which was fixed at the beginning of Algorithm
9. For the computed spanner G' = (V, E’) and the computed coloring color it holds
that

(1) G’ is connected,

(2) color is a valid coloring for G/,
(3) |color| < 4,
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Step 3 of Algorithm 9: Resolving collisions between vertices with the same color

© 0 N O A W N =
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// Step 3a;
forall rectangles R of class 1 do
compute Geo[R];
forall connected components Ceoy[R] in Geon[R] do
compute spanning tree Ty [R];
compute coloring colory for T, [R);
// We assume that colorr uses colors T'1 and T2;
forall vertices v with colorr(v) =T1 do
| color(v) := 3;
end

end

remove edges F(Ceou[R]) \ E(Teou[R]) from E’;
end

// Step 3b;

forall rectangles R of class 2 do

compute Geo[R];

forall connected components Ceoy[R] in Geon[R] do
compute spanning tree Ty [R];

compute coloring colory for T, |R);
// We assume that colory uses colors T'1 and T2;
forall vertices v with colorr(v) =T1 do
| color(v) :=4;
end

end
remove edges E(Ceou[R]) \ E(T¢oulR]) from E’;
end

Algorithm 9: Local Algorithm for computing a spanner and a 4-coloring for
the spanner

W N =

// The Algorithm is executed independently by each node v;

Fix an integer k > 2;

Compute the spanner Gy, as stated in step 1 of Algorithm 6;

For all vertices v compute color(v) and compute the spanner E’ according to
step 2;

For all vertices v check whether color(v) is changed in step 3 and what edges
of E’ remain after step 3;

no angle between two edges in G' is smaller than /3,
or a minimum spanning tree T for G it holds that cost(G') < ¥t1. cost(T)
and

(4)
(5) A(G) <5,
(6)
(7)
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(8) the locality distance of Algorithm 9 is bounded by 136 + k, i.e. Algorithm 9
is local.

Before we can prove the theorem, we prove upper bounds for the diameter of a
connected component in a rectangle R and the diameter of a graph G, [R] which
is computed in step 3. We observe that a graph G..;[R] fits into the area of R
plus a surrounding belt of width one around it. Of course the same applies to a
connected component in R.

Lemma 6. Let RT be a rectangle plus a surrounding belt of width one around it.
Let G[R™] the graph G restricted to R*. For each connected component C in G[R™]
it holds that diam(C) < 137.

Proof. We employ a similar argument as used in Lemma 1. First we derive an
upper bound for the maximum size of an independent set in G[R™]. The area of
R™ plus a surrounding belt of width 1/2 around it is (9+€)-(6+¢) = (54+ 15e+€2).
54+;?Z+62J

So we can fit at most { centers of non-overlapping discs of radius 1/2 in

R*t. Ase< ﬁlg we compute that L%J = 68. It follows that the cardinality

of a maximum independent set in G[R™] is at most 68. Now consider a connected
component C' in G[RT| and two vertices u,v € C such that d(u,v) = diam(C).
Denote by p the shortest path between v and v in C. If we take every alternating
vertex in p we get an independent set in RT. As the size of such a set is bounded
by 68, the length of p is bounded by 135 and therefore diam(C) < 135. O

Proof. (of Theorem 4): The properties 4 through 7 are inherited from the spanner
G, and for their proof we refer to the proof of Theorem 3.

As in step 2 only colors 1 and 2 are assigned to the vertices and in step 3 only
colors 3 and 4 are assigned to vertices it follows that |color| < 4.

Now we want to prove that color is a valid coloring for G’. Let e = (u,v) € E’
be an edge. We distinguish several cases:

e Case 1: u and v are in rectangles of different types.

— Case la: u and v are in rectangles of class 1 and 2. Then e must have
been part of a tree in step 3a, and therefore v and v must have been
colored in different colors.

— Case 1b: u and v are in rectangles of class 2 and 3. Then e must have
been part of a tree in step 3b, and therefore u and v must have been
colored in different colors.

— Case lc: w and v are in rectangles of class 1 and 3. Then e must have
been part of a tree in step 3a, and therefore after step 3a v and v must
have been colored in different colors. As one of the vertices is in a
rectangle of type 1 (w.l.o.g. vertex v), it has not changed its color in
step 3b. As in step 3b all recolored vertices are colored with color 4 it
follows that after step 3b u has a different color than v.

e Case 2: u and v are in the same rectangle. So in step 1, u and v were
colored in different colors.

— Case 2a: At most one vertex among u and v was recolored in step 3.
Then color(u) # color(v) since all vertices which are recolored in step
3 are colored in colors 3 and 4.

— Case 2b: Both u and v were recolored in step 3a. From Proposition 6
it follows that there is exactly only one rectangle R such that v and v
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belong to G.o[R]. Then color(u) # color(v) since otherwise the edge
e would have been removed from E’.
— Case 2c: Both u and v were recolored in step 3b. Similar to case 2b.
— Case 2d: One of the vertices was recolored in step 3a and the other
one in step 3b. W.l.o.g assume u was recolored in step 3a and v was
recolored in step 3b. Then color(u) = 3 # 4 = color(v).
e Case 3: v and v are in different rectangles of the same class. From Propo-
sition 5 it follows that they cannot be connected by an edge in G which is
a contradiction.

Now we show that G’ is connected. Denote by E! the set of edges which was
computed after step i (so B = E’). From Lemma 3 follows that the spanner Gy, is
connected. Now let e = (u,v) be an edge in E{. If e ¢ E) then there is still a path
between u and v in G = (V, E}) since in step 2 the edges of spanning trees for all
connected components in all rectangles are assigned to F) and all edges between
different rectangles are assigned to Ej. So it remains to show that the spanner
does not get disconnected in step 3. Let e = (u,v) be an edge in E} . If in step
3a the edge e is not part of a graph G [R] it will not be removed and so there is
still a connection between u and v in the spanner. Now assume that e is part of
a connected component Ceoy[R] in a graph G..;[R]. A spanning tree T..;[R] for
Ceou[R] is computed and all edges in T,,;[R] remain in E’ after step 3a. So after
step 3a there is a path in the spanner between u and v. Since this holds for all
edges e € E the computed spanner is connected after step 3a. The same reasoning
can be applied for step 3b. So in G’ = (V, E’) there is a path between u and v.
This proves that G’ is connected.

Now we want to prove that Algorithm 9 is local. For computing whether an edge
which is adjacent to a vertex v is in G, we need to explore the vertices which are at
most k + 1 hops away from v. Now let v be a vertex in a rectangle R. In order to
compute the color of v, in step 2 we need to explore the connected component of v in
G[R] and in step 3 we need to explore all connected components of graphs Geo [R']
that v could possibly belong to. From Lemma 6 it follows that the diameters of
the graphs G[R'] and G,o;[R’] are bounded by 135. So Algorithm 9 has a locality
distance of 135 + k+ 1 = 136 + k. O

7. IMPOSSIBILITY RESULTS

In Sections 5 and 6 we presented local algorithms which computed 5 and 4
colorable spanners for a given unit disk graph and computed a coloring with the
respective number of colors for the spanner. In this section we prove that this
cannot be done locally for a bipartite spanner, even if we do not want to compute
the coloring but only the spanner. We also prove that there is no local algorithm
for 3-coloring unit disk graphs or 3-colorable spanners of unit disk graphs, even if
the 3-colorability of the graph/spanner is guaranteed in advance. Finally we show
a lower bound for the approximation ratio of a local algorithm for vertex coloring.

Theorem 5. There is no local algorithm for computing connected bipartite spanners
of unit disk graph.

Proof. Assume on the contrary that there is a local algorithm A that computes a
bipartite spanner for every unit disk graph G. Denote by k the locality distance of
A. Let G = (V, E) be a unit disk graph with 2k + 3 vertices that are distributed
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evenly in a circle such that all vertices have degree two (see Figure 10). Note that
G is an odd cycle and therfore not bipartite.

Consider any edge e = (u,v) and denote by v, the vertex opposite to e (note that
2k + 3 is odd and therefore v, is uniquely defined). Now consider the subgraph G,
induced by the vertices V\{v.} (see Figure 10). As A creates the bipartite spanner
locally based on the information about the vertices which are at most k hops away
from u and v, it must take the same decision for taking or not taking e into the
spanner for both G and G.. As not taking e for the spanner of G, would result in
a disconnected spanner for G., the edge e must be part of the spanners of both G
and G..

By applying the same reasoning to all edges e € E it follows that A does not
remove any edge from G when constructing the local spanner for it. But then A
outputs G itself as its spanner which is an odd cycle and therefore not bipartite.
This is a contradiction. (]

F1GURE 10. The graphs G and G, for k =5

Now we show that local algorithms cannot 3-color the vertices of a unit disk
graph or a spanner of a unit disk graph.

Theorem 6. There is no local algorithm for coloring 3-colorable unit disk graphs
using at most 3 colors.

Proof. Assume on the contrary that there is a local algorithm A that colors every
three-colorable unit disk graph using at most three colors. Also assume that the
color for each vertex v depends only on the vertices which are at most 2 hops away
from v (i.e. the locality distance of A is 2). Consider the graphs G; and Gy as
shown in Figure 11. Consider the vertices which are labeled wy,us, vy, vo, w1, ws.
The 2-neighborhood of these vertices is the same in both G; and G5. So A will
color them with the same colors in (G; and G5. But once u1,v; and w; are colored,
the colors of the other vertices in both graphs are forced when only allowing three
colors. In Gy the vertices u; and vo must be colored in the same color, whereas in
(5 these vertices must be colored in different colors. As A colors the six indicated
vertices with the same colors, either in Gy or in G5 there must be an edge whose
adjacent vertices have the same color which is a contradiction. For any k£ € N the
graphs GG; and G can easily be enlarged so that they become counterexamples for
any local algorithm that makes its decision based on the vertices that are at most
k hops away from a given vertex. O

Corollary 1. There is no local algorithm for coloring 3-colorable spanners of unit
disk graphs with at most 3 colors.
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FIGURE 11. The graphs G; and G2. On the bottom are the ver-
tices which w1, us, v1, v2, w1, ws “see” when they explore the vertices
2 hops away from them in G; and Gs.

Corollary 2. There is no local algorithm for coloring 3-colorable planar spanners
of unit disk graphs with at most 8 colors.

Now we give a lower bound for the approximation ratio which we can guarantee
for a local approximation algorithm for vertex coloring. Our proof uses a similar
technique as Linial in [14].

Theorem 7. Let A be a local algorithm for vertex coloring. The approximation
ratio of A is at least 3/2.

Proof. Let k be the locality distance of A, i.e. the color of a vertex v depends only
on the vertices which are at most k hops away from v. Let G = (V, E) be a unit
disc graph with 2k + 5 vertices that are distributed evenly in a circle such that all
vertices have degree two (see Figure 12). Note that G is an odd cycle and therfore
not bipartite. It holds that x(G) = 3. Let color : V. — N be the coloring computed
by A.

Claim: There must be three vertices vq, v, v3 in a row in G such that c(vy) #
c(v2) # c(vs) # c(v1).

Proof of the claim: We take an arbitrary vertex v and its neighbor v’. As ¢ is a
valid coloring it holds that c(v) # c(v'). Now take the subgraph G induced by all
vertices with colors ¢(v) and c(v’). As G is not bipartite we know that G # G. Let
C be a connected component of G with at least two vertices (such a component
must exist since v and v’ are adjacent). As G # G there must be a vertex vs
adjacent to C' in G such that c¢(v) # c(vs) # c(v'). We define two adjacent vertices
in C' where one of them is adjacent to v3 as v; and ve. This completes the proof of
the claim.

We continue with the proof of the theorem. We construct a graph G’ as follows:
Starting with G, we identify the edge e = (u,v) which is opposite to vs (note that
G is an odd cycle and therefore e is well-defined) and remove u and v (see Figure
12). This implies that G’ is bipartite. When coloring the vertices vq, vo,v3, the
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algorithm A takes its decision based on the information of the vertices which are at
most k hops away from them. So A must color the vertices vy, ve, v3 with the same
colors in G’ and in G. Therefore, A colors G’ with at least 3 colors even though G’
is bipartite. [

u®v

FIGURE 12. The graphs G and G’ for k = 4

8. CONCLUSION

We presented a local approximation algorithm for the vertex coloring problem
with polynomial processing time which achieves an approximation ratio of 4. Al-
lowing exponential processing time we improved the approximation ratio to 3. The
best known global polynomial time algorithm for this task achieves an approxi-
mation ratio of 3. It is an interesting open problem whether the approximation
factor for local algorithms can be improved to less than 3. Also open is whether the
approximation factor for local algorithms with polynomial processing time can be
improved to less than 4. We showed that when the approximation factor of a local
algorithm is given in the form |color| < a.- x(G) then « has to be at least 3/2. Is it
possible to prove or disprove that there are local approximation algorithms which
color a unit disk graph G with at most § - x(G) + 7 colors such that § < 3/2 and
the constants being independent of the size of G7

We presented a local algorithm which computes k-partite spanners for unit disk
graphs and k-colorings for these spanners in the case of kK = 5 with a locality
distance of 36. We also presented an algorithm which accomplishes this task for
k = 4 with a locality distance of 138. It remains an open problem to improve these
locality distances and to examine whether one can prove a lower bound for the
locality of algorithms for these problems.

We showed that there is no local algorithm for the case of k = 2 even if we want
to compute only the spanner and not the coloring for it. So our algorithm for £ = 4
uses at most one color more than are being used by a local algorithm for the least
possible k. It is an open question whether there is a local algorithm for £ = 3. We
also proved that no local algorithm can compute a 3-coloring for every 3-colorable
unit disk graph. The same holds for 3-colorable spanners of unit disk graphs. So if
there is a local algorithm for computing a 3-partite spanner and a 3-coloring for it
the spanner must have more properties than just being 3-colorable globally.
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