
Incremental Construction of k-Dominating
Sets in Wireless Sensor Networks

Mathieu Couture, Michel Barbeau,
Prosenjit Bose and Evangelos Kranakis

School of Computer Science
Carleton University
September 18 2006

Abstract

Given a graph G, a k-dominating set of G is a subset S of its
vertices with the property that every vertex of G is either in S or
has at least k neighbors in S. We present a new incremental local
algorithm to construct a k-dominating set. The algorithm constructs
a monotone family of dominating sets D1 ⊆ D2 . . . ⊆ Di . . . ⊆ Dk

such that each Di is an i-dominating set. For unit disk graphs, the
size of each of the resulting i-dominating sets is at most six times the
optimal.

1 Introduction

An ad hoc network is a special type of wireless network where no node has
a priori knowledge about the other nodes. Constructing and maintaining a
structure allowing nodes to communicate with each other is one of the main
challenges of ad hoc networks. Sensor networks are a specific type of ad hoc
networks dedicated to a specific task: sensing (light, temperature, humidity,
etc.). The dominating set structure helps ad hoc and sensor networks to
perform routing. In sensor networks, dominating sets also help the sensing
task itself. Since nodes located close to each other sense similar values, only
a dominating set of the nodes is needed to monitor an area. This helps

1

prolonging the network’s lifetime by turning off the nodes that are not in the
dominating set, thereby extending the battery life of these nodes.

Sensor networks typically contain more nodes and each node has less
memory than in general ad hoc networks. Therefore, it is important to
design algorithms with low memory complexity. An algorithm is local if the
information needed by a node to perform its computation only concerns its
direct neighbors. The amount of memory needed by each node to execute a
local algorithm only depends on the number of its neighbors and not on the
network size.

Sensor nodes are more error-prone than nodes in general ad hoc networks.
They have limited energy resources and need to be periodically redeployed
by adding new nodes to the network. The fact that they are error-prone calls
for fault-tolerance in the design of algorithms for such networks.

We address the problem of locally constructing k-dominating sets on unit
disk graphs. Unit disk graphs are structures used to model ad hoc and
sensor networks. A k-dominating set of a graph is a subset of its nodes
where each node of the graph is either in the k-dominating set or has at
least k neighbors in the k-dominating set. Kuhn et al. [15] introduced the
idea of exploiting clique properties to construct a k-dominating set from a
1-dominating set. The performance ratio of a k-dominating set algorithm is
defined as the ratio of the size of the k-dominating set it produces over the
size of an optimal (minimum) k-dominating set. Kuhn et al. [15] claim that
the proposed algorithm has an expected performance ratio of O(1) for unit
disk graphs. However, in Section 5 we provide a counter-example to one of
the claims in their proof of Theorem 5.7

We generalize dominating set algorithms based on the idea of maximal
independent sets [2, 19, 25] to obtain k-dominating sets. A subset S of the
nodes of a graph G is said to be independent if it does not contain two
adjacent nodes. It is maximal if it does not have a proper independent su-
perset. It is straightforward to show that a maximal independent set is also
a dominating set. Our algorithm is local and, on unit-disk graphs, has a
deterministic performance ratio of six. It is not position-aware, which means
that nodes do not need to know their coordinate in the plane. It also con-
structs the k-dominating set incrementally. More specifically, it constructs
a monotone family of dominating sets D1 ⊆ D2 . . . ⊆ Di . . . ⊆ Dk such that
each Di is an i-dominating set. Incremental construction of k-dominating
sets is helpful when redeploying sensor networks. When senor nodes in the
k-dominating set run out of batteries or experiment failure for diverse rea-

2

sons, the k-dominating set has to be reconstructed. With an incremental
algorithm, reconstruction of a k-dominating set can be done by keeping the
current dominators.

The k-dominating set problem has been addressed by Dai and Wu [6] and
Kuhn et al. [15]. However, our algorithm the only one which has a constant
deterministic performance ratio. It is also the only one to provide an explicit
incremental construction. The algorithm presented in [6] elects all nodes at
the same time. It does not allow to augment a j-dominating set to a k-
dominating with k ≥ j. Also, their algorithm offers probabilistic guarantees
both on the performance ratio and the correctness of the output. The algo-
rithm presented in [15] needs to decide about a 1-dominating set which later
on plays a crucial role. Should nodes in that 1-dominating set experiment
failure (i.e. running out of batteries during the execution of the algorithm),
the whole algorithm could fail. Such a failure is likely to happen when recon-
structing the k-dominating set after network redeployment. In such situation,
it may happen that nodes from the original 1-dominating set have drained
their batteries. Also, the algorithm presented in [15] requires nodes to either
know their geographic position or to be able to modify their communication
range as the algorithm runs and offers an expected performance ratio. Our
algorithm is not position-aware, do not have any requirement on the abil-
ity to dynamically modify the communication range and can construct the
k-dominating set from another j-dominating set with j ≤ k.

The rest of this paper is organized as follows: in Section 2, we review
related work on dominating sets. In Section 3, we present our algorithm. In
Section 4, we analyze the performance ratio of our algorithm. In Section 5,
we compare it with the one proposed by Kuhn et al. [15]. In Section 6, we
present some simulation results. We draw conclusions in Section 7.

2 Related Work

A subset S of the vertices of a graph G is dominating G if every node of G
is either in S or has at least one neighbor in S. The dominating set problem
consists of finding a dominating set of minimum size. It is a special case of
the set-cover problem [13]. In the set-cover problem, the input is a set of
sets S, and the output is a subset S ′ of S such that the union of the sets
in S ′ is the same as the union of the sets in S. Once again, S ′ should have
minimum size. Set-cover is one of the first problems that have been shown to

3

be NP-complete [13]. The dominating set problem itself has been shown to
be NP-complete by a reduction from the vertex-cover problem. Johnson [12]
proposed a greedy approximation algorithm to the set-cover problem (and
thus to the dominating set problem). Its performance ration is H(∆), where
∆ is the size of the largest set in S and H is the harmonic function. We are
not aware of any better approximation algorithm.

Alber et al. [1] proposed a way to reduce the size of the dominating set de-
cision problem. More explicitly, they proposed a polynomial time algorithm
which transforms an instance of the decision problem does a given graph G
have a dominating set of size k? to another smaller instance of the same
problem. For the special case of planar graphs, the graph output by their
algorithm is guaranteed to have at most 335k nodes, which is independent
of the size of the original graph. However, this algorithm does not construct
an actual dominating set.

Ad hoc and sensor networks are often modeled using a unit disk graph.
A unit disk graph is a graph where vertices are points in the plane and there
is an edge between two points within unit distance. The dominating set
problem on unit disk graphs is NP-complete [4, 20].

The k-dominating set problem [6, 15, 21] is a variant of the dominating
set problem. A subset S of the vertices of a graph G is k-dominating if every
node of G is either in S or has at least k neighbors in S. A node is said to
be k-dominated by S if it is either in S or has at least k neighbors in S. The
k-dominating set problem, as addressed in this paper, is the following:

Problem 2.1 Given a graph G, find a k-dominating set of G whose size is
minimum.

Other variants of this problem are the distance-k dominating set prob-
lem [16], max k-cover problem [8] and connected dominating set problem. In
the distance-k dominating set problem, the goal is to find a subset S of the
nodes of a graph G such that every node of G is either in S or at most k
hops away from a node which is in S. In the max k-cover problem, the goal
is to find a subset of size k of S that covers the maximum number of nodes.
In the connected dominating set problem, one needs to find a dominating set
that is also connected.

Note that there is often confusion between the distance-k version of the
problem and the one studied in this paper. For both problems, there are
papers in which they are referred to as the k-dominating set problem [16, 21].

4

It also happens that a k-dominating set is defined as a dominating set of size
k [1]. The k-dominating set problem discussed in the current paper has also
been referred as the k-fold dominating set problem [15].

1

2

3

4

5

6

7

8

9

10

Figure 1: Performance ratio of n
4

for the algorithm presented in [28].

The connected dominating set problem has been originally addressed by
Guha and Khuller [10]. They proposed three approximation algorithms. Two
algorithms are based on growing a tree. The third algorithm consists of grow-
ing a forest. The algorithms have a performance ratio of O(log n), where n
is the number of vertices in the graph. Das and Bharghavan [7] implemented
these non-local algorithms in a distributed framework.

Wu and Li [27] introduced a local algorithm based on the notion of re-
placement path: If all of your neighbors form a clique, then do not elect
yourself as a dominator. Otherwise, elect yourself as a dominator. Wan
et al. [25] showed that the worst case performance ratio of that algorithm is
at least n

2
. Figure 1 depicts the worst case. Nodes 1 to 5 and 6 to 10 form

two cliques, and facing nodes (nodes with same y-coordinate) are connected.
In that case, there is a connected dominating set of size 2 (nodes 1 and 6),
but the algorithm would elect every node as a dominator. On the other
hand, two nodes are connected by a path of dominators having a minimum
number of hops [27]. Wu and Li [28] further improved the algorithm by ob-
serving that if a node u has two connected neighbors v and w such that the
neighborhood of u is included in the union of the neighborhoods of v and
w, and if the identifier of u is smaller then the identifiers of v and w, then
u should not be elected as a dominator. The proof in [25] adjusts easily to
show that the worst case performance ratio in that case is at least n

4
. Again

in Figure 1, all the black nodes get elected while only two nodes suffice. In-
stead of using only two connected neighbors, Dai and Wu [5] then proposed
to use k connected neighbors. They called this improved version of the al-
gorithm Rule k. Hansen and Schmutz [11] analyzed the expected size of the

5

produced connected dominating set. Finally, the Rule k algorithm has been
further generalized by Wu and Dai [26] in the form of a generic coverage
condition. The generic coverage condition is the following: If for any two
of your neighbors v and w, there exists a replacement path between v and w
such that all nodes on that path have identifiers higher than yours, then do
not elect yourself a as dominator. Otherwise, elect yourself as a dominator.
The reason why it is more general than Rule k is that there is no bound on
the size of the replacement path and nodes on the replacement path need
not be neighbors of node u.

Stojmenovic et al. [24] proposed to improve the algorithm presented in [27]
by giving some priority to nodes having higher degree. Another stream of
research in connected dominating sets uses the notion of independent set.
Marathe et al. [19] pointed out that using maximal independent sets in unit
disk graphs could provide a simple way to approximate a minimum dominat-
ing set within a factor of five. Alzoubi et al. [2] and Wan et al. [25] showed
that a similar strategy can lead to a performance ratio of 8 in the case of
connected dominating sets. Cardei et al. [3] obtained similar results. Li et al.
[17, 18] successively reduced the performance ratio to 5.8+ln 4 and 4.8+ln 5,
respectively.

To the best of our knowledge, not much work has been done on the k-
dominating set problem. The work we are aware of are from Dai and Wu
[6], Moscibroda and Wattenhofer [21] and Kuhn et al. [15]. Dai and Wu [6]
proposed three different algorithms. The first one is randomized and gives a
k-connected k-dominating set with high probability. The second algorithm
is another generalization of Wu et al. [29]. It is deterministic and is proven
to always give a k-connected k-dominating set. In both cases, the decision
is based on local or k-local information, which means that a node needs to
be aware of the nodes that are within k hops. The third algorithm proceeds
as follows: randomly create a k-coloring of the graph and then apply any
existing connected dominating set algorithm on each color. Moscibroda and
Wattenhofer [21] have addressed the problem of finding k disjoint dominating
sets (the union of which makes a k-dominating set). Their algorithms are
based on coloring schemes. Note that the problem they addressed is slightly
different since the parameter k is not given as an input. Instead, they find
the largest k such that it is possible to find k disjoint dominating sets. Kuhn
et al. [15] proposed two algorithms. The first one is for general graphs and
uses a distributed rounding scheme. The second one is for unit disk graphs
and works in two phases. The first phase reuses an algorithm from Gao et al.

6

[9] to construct a 1-dominating set. In the second phase, the 1-dominators
select the other dominators. The authors give a proof that the expected
performance ratio of their algorithm is O(1).

3 Algorithm

Alzoubi et al. [2] and Wan et al. [25] addressed construction of a connected
dominating set. Their algorithm consists of two phases. The first phase
constructs a maximal independent set. A maximal independent set is also
a dominating set. In this section, we generalize that first phase of the algo-
rithm presented in [2, 25] to obtain a k-dominating set. Our generalization
augments a (k − 1)-dominating set in order to obtain a k-dominating set.
More specifically, we want to construct a monotone k-dominating family.

Definition 3.1 A k-dominating family is a sequence D1, D2, . . . , Dk of sub-
sets of vertices of the unit disk graph such that for all i = 1, 2, . . . , k, Di

is an i-dominating set. A monotone k-dominating family is a k-dominating
family with the additional property that the sequence of dominating sets is
monotonically increasing under inclusion, i.e. D1 ⊆ D2 ⊆ · · · ⊆ Dk.

The key idea of our algorithm is that we first construct a 1-dominating set
by constructing a maximal independent set. Then, we construct a maximal
independent set of the nodes that are not 2-dominated, which gives a 2-
dominating set. We repeat the procedure until we have a k-dominating set.
The construction of each dominating set is similar to the approach in [2, 25].

We now present an overview of our algorithm. Every node has a unique
identifier. In initialization phase, each node sends its identifier to its im-
mediate neighbors. After initialization, two types of messages are used:
join(id, i) and give-up(id, i), where id is the identifier of the sending node
and i = 1 . . . k identifies a round. These messages are only sent to im-
mediate neighbors. The join(id, i) message means that the sender joins
the j-dominating sets for j = i . . . k. Such a node is said to be marked
in round i. The give-up(id, i) message means that the sender is excluded
of the i-dominating set. After transmitting a join message, the sender re-
mains silent. A node is said to be a candidate for round i if it is not part
of the (i − 1)-dominating set and it has never sent the give-up(id, i) mes-
sage. Following the completion of the initialization phase, every node that
has an identifier lower than the ones of all its immediate neighbors sends

7

Algorithm 1 Dominating Set(id,N, k)

Input: id, the node identifier
N , the list of the neighbors identifiers
k, the required number of dominators for a non-dominating node

Output: dominator, a boolean indicating whether the node is a dominator
Local Variables: round, the current round

candidate, a lookup table indicating whether or not a node n is a candi-
date to be a dominator in round r (all initial values are true)

1: dominator ← false
2: round← 1
3: if id < min(N) then
4: dominator ← true
5: send join(id, 1)
6: exit
7: end if
8: while round ≤ k do
9: receive message

10: if message is join(n, r) then
11: send give-up(id, round)
12: round← round + 1
13: for i = r to k do
14: candidate[n, i]← false
15: end for
16: end if
17: if message is give-up(n, r) then
18: candidate[n, r]← false
19: end if
20: if id < min{n ∈ N |candidate[n, round]} then
21: dominator ← true
22: round← k + 1
23: send join(id, round)
24: exit
25: end if
26: end while

8

the join(id, 1) message. The rest of the algorithm is message driven. Algo-
rithm 1 specifies how each node should behave. Note that different nodes
may execute simultaneously different rounds.

1

2

3

4

5

6

7

8

9

10

11

121314

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

121314

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

11

121314

15

16

17

18

19

20

10

1

2

3

4

5

6

7

8

9

10

11

121314

15

16

17

18

19

20

Figure 2: Marking Process Example for k = 1 (above) and k = 2 and 3
(below).

Figure 2, illustrates the marking process for k = 1, 2 and 3. Nodes
in black are dominators. Nodes in grey are k-dominated. Nodes in white
ate not k-dominated. For k = 1, nodes 1, 2, 3 and 5 have the smallest
identifier among their (0-dominated) neighbors and thus declare themselves
dominators. Initially, node 10 can not declare itself a dominator because of
nodes 7, 8 and 9. However, after node 2 has declared itself a dominator, nodes
7, 8 and 9 become 1-dominated. Node 10 is then allowed to declare itself a
dominator. The same reasoning applies to nodes 1 and 14. The 1-dominating
set is then {1, 2, 3, 5, 10, 14}. For k = 2, there is only one new dominator,
node 15. For k = 3, the new dominators are nodes 4, 7, 11 and 18.

9

4 Theoretical Properties

In this section, we give an overview of the theoretical properties of our al-
gorithm. We first show that our algorithm computes a valid k-dominating
set and a monotone k-dominating family. Then, we analyze the worst case
performance ratio of our algorithm. In the latter part, we follow the general
idea of Kuhn et al. [15]. More precisely, we first show that no unit disk
can contain more than a given number of dominators (i.e. 5k). Then, we
use properties of k-dominating sets to show that this leads to a constant
performance ratio.

Proposition 4.1 Let Si be the set of nodes that are marked in rounds j =
0 . . . i of Algorithm 1. Then Si is an i-dominating set.

Proof: We proceed by induction on i. To make the things simpler, we
say that i ranges from 0 to k. The round zero chooses the empty set as
a 0-dominating set. The base case is trivial, since all nodes of the graph
have at least zero neighbors in the empty set. For the induction case, We
have to show that if Si is a valid i-dominating set, then Si+1 is also valid
(i + 1)-dominating set.

In order to do this, we proceed by contradiction. Let n1 be a node that is
not (i+1)-dominated by Si+1. This means that it has not sent a join(id, i+1)
message. Consequently, it must have a neighbor n2 with a lower identifier
that is still a candidate for round i + 1 (line 20), meaning that it is not
(i+1)-dominated either (line 11 in n2, and 17 in n1). Since n2 is not (i+1)-
dominated, by the same reasoning, there must have a node n3 that is not
(i+1)-dominated and has a lower identifier than the one of n2. This process
allows to construct a path n1, n2, . . . , nj, . . . , nk such that none of the nj is
(i + 1)-dominated, id(n1) > id(n2) > . . . > id(nj) > . . . > id(nk), and nk do
not have any neighbor with a lower identifier that is not (i + 1)-dominated.
Then, nk should have elected himself as a dominator, contradicting the fact
that it is not (i + 1)-dominated. Therefore, every node is (i + 1)-dominated,
which completes the inductive case. �

In order to claim that Algorithm 1 produces a monotone k-dominating
family, we also have to show the monotonicity property.

Proposition 4.2 For i = 1 . . . k, let Si be defined as above. Then for all
i = 0 . . . k − 1, Si ⊆ Si+1.

10

Proof: The monotonicity property claimed in the statement of the propo-
sition is true by construction. That is, let n ∈ Si. Then, it has been marked
in some round j ≤ i < i + 1 and by definition of Si+1, we have n ∈ Si+1. �

For unit disk graphs, we prove an upper bound on the cardinality of the
k-dominating set computed by Algorithm 1. We first need to show that at
each round, the elected nodes form an independent set.

Proposition 4.3 In any given round, the nodes marked by Algorithm 1 form
an independent set.

Proof: Suppose that in the same round, two adjacent nodes n1 and n2

declare themselves dominators. Without loss of generality, suppose n1 has a
lower identifier than n2. This means that as long as n1 did not send a give-
up message, n2 can not elect itself a dominator. But since n1 never sends
such a message (no node sends both a give-up and a join message), n2 can
never declare itself a dominator. This means that no two adjacent nodes can
declare themselves dominators. �

When k = 1, for unit disk graphs, we can use the above property to
show that the set of marked nodes is not larger than five times the size
of an optimal dominating set [19]. For k > 1, it is not the case that the
set of elected nodes form an independent set and the proof is a little more
complicated.

Proposition 4.4 Let G = (V,E) be a unit disk graph, C be a unit disk and
S ⊆ V be the set of nodes marked by Algorithm 1. Then |S ∩ C| ≤ 5k.

Proof: By proposition 4.3, S is the union of k independent sets. Since
no unit disk can contain more than 5 independent nodes [19], S ∩C can not
contain more than 5k nodes. �

Proposition 4.5 Let G = (V, E) be a graph, S a subset of V , t an integer
and OPTk = {v1, . . . , v|OPTk|} an optimal k-dominating set of G. If |S| >
t|OPTk|, then there is at least one node v ∈ OPTk such that |N(v) ∩ S| >
k(t− 1), where N(v) is the set formed by v and its neighbors.

Proof: Let S ′ be S\OPTk. Since |S ′| ≥ |S|−|OPTk| > t|OPTk|−|OPTk|,
we have |S ′| > (t − 1)|OPTk|. For each vi ∈ OPTk, define Si as N(vi) ∩ S ′.

11

Since each node in S ′ is adjacent to at least k nodes in OPTk, we have that

optk∑
i=1

|Si| ≥ k|S ′| > k(t− 1)|OPTk|

Therefore, by the pigeonhole principle, one of the Si contains more than
k(t− 1) nodes. The result follows from the fact that Si ⊆ N(vi) ∩ S. �

The two last propositions thus allow us to prove our performance ratio:

Theorem 4.6 Let G = (V, E) be a unit disk graph, S ⊆ V the set of nodes
marked by Algorithm 1 and OPTk an optimal k-dominating set. Then |S| ≤
6|OPTk|. In other words, the performance ratio is not greater than six.

Proof: Suppose |S| > 6|OPTk|. By proposition 4.5, there is at least one
node v ∈ V such that |N(v)∩ S| > 5k. But this contradicts proposition 4.4,
and therefore |S| ≤ 6|OPTk|. �

As stated before, for k = 1 it is known that no independent set can be
larger than five times the size of an optimal dominating set [19]. We then
have a leap from five to six when we generalize the maximal independent set
algorithm for dominating sets to k-dominating sets. At first sight, it may be
a bit surprising but that leap actually comes directly from the definition of a
k-dominating set: the only nodes which need to have at least k neighbors in
the dominating set are the ones that are not in the dominating set. Nodes
that are in the k-dominating set do not need to have k neighbors in the
dominating set.

As we shall see in the next section, it is that property which motivates
our concerns about the proof of Kuhn et al. [15] for the performance ratio of
their algorithm. We did not verify whether this has a major impact on their
results, but we do not believe this is the case.

We now show that for any k, there exists graphs for which our algorithm
has a performance ratio of five. It is an open question whether or not it is
possible to close the gap between five and six. Before, we need the following
lemma:

12

φ φ

A

B

Cp

q
q′

Figure 3: Lemma 4.7.

Lemma 4.7 Let4ABC be an isosceles triangle such that ∠BAC = ∠ACB =
φ, p be a point located on the line AB such that A is between p and B, and
q be a point located on the line CB such that C is between q and B. Then
|pq| > |AC|.

Proof: If |pB| = |qB|, then4pBq is similar to 4ABC, and |pB| > |AB|
implies |pq| > |AC|. Suppose now that |pB| < |qB|, and let q′ be the point
located on the line CB such that C is between q′ and B and |q′B| = |pB|. By
the first case, |pq′| > |AC|. Now, since 4ABC is isosceles, φ < π

2
, and since

∠pq′q = π−φ, we have that ∠pq′q > π
2
. Therefore, ∠pq′q is the largest angle

of4pq′q, meaning that its opposite side, pq, is the largest side. In particular,
we have |pq| > |pq′| > |AC|. The case where |pB| > |qB| is identical, which
completes the proof of the lemma. �

Proposition 4.8 The worst case performance ratio of Algorithm 1 is at least
five.

Proof: For k = 1 and n = 6, place five nodes equally spaced on the
boundary of a circle of radius 1, and place one other node in the center of
that circle. Since the circle has radius 1, the center node shares an edge with
all the other nodes. Also, since the distance between every pair of nodes
on the circle is at least 2 sin π

5
> 1, there is no other edge in the unit disk

graph. In the remainder of the proof, this basic structure will be referred
to as a star, the node placed in the center of the circle will be referred to
as the center of the star and the five nodes on the boundary of the circle
will be referred to as the branches of the star. The center of a star form a

13

dominating set of the whole star. However, if the center happens to be given
a higher identifier than one of the branches, all branches would be marked
as dominators, leading to a performance ratio of five.

Figure 4 depicts how to connect several stars to build cases with n as large
as desired. More precisely, we show how to construct examples of size 14 +
8m, for any given m (on Figure 4, m = 1). The construction goes as follows:
place m + 2 stars on a horizontal line such that their centers are placed at
x-coordinates 0, 3, 6, . . . , 3(m + 1) and no branch lies on the horizontal line.
Since the circles in which the stars are inscribed are at distance at least 1
from each other, the only edges of the graph so far are the ones linking the
branches of the stars to their centers. All that remains is to connect the
graph. In order to do so, add nodes on the intersection of the inscribing
circles with the horizontal line. These nodes will be referred to as bridging
nodes. Since the centers of two consecutive stars are at distance 3 from each
other, the two bridging nodes between them are at distance 1 from each other.
Therefore, there is an edge between two bridging nodes which are between
the centers of two consecutive stars, making the whole network connected.
To see how the performance ratio of five can be reached, notice that the star
centers form a dominating set of size m + 2. However, since the set of all
branches form an independent set, it could be that those nodes would be
marked as dominators, leading to a dominating set of size 5(m + 2), which
gives a performance ratio of at least five.

Figure 4: Lower bound of five for Algorithm 1.

For k > 1, Figure 5 shows how to generalize the star structure. The goal
is to map to each node of the star a set of k nodes such that:

1. nodes mapped to the center share an edge with every other node and

2. nodes mapped to the branches only share edges with nodes mapped to
the center and nodes mapped to the same branch.

14

2π
5

1

p

p1

p2

C

C1

C2

s1

s2

s3
s4

s5

v1

v2

v3
v4

v5

Figure 5: Widget for k > 1.

In order to achieve this, draw a regular pentagon having side length of 1. Let
C be the inscribing circle of that pentagon and r = 1

2 sin(π
5
)

be the radius of

C. Now, let C1 and C2 respectively be the circles having the same center as
C and radii r1 = 1−r

2
and r2 = r + r1. For each vertex vi of the pentagon (i

from 1 to 5), let si be the half-line from the center of C through vi. Now, let
p be a point located inside C1, and p1 and p2 be two points located on some
si and sj (i 6= j), between C2 and C. Then, Lemma 4.7 tells us that

|p1, p2| > |v1, v2| ≥ 1

and from the triangle inequality, we have

|p, p1| ≤ r1 + r2 = 2(
1− r

2
) + r = 1.

Similarly, |p, p2| ≤ 1. The construction we need is then the following: place
k points inside C1 and k points on each of the si between C and C2. We call
the result of that construction a generalized star. The points located inside
C1 form a k-dominating set, but the algorithm may mark all nodes located
on the si. Since there are 5k such points, the performance ratio is five in
that case. To construct a lower bound example with k > 1 for large n, we
link the generalized stars in a similar fashion as for the case k = 1. �

15

5 Comparison with Kuhn et al.’s algorithm

To the best of our knowledge, Kuhn et al. [15] proposed the only algorithm
producing a k-dominating set with probability 1. However, their performance
ratio is not deterministic. In this section, we compare the two algorithms.
The most important result of [15] about the algorithm they proposed for
unit disk graphs is Lemma 5.6, which states that in a disk of radius 1

2
, their

algorithm elects at most O(k) leaders in expected case. In the deterministic
case, our algorithm elects at most exactly k leaders.

Proposition 5.1 Let G = (V, E) be a unit disk graph, C a disk of radius 1
2

and S ⊆ V the set of nodes marked by Algorithm 1. Then |S ∩ C| ≤ k.

Proof: The proof goes the same way as for proposition 4.4. By proposi-
tion 4.3, S is the union of k independent sets. Since the maximum number of
independent nodes a unit disk can contain is 1, S ∩ C can not contain more
than k nodes. �

0

C

D

1
2

3
4

5
4

3
2

2 9
4

1

k − 1 nodes

n nodes

Figure 6: Counter-example to the proof of Theorem 5.7 of [15].

Kuhn et al. [15] actually showed that the performance ratio of the pro-
posed algorithm is O(1). However, their proof uses the fact that, in order to
k-dominate the nodes in a disk C of radius 1

2
, every optimal k-dominating set

16

must elect at least k dominators in a disk of radius 3
2

having the same center
as C. However, this is not always the case. Figure 6 shows how to construct
a counter-example for any k ≥ 2 (on the figure, k = 7). Black nodes are the
dominators and white nodes are the non-dominators. The node at 3

4
is only

there to make the network connected. The only node in C is 7-dominated
but only two of the n + 2 nodes in D are selected as dominators.

6 Simulation Results

We have generalized an existing independent set-based algorithm [2, 19, 25]
in order to incrementally construct a k-dominating set. We have chosen to
generalize this specific algorithm because it is local and has constant perfor-
mance ratio. By simulation, we compare our algorithm with k-generalized
versions of other available algorithms. Stojmenovic et al. [24] suggested the
following heuristic to improve the independent set algorithm of [2, 19, 25]:
instead of ordering the nodes according to their identifier, order them accord-
ing to their degree first and then their identifier. Higher priority is granted
to nodes having higher degree. The performance ratio is still at most five,
but the case of Figure 4 is avoided. However, it has not been proven that the
performance ratio is actually improved. For the k-dominating set problem,
it is not desirable to favor higher degree nodes. The reason is that nodes
having degree less than k cannot have k dominating neighbors, so they must
necessarily be in the k-dominating set.

Selecting nodes of higher degree is the same idea that is behind the greedy
set-cover algorithm. The greedy set-cover algorithm first favors nodes that
dominate the largest number of nodes not yet dominated. Although this is a
global selection criterion, it still has to be examined. At first sight, since it
does not have constant performance ratio (we said in the first paragraph of
Section 2 that it is H(∆), where ∆ is the maximum degree of a node in the
network and H is the harmonic function), one would believe that it would
not perform as well as our algorithm. However, it turns out that in order
to have H(∆) > 5, we need ∆ to be at least 83, and to reach six, we need
∆ to be at least 226. Since it is not likely to have nodes having that many
neighbors in real situations, this algorithm still deserves attention.

In this section, we discuss simulation results comparing Algorithm 1 with
k-generalized versions of both the algorithm presented in [24] and the greedy
algorithm. We also compare it with the greedy construction of a maximal

17

1 2 3 4 5 6 7 8 9 10
20

40

60

80

100

120

140

160

180

200

k

av
er

ag
e

do
m

in
at

in
g

se
t

si
ze

Greedy

Independent
Greedy-Independent

Degree-Independent

Figure 7: Average dominating set size for 200 nodes.

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

k

av
er

ag
e

do
m

in
at

in
g

se
t

si
ze

Greedy

Independent

Greedy-Independent
Degree-Independent

Optimal

Figure 8: Average dominating set size for 35 nodes.

18

1 2 3 4 5 6 7 8 9 10
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

k

av
er

ag
e

pe
rf

or
m

an
ce

 r
at

io

Greedy

Independent
Greedy-Independent

Degree-Independent

Figure 9: Average performance ratio for 35 nodes.

alg / k 1 2 3 4 5 6 7 8 9 10
greedy 26.03 47.17 67.3 86.69 105.01 122.39 138.29 152.32 164.32 174.21
ind 31.72 54.49 73.36 90.1 104.46 117.87 130.27 141.59 151.92 161.33
gr-ind 26.07 47.17 66.5 85.03 101.54 117.09 131.34 143.91 154.76 164.16
deg-ind 29.26 50.82 69.49 86.46 101.76 116.43 129.82 141.73 152.85 162.62

Table 1: Simulation results for 200 nodes.

independent set. The k-generalized versions of those algorithms work the
same way we generalized the maximal independent set algorithm: for k = 1,
we run the standard algorithm on all nodes. For k ≥ 2, we run the standard
algorithm on nodes that are not yet k-dominated. We ran our simulations
200 times for networks of 200 nodes. We have chosen a communication
range such that with high probability, the network is connected. According
to Penrose [22, 23], for any integer k ≥ 0 and real constant c, if the nodes
have identical radius r given by the formula:

r =

√
ln n + k ln ln n + ln(k!) + c

nπ

then the network is (k + 1)-connected with probability e−e−c
as n goes to

19

alg / k 1 2 3 4 5 6 7 8 9 10
greedy 5.98 11.35 16.19 20.46 24.3 27.43 30.13 31.99 33.3 34.17
ind 7.35 12.78 16.93 20.67 23.57 25.78 27.95 29.76 31.19 32.45
gr-ind 5.99 11.31 15.95 19.89 23.4 26.25 28.68 30.46 31.87 33.03
deg-ind 6.66 11.82 16.09 20.04 23.26 26.09 28.25 30.26 31.74 32.9
optimal 5.1 9.81 14.31 18.09 21.48 24.18 26.68 28.93 30.61 31.96

Table 2: Simulation results for 35 nodes.

infinity. For n = 200, choosing k = 1 and c = 5, we then obtain that for a
radius of r ≈ 0.138, the network is 2-connected with probability 0.99.

Figure 7 and Table 1 show the simulation results we have obtained. The
algorithm which performed the best is the one in which we greedily con-
structed an independent set. Not far behind is the greedy algorithm. It
worth noting that even if those algorithms perform slightly better, neither
of the two are local. This is because the greedy choice of the next node
to be marked is based on a global criteria. For the two local algorithms,
it is interesting to note that the one using the ordered pair degree-id only
performs better for small values of k (5 and less). After that, it is the one
simply based on identifiers which performs better. With a 95% certainty, the
expected values of the size of the dominating sets was at most ±0.67 node.

Unfortunately, Figure 7 and Table 1 do not show the optimal solution.
Since the dominating set problem is NP-complete, only exponential time al-
gorithms are known to solve the problem. This is why only small instances of
the problem can be addressed by simulation. Figure 8 and Table 2 compare
the same algorithms with the optimal solution for a network of 35 nodes. We
ran over 200 simulation cases. In that case, with a 95% certainty, the actual
expected values of the dominating sets size was at most ±0.28 nodes. Fig-
ure 9 shows the average performance ratio we obtained for each algorithm.
For small values of k, the two global greedy algorithms are the best, followed
by the local algorithm granting priority to high degree nodes. The algorithm
simply based on identifiers performs the worst. However, as k grows, the
result change completely. The algorithm simply based on identifiers becomes
the best, and the basic greedy algorithm becomes the worst. The algorithm
constructing independent sets by granting priority to high degree nodes per-
forms slightly better than the greedy construction of an independent set.

20

7 Conclusion

In this paper, we have introduced a new algorithm to address the k-dominating
set problem. Our algorithm has a deterministic performance ratio of six. The
previously best algorithm had an expected performance ratio of O(k) for an
unspecified constant [15]. We have shown that the size of the k-dominating
set our algorithm produces may be five times larger than the optimal one.
However, it is an open issue whether or not the gap between five and six can
be closed. The expected performance ratio is also unknown.

Simulation results have shown that in some cases, the k-generalized ver-
sion of the greedy dominating set algorithm performs better than ours. Be-
sides their worst-case performance ratio, an other important difference be-
tween the greedy dominating set algorithm and ours is that one is global
while the other is local. We believe that differences between the performance
of local and global algorithms is an interesting research avenue. Important
work in that field has been done by Kuhn [14].

Acknowledgment

The authors graciously acknowledge the financial support received from the
following organizations: Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and Mathematics of Information Technology and
Complex Systems (MITACS).

References

[1] J. Alber, M. R. Fellows, and R. Niedermeier, Polynomial-time
data reduction for dominating set. J. ACM, 51(3):363–384, 2004.

[2] K. M. Alzoubi, P.-J. Wan, and O. Frieder, Message-optimal con-
nected dominating sets in mobile ad hoc networks. In MobiHoc ’02:
Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing, pp. 157–164, ACM Press, New York, NY, USA,
2002.

[3] M. Cardei, X. Cheng, X. Cheng, and D.-Z. Du, Connected dom-
ination in multihop ad hoc wireless networks. In Proc. the 6th Interna-

21

tional Conference on Computer Science and Informatics (CS&I’2002),
Durham, NC, USA, 2002.

[4] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk
graphs. Discrete Math., 86(1-3):165–177, 1990.

[5] F. Dai and J. Wu, Distributed dominant pruning in ad hoc networks.
In Proc. Intl. Conf. on Communications (ICC), Anchorage, AK, 2003.

[6] F. Dai and J. Wu, On constructing k-connected k-dominating set in
wireless networks. In IPDPS, IEEE Computer Society, 2005.

[7] B. Das and V. Bharghavan, Routing in ad-hoc networks using min-
imum connected dominating sets. In ICC (1), pp. 376–380, 1997.

[8] U. Feige, M. M. Halldorsson, G. Kortsarz, and A. Srini-
vasan, Approximating the domatic number. SIAM J. Comput.,
32(1):172–195, 2003.

[9] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu, Dis-
crete mobile centers. In SCG ’01: Proceedings of the seventeenth annual
symposium on Computational geometry, pp. 188–196, ACM Press, New
York, NY, USA, 2001.

[10] S. Guha and S. Khuller, Approximation algorithms for connected
dominating sets. In ESA ’96: Proceedings of the Fourth Annual Euro-
pean Symposium on Algorithms, pp. 179–193, Springer-Verlag, London,
UK, 1996.

[11] J. C. Hansen and E. Schmutz, The expected size of the rule k
dominating set. CoRR, cs.DM/0408067, 2004.

[12] D. S. Johnson, Approximation algorithms for combinatorial problems.
In STOC ’73: Proceedings of the fifth annual ACM symposium on The-
ory of computing, pp. 38–49, ACM Press, New York, NY, USA, 1973.

[13] R. M. Karp, Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, eds., Complexity of Computer Com-
putations, pp. 85–103, Plenum Press, 1972.

22

[14] F. Kuhn, The Price of Locality: Exploring the Complexity of Dis-
tributed Coordination Primitives. In PhD Thesis, ETH Zurich, Diss.
ETH No. 16213, 2005.

[15] F. Kuhn, T. Moscibroda, and R. Wattenhofer, Fault-Tolerant
Clustering in Ad Hoc and Sensor Networks. In 26th International Con-
ference on Distributed Computing Systems (ICDCS), Lisboa, Portugal,
2006.

[16] S. Kutten and D. Peleg, Fast distributed construction of small k-
dominating sets and applications. J. Algorithms, 28(1):40–66, 1998.

[17] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P. Wan, and D.-Z. Du,
On greedy construction of connected dominating sets in wireless net-
works. Tech. Rep. 04-048, University of Minnesota - Computer Science
and Engineering, 2004.

[18] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P. Wan, and D.-Z. Du,
On greedy construction of connected dominating sets in wireless net-
works. In Wireless Communications and Mobile Computing (WCMC),
vol. 5, pp. 927–932, 2005.

[19] M. Marathe, H. Breu, H. Ravi, and D. Rosenkrantz, Simple
heuristics for unit disk graphs. 1995.

[20] S. Masuyama, T. Ibaraki, and T. Hasegawa, The computational
complexity of the m-center problems on the plane. The Transactions
of the Institute of Electronics and Communication Engineers of Japan,
64E:57–64, 1981.

[21] T. Moscibroda and R. Wattenhofer, Maximizing the lifetime of
dominating sets. In IPDPS ’05: Proceedings of the 19th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS’05) -
Workshop 12, p. 242.2, IEEE Computer Society, Washington, DC, USA,
2005.

[22] M. D. Penrose, The longest edge of the random minimal spanning
tree. The Annals of Applied Probability, 7(2):340–361, 1997.

[23] M. D. Penrose, On k-connectivity for a geometric random graph.
Random Struct. Algorithms, 15(2):145–164, 1999.

23

[24] I. Stojmenovic, M. Seddigh, and J. Zunic, Dominating sets
and neighbor elimination-based broadcasting algorithms in wireless net-
works. IEEE Trans. Parallel Distrib. Syst., 13(1):14–25, 2002.

[25] P.-J. Wan, K. M. Alzoubi, and O. Frieder, Distributed construc-
tion of connected dominating set in wireless ad hoc networks. Mob. Netw.
Appl., 9(2):141–149, 2004.

[26] J. Wu and F. Dai, A generic distributed broadcast scheme in ad hoc
wireless networks. IEEE Trans. Comput., 53(10):1343–1354, 2004.

[27] J. Wu and H. Li, On calculating connected dominating set for effi-
cient routing in ad hoc wireless networks. In DIALM ’99: Proceedings
of the 3rd international workshop on Discrete algorithms and methods
for mobile computing and communications, pp. 7–14, ACM Press, New
York, NY, USA, 1999.

[28] J. Wu and H. Li, A dominating-set-based routing scheme in ad hoc
wireless networks. Telecommunication Systems, 18(1–3):13–36, 2001.

[29] W. Wu, H. Du, X. Jia, Y. Li, C.-H. Huang, and D.-Z. Du,
Minimum connected dominating sets and maximal independent sets in
unit disk graphs. Tech. Rep. 04-047, Department of Computer Science
and Engineering, University of Minnesota, 2004.

24

