
The eXtended Satellite Transport Protocol: Its Design and Evaluation �

Maged E. Elaasar, Zheyin Li, Michel Barbeau and Evangelos Kranakis
School of Computer Science, Carleton University,

1125 Colonel By Drive,
Ottawa (Ontario), Canada K1S 5B6

Abstract

Being both wireless and mobile, LEO satellite access
networks have a unique set of link errors including bit
corruption, handoff and limited connectivity. Unfortu-
nately, most transport protocols are only designed to
handle congestion–related errors common in wired net-
works. This inability to handle multiple kinds of errors
results in severe degradation in effective throughput and
energy saving, which are relevant metrics for a wire-
less and mobile environment. A recent study proposed
a new transport protocol for satellites called STP that
addresses many of the unique problems of satellite net-
works. There was, however, no explicit attempt to im-
plement a differentiating error control strategy in that
protocol. This paper proposes grafting a new probing
mechanism in STP to make it more responsive to the pre-
vailing error conditions in the network. The mechanism
works by investing some time and transmission effort to
determine the cause of error. This overhead is, however,
recouped by handsome gains in both the connection’s ef-
fective throughput and its energy efficiency.

1 Introduction

This paper focuses on enhancing the transport behav-
ior over networks containingLow Earth Orbiting (LEO)
satellite links. Although wireless and satellite links cer-
tainly share a lot of common characteristics, like high
bit–error rates and intermittent connectivity, they also
have enough distinct properties to be taken as differ-
ent environments for data transport. As surveyed by
SCPS [SCP98], these properties include highly variable
round trip times, disproportional up and down link ca-
pacities, limited computing resources (power, memory
and speed), and relatively higher throughput.

�The authors graciously acknowledge the financial support received
from the following organizations: Natural Sciences and Engineering
Research Council of Canada (NSERC) and Mathematics of Informa-
tion Technology and Complex Systems (MITACS).

This paper proposes a new error control strategy for
STP that makes it more adaptive to the unique error con-
ditions in satellite access networks. The new strategy is
based on an end–to–end probing mechanism that uses the
persistence of the error condition as an indication to the
kind of prevailing error in the network. The mechanism
works by suspending data transmission when an error is
detected and investing some time and transmission effort
to sense the current delays in the network. The mecha-
nism associates error conditions accompanied by notice-
able delays with network congestion. Otherwise, it asso-
ciates these errors with different link error events. The
strategy proposed here is based on an earlier one pro-
posed by Tsaoussidis and Badr in the context of TCP
called TCP–probing [TB00]. However, the new strategy
leverages many unique features of STP to enhance the
quality of error control. It reuses STP’s acknowledgment
polling cycle as a probing mechanism as well as for early
error detection. It also uses STP’s selective negative ac-
knowledgement as an explicit error indication and a way
to detect premature activation. Finally, it makes use of
STP’s lack of reliance on timeouts to finish faster. The
new probing mechanism preserves the end–to–end se-
mantics of STP and is a configurable option of the sender
only.

Using simulation, this paper shows that the new prob-
ing mechanism for STP indeed improves the effective
throughput and increases the energy efficiency of the pro-
tocol under various network error conditions. The simu-
lation is carried in PIX (Protocol Implementation Frame-
work for Linux) [BB02]. The main component of the
simulation is theeXtended Satellite Transport Protocol
(XSTP). XSTP is the STP protocol extended with our
probing mechanism, called XSTP–probing.

The rest of the paper is organized as follows. Sec. 2
reviews the satellite link properties and literature about
the available transport protocols and some proposed ex-
tensions for improving them in satellite access networks.
Sec. 3 describes the design of the new XSTP protocol.
Sec. 4 details the new XSTP–probing mechanism. Sec. 5
explains the simulation framework. Sec. 6 presents and

Michel Barbeau
Elaasar, M.E.

Michel Barbeau
17th Annual AIAA/USU Conference on Small Satellites

Michel Barbeau
SSC03-XI-3



reflects on the simulation results. Integration testing and
performance over packet radio are discussed in Sec. 7.
Sec. 8 concludes with a summary.

2 Transport over LEO satellites

2.1 Link properties

Since a satellite link is a special kind of wireless link,
it naturally inherits all of a wireless link’s characteris-
tics. Allman et al. [AGS99, ADG00] and the researchers
at SCPS [SCP98] describe satellite links as having a nat-
ural broadcast capability and an inherent ability to reach
mobile users, which make satellite links ideal substitutes
for terrestrial links. Satellite links also cover large areas
resulting in reduced switching and forwarding overhead.
However, being radio–based, satellite links can have lim-
ited bandwidth due to the natural limitation of the radio
spectrum and due to certain international agreements that
control the allocation of this resource. Also affected are
transport protocols as satellite links have limited ability
to trade bandwidth to solve other design problems.

Satellite networks are also characterized by having
asymmetric links, usually due to the high cost of the
needed technology to support both directions. This
asymmetry is typically manifested in the links’ speeds,
bandwidth or both. It impacts the performance of trans-
port protocols that use acknowledgements in the reverse
direction as a self–clocking mechanism. Having slower–
arriving acknowledgments hinders transmission speeds
in the forward direction. Another restricting feature
of LEO satellites is their limited computing resources
largely due to power and size limitations. Power restric-
tions in particular can affect the stability of a connection
and the frequency of errors, putting a damper on the over-
all performance of a transport protocol.

Similar to other wireless links, satellite links are lossy
with potentially high bit–error rates(BER), resulting in
frequent packet drops. This effect is mainly due to sev-
eral environmental factors (rain, pollution) that cause
noise, multi-path distortion and shadowing of radio chan-
nels. However, advanced error control coding is some-
times used in the link layer to mitigate such problems. It
is still challenging though to hide the side effect of those
solutions from unaware transport protocols. In fact, most
reliable transport protocols have an inherent assumption
that any loss is due to network congestion. Therefore,
when a segment loss is detected, these transport pro-
tocols switch to a more conservative stance, effectively
under–utilizing the link.

Another problem for LEO satellites is their intermit-
tent connectivity due to their constant movement in their
orbits. The window of connectivity to a given satellite
is around 10% of the time [SCP98]. A handoff occurs

when one LEO satellite goes out of range and another
one goes in range of some satellite access device. It can
also happen when a LEO satellite leaves the range of
some base–station and enters the range of another. The
connectivity can also be lost for more extended periods
due to a physical obstruction of the satellite signal or an
inefficient distribution of the LEO satellites by the ser-
vice provider. Both handoff and limited connectivity can
lead to periods of “blackout”, during which all packets
get dropped. As mentioned by Allman et al. [AGS99],
these periods are usually confusing for unaware trans-
port protocols and may lead them to take wrong deci-
sions (like invoking congestion control) that severely af-
fect their performance.

2.2 Unique challenges

All data networks, including satellite access networks,
are run by communication protocol stacks. The perfor-
mance of any data connection is a direct reflection of
the aggregate performance of all protocols in the stack.
The transport protocol is one of the crucial protocols in
any communication stack. While some transport proto-
cols provide unreliable service, this paper explores those
that provide end–to–end reliable (complete, correct, in–
sequence and without duplication) transmission service.
Many standard transport protocols (like TCP) are gener-
ally unaware of the specific characteristics of their un-
derlying networks. According to Tsaoussidis and Matta
[TM01], these protocols are originally designed to ad-
dress the problems and satisfy the transport goals of
wired networks. Therefore, such protocols assume con-
tinuous connectivity, data loss resulting from network
congestion and balanced bi–directional links. These pro-
tocols are also calibrated to overcome the problems of
stability and heterogeneity in terms of receiver buffers,
network bandwidth and delay. In addition, such proto-
cols strive for fairness in bandwidth consumption and ef-
ficiency in link utilization by adopting proper congestion
control mechanisms.

These features perform well for wired, high–speed
networks. However, they fail miserably for satellite
data networks, rendering their performance unaccept-
able. As explained by researchers at SCPS [SCP98],
transport protocols targeted for satellite data networks
should strive to provide fair link access, high aggregate
throughput and high reliability through differentiating
between unique error conditions. Transport protocols
should also base bandwidth utilization on a precedence
policy, maximize link utilization and provide an optional
semi–reliable service when needed. The foregoing is
in addition to providing new or updated algorithms to
handle the unique properties of satellite networks men-
tioned earlier. These objectives call for revisiting the

2



standard transport protocols and possibly proposing new
ones. Specifically, Tsauoussidis and Matta [TM01] out-
lined major features that transport protocol designers
have to work on: correct detection of the nature of er-
ror (duration, frequency, etc.), implementation of differ-
ent error–recovery strategies (aggressive, conservative or
more fine–tuned) which are sensitive to the nature of
error detected, optimization of energy expenditure and
connection time utilization and bypassing the problems
of asymmetric links or having different mechanisms han-
dling problems in each direction.

Tsauoussidis and Matta added that transport proto-
cols for mobile ad hoc networks need new performance
metrics, other than traditional effective throughput and
total expended time, to fairly judge the protocol’s per-
formance. They proposed the use of energy efficiency
and transmission overhead as more appropriate metrics.
These metrics address the nature of the battery–powered
devices that typically empower wireless and satellite net-
works.

2.3 Error control strategies

Many studies showed that the ability of a protocol
to correctly classify the nature of the detected error can
make all the difference for the performance of such a pro-
tocol [TB00, TBGP00, BV98, Sam99, KLB99, TBV00,
BPSK96, HV99]. Not less important is the ability to take
the right action in light of the perceived loss and to pre-
dict future losses. Protocols that lack the ability to dis-
tinguish errors run the risk of taking an aggressive stance
in response to deteriorating link conditions, or wasting
bandwidth resources in response to infrequent transient
errors. Both situations lead to inefficient energy utiliza-
tion by the protocol.

In the absence of explicit network feedback, transport
protocols need to rely on other methods to distinguish the
different error conditions. Congestion errors, common
in wired networks, occur when one or more intermedi-
ate routers overflow as a result of being overwhelmed by
the incoming traffic. These errors are usually accompa-
nied by noticeable increase in delays. All reliable trans-
port protocols should respond to this event by slowing
down their transmission rate, or in other words shrinking
their sending window. Failure to do so can affect the
fair sharing of bandwidth between competing connec-
tions. A more catastrophic result can happen when the
network reaches congestive collapse, a situation where
large numbers of packets get dumped from the routers.

On the other hand, link errors can vary in nature. Ac-
cording to Tsaoussidis and Matta [TM01], link errors
are usually characterized by both their duration and fre-
quency. Generally, the more frequent the link errors, the
worse the throughput gets. As standard transport proto-

cols mistake these errors for congestion, they slow down
their transmission and hence become unnecessarily over-
conservative. Even transport protocols with better error
control strategies can expend some transmission over-
head investigating the error condition. Determining the
exact cause of a link error is quite intriguing. However,
it is usually enough to conclude on the burstiness and
frequency of such an error.

2.4 State of the art

The Transmission Control Protocol(TCP) has be-
come the defacto standard for the Internet today. More
than twenty years of research have produced a protocol
that is perfectly optimized for today’s high performance
networks. Naturally, TCP was one of the first chosen
transport protocols for the new wireless, satellite, and
heterogeneous networks. Quickly, it became obvious
that the protocol needs some improvements to perform as
well in these new environments. Many researchers took
the approach of proposing extensions to TCP to make it
more efficient in these networks. Other research efforts
went on to verify the achieved results. The availability of
current test beds and the strong user base are definite ad-
vantages to this approach. However, the burden of stay-
ing compatible with legacy systems is a major obstacle
confining the improvement of TCP.

Other researchers took the approach of developing
new transport protocols that are more tailored to the char-
acteristics of their network environment. Unlike the first
approach, this approach does not involve the painful pro-
cess of retrofitting proposed extensions into TCP, but
rather involves incorporating a lot of them in the origi-
nal design of the new protocol. This approach usually
adds more integrity and less complication to the proto-
col. However, it runs the risk of not complying to the
standards. This approach also lacks a rigorous and com-
prehensive testing schema, usually defined and available
for TCP.

One of those protocols, proposed by Katz and Hen-
derson [HK97, Kat99], is theSatellite Transport Proto-
col (STP). This protocol is designed exclusively for satel-
lite networks. The authors try to keep interface and fea-
ture parity with TCP, while designing their protocol from
the ground up with satellite networks in mind. Specifi-
cally, they address the problems of asymmetry, variable
round trip times and degraded performance in the pres-
ence of multiple errors per round trip. These features
among others make this protocol better suited than TCP
for use in satellite environments. However, the STP pro-
tocol is lacking one fundamental feature that is essen-
tial for any transport protocol targeted for heterogeneous
networks. This missing feature is a discriminating error
control mechanism. Unfortunately, STP inherits the as-

3



sumption that any error results from network congestion
and is therefore mitigated by applying congestion control
measures. This inability to classify and properly handle
different error types usually compromises both the pro-
tocol’s throughput and expended energy.

3 XSTP: Extended Satellite Transport
Protocol

XSTP is an extension of the STP protocol. STP is
used to host a new error control strategy, called XSTP–
probing, which is introduced in Section 4. This sec-
tion explains the general behavior of the XSTP protocol,
which is similar to STP’s general behavior. Differences
are indicated.

The XSTP protocol can typically be deployed on
top of a network protocol such as theInternet Protocol
(IP). XSTP provides a connection-oriented reliable byte
streaming service to application level protocols such as
theFile Transfer Protocol(FTP).

An XSTP connection consists of two sessions created
on the client and server sides. While a client session is
created in the CLOSED state, a server session is created
in the LISTEN state. After being created, a client session
starts a two-way handshaking cycle that involves send-
ing a BGN segment (connection request) to the server.
It is only after a BGNAK segment is received by the
client that the connection handshaking is completed suc-
cessfully. The two sessions then move to the EST state.
This disconnection process is accomplished by starting
a handshaking cycle that involves sending an END seg-
ment (a disconnection request). It is only after an EN-
DAK segment is received by the initiating session that
the connection is labelledhalf closed. For the connection
to befully closed, the other session has to also complete
a similar disconnection handshaking cycle successfully.
After that is accomplished, both sessions go back to the
CLOSED state. The disconnection handshaking is only
attempted when the session is neither sending nor receiv-
ing. In that state, a session typically maintains akeep–
alive timer to periodically check (by sending a POLL
segment) whether its peer session is still alive. A session
maintains state variables, such as the session’s smoothed
round trip time and variance estimates.

When an incoming segment is received, XSTP starts
by checking the segment’s checksum. If the checksum
test fails, the segment is discarded; otherwise the proto-
col continues with a syntax validation check. Once vali-
dated, the segment’s basic information and extended op-
tions are extracted from the header before inspecting the
segment’s type. If it is an RST segment, the receiver
drops the session; otherwise it processes the segment
based on its simple or composite type. XSTP allows seg-
ments to combine certain types together to save network

bandwidth by reducing the number of transmitted seg-
ments. However, these composite types are processed in
a certain logical order that preserves the semantics of the
protocol.

For each segment type, the XSTP has a handler. Each
handler is passed the information from the segment that
it needs. A handler performs at least one or more of
the following actions: trigger a state transition, order
a certain response segment and ask for a certain post–
action. While state transitions are executed right away
by each handler, responses and post actions are collected
first from all handlers then checked for consistency be-
fore being processed. The currently supported actions
include one to keep-alive and another to notify the upper
protocol of the peer’s closure.

Other major responsibilities of XSTP are received
data assembly and presentation to upper protocols. When
a data segment arrives, it is either ignored (if invalid),
presented or cached in the receive cache. The cache is
a sorted list of out–of–sequence segments. If the cached
segment is also the next expected segment, then XSTP
checks whether it fills the first gap in the cache. If it does,
then a new data message is created to hold all the pre-
sentable data from the segment. The message is passed
to the upper protocol. If the segment is not the next ex-
pected one, then the receiver just copies it to the cache in
the appropriate order.

XSTP has the responsibility to send USTAT notifi-
cations to the peer session when new segment gaps are
discovered. A reported segment gap is described by its
lower and upper sequence numbers. However, in a net-
work where packet reordering is a possibility, XSTP can
be configured to delay this notification up to a number of
missing segments. If meanwhile the receiver discovers a
new gap, then it reports the first gap at once and starts
tracking the new one. Unlike STP, XSTP does not re-
quire a gap to consist solely of absent segments when it
gets reported. Instead, XSTP allows reporting gaps that
are partially filled. This process ensures that whatever is
missing from the gap is promptly reported.

XSTP sends POLL segments periodically. These seg-
ments are sent to trigger peers to transmit back STAT
segments containing acknowledgments for the received
segments. The polling rate is a configuration parameter.
The higher the rate, the faster the segments get acknowl-
edged, but also the more acknowledgment overhead is
incurred. To minimize that overhead, POLL segments
are allowed to be piggybacked with data segment if they
both happen to be scheduled around the same time for
transmission. To implement this feature, both have to be
scheduled by the same send timer. With each timer tick,
XSTP examines if a transmission of a data segment, a
POLL segment or both is due. After that process, XSTP
reschedules the next transmission (if any) before restart-

4



ing the send timer.
A segment timestamp is used to make sure that only

new POLL segments are handled. When a POLL seg-
ment is received, XSTP replies with a STAT segment.
This segment contains a gap list constructed by travers-
ing the cache. A gap is defined as two consecutive cached
segments having non–consecutive sequence numbers.
For arriving STAT and USTAT segments, XSTP extracts
and uses peer’s status information to adjust its flow con-
trol strategy.

XSTP implements the following flow control strat-
egy. Messages pushed down from the application are not
transmitted right away. The message’s data is copied to
a send buffer. If there is not enough space for the data in
the buffer, then processing of the message is suspended.
It is resumed when buffer space is available.

At any point in time, XSTP is either transmitting, per-
sisting or sitting idle. XSTP enters the transmission state
when there is enough data to transmit and there is room
in the transmission window. The transmission window
is subject to a strategy that controls the number of seg-
ments that are allowed to be transmitted at any point in
time. This window is calculated as the minimum of the
receiver’s advertised window size and the sender’s con-
gestion window size. The sender’s transmission rate is
based on asend timer. This timer paces the transmis-
sion uniformly across the round trip to minimize the risk
of creating huge bursts into the network. Whenever the
transmission state is entered, the sender updates the total
number of allowed data segments, the timer sending in-
terval and the burst size (the number of segments to be
sent back-to-back each time). However, if the number of
allowed segments is below a certain configurable thresh-
old, then the sender transmits all of them in one burst. If
the sender determines that no new transmissions are cur-
rently possible, then it immediately stops the send timer.

An XSTP sender transmits a data burst by creating
data segments and pushing them back to back. All seg-
ments in a burst except the last one have the maximum
allowed segment size. If a POLL is scheduled at the
same time as a data burst, then the POLL is piggybacked
with the last segment of the burst. The sender can also
force a POLL to be piggybacked with a data segment
if the sender has transmitted a certain configurable ra-
tio of the send buffer since the last POLL. This pro-
cess is done to expedite receiving acknowledgments and
therefore rapidly freeing the send buffer. Since the send
buffer is not segmented, the sender maintains a sepa-
rate queue of unacknowledged segment entries called the
send cache. Before transmitting any segment, the sender
creates an entry for this segment in the send cache. The
entry contains the segment’s sequence number, data size,
number of retransmissions and last retransmission times-
tamp. This information is used in the retransmission pro-

cess.

XSTP might not be able to transmit if a slow peer ad-
vertises a zero window to prevent a fast sender from over-
whelming with data segments. In this case, the sender
exits the transmission state and goes into the persistence
state. In that state, the sender suspends data transmis-
sion and periodically schedules POLL segments to re-
quest window updates from the peer. Only after receiv-
ing a non–zero window size does the sender go back to
the transmission state. When the sender is neither trans-
mitting nor persisting, it is in the idle state. Only when
the sender is in this state can a session be safely closed.
However, a session can be forced to go into the idle state.
This process is usually done as a session is dropped.

Another responsibility of an XSTP sender is to man-
age the session’s flow control strategy. This strategy is
affected by feedback received from the session’s peer.
This feedback can either be in the form of a STAT or a
USTAT segment, which contain both cumulative and se-
lective negative acknowledgments. The cumulative ac-
knowledgment informs the sender about the receiver’s
next expected in–sequence segment. This allows the
sender to advance the left edge of its transmission win-
dow and remove entries from the sending cache up to, but
not including that segment’s entry. The sender also frees
data from the send buffer that belongs to those acknowl-
edged segments and releases any pending threads that are
waiting for the send buffer to free. After that process, the
sender opens its congestion window either exponentially
or linearly depending on whether the sender is in the slow
start or in the congestion avoidance phase.

Here is how STP originally handles selective nega-
tive acknowledgments; the way it is done by XSTP is ex-
plained in Sec. 4. A selective negative acknowledgment
is a gap report. The sender examines every reportedly
missing segment and determines if these segments qual-
ify for retransmission. The sender distinguishes gaps re-
ported by STAT segments from those reported by USTAT
segments. While missing segments reported by a USTAT
can only be retransmitted once, those reported by a STAT
can be retransmitted only if an RTT (subject to backoff)
has elapsed since they were last transmitted. To retrans-
mit a segment, STP uses the send cache. After examining
all gaps and retransmitting the required segments, STP
reduces its congestion window by half. Further retrans-
missions in the same window does not result in further
reducing of the congestion window, since these retrans-
missions are probably caused by the same loss event. Af-
ter closing the window for the first time, the sender exits
the slow start phase and goes into the congestion avoid-
ance phase. Once there, the sender never goes back to
slow start again unless it has been idle for some time (a
configuration parameter).

5



4 XSTP–Probing mechanism

4.1 Motivation

In a typical heterogenous network, these exist many
kinds of error conditions that widely vary in their na-
ture. One of the classic problems of transport proto-
cols over heterogenous networks is their inability to de-
tect and effectively react to such different error condi-
tions. An assumption made by protocols, such as TCP,
is that network congestion is the cause of all perceived
errors. However, in a typical LEO satellite access net-
work there are other types of error conditions including
bit corruption, handoff and limited connectivity. These
non–congestion link–related errors are systemically per-
ceived as congestion–related by unaware transport proto-
cols. Unfortunately, engaging congestion control in these
cases hampers throughput and leaves the session too con-
servative even for moderate levels of link errors. Also,
according to the used congestion control tactics, there
can be further increase in the level of segment retrans-
mission, which usually translates into more increases in
energy expenditure.

Unfortunately, the STP protocol [Kat99], [HK97] in-
herits this congestion control bias from its ancestor pro-
tocols. Although the protocol can efficiently recover
from multiple losses in the same round trip, its error
recovery tactics can negatively affect its overall perfor-
mance. Specifically, slowing down in response to link–
related errors can hamper the effective throughput. In
this section, a new error control strategy is proposed to
stretch a protocol’s ability to adapt to the different error
kinds found in LEO satellite access networks. The new
strategy is integrated in XSTP.

The new strategy consists of a probing mechanism
called XSTP–probing. Upon detecting a segment loss,
the level of congestion in the network is assessed. If
congestion is detected, then XSTP–probing responds by
invoking congestion control; otherwise it resumes with
Immediate Recovery, which restores the congestion win-
dow to the same level as before probing [TB00]. XSTP–
probing also adapts to the level of error in the network by
suspending new data transmission and by striving to send
only in windows of error–free connection. The probing
mechanism is modelled after an earlier one, proposed by
Tsaoussidis and Badr in the context of TCP called TCP–
probing [TB00]. The remainder of this section explains
XSTP–probing mainly by comparing it to TCP–probing.

4.2 Description

The goal of any error control strategy is to adapt the
sender’s transmission rate to the varying error conditions
in the network. This goal is usually accomplished by

Figure 1. Triggering of XSTP–probing
mechanism by an early timeoutevent.

taking an aggressive stance when the error is found to be
transient and a conservative one when it is more persis-
tent. The XSTP–probing mechanism is no exception. In
fact, this mechanism goes even further by probing the
connection for possible error free conditions and only
transmitting in those windows. The mechanism accom-
plishes that task by suspending new data transmission
upon detecting a loss and initiating a probing cycle to
collect RTT statistics on the connection. The mechanism
then compares these RTT statistics to the RTT estimate
available when the loss was discovered. Interestingly, the
duration of that probing cycle is proportional to the level
of error in the network which helps the connection sit
out the error conditions. After the cycle is finished and if
congestion is detected by proliferating RTTs, congestion
control is immediately invoked. Otherwise, transmission
levels are restored without taking any action.

Unlike the TCP–probing mechanism, which intro-
duces changes to both the sending and receiving ends of a
connection, XSTP–probing is a sender–only mechanism.
This simplifies the implementation. Also, while TCP–
probing introduces several new segment types and their
associated states, XSTP–probing leverages the unique
semantics of XSTP and does not introduce any new seg-
ment types. XSTP–probing reuses the polling cycle of
XSTP, which is the protocol’s low frequency acknowl-
edgement mechanism, as its probing cycle. Specifically,
the POLL segment is the probe and the STAT segment
is the probe acknowledgment. Fortunately, a XSTP re-
ceiver is kept unaware whether the received POLL is a
probe or just a normal POLL. Also unlike TCP–probing,
XSTP–probing does not introduce several states to track
the progress of a probing cycle. That fact makes XSTP–
probing more scalable in terms of its ability to configure
the probing cycle with different numbers of probing ex-
changes.

XSTP–probing is triggered when a loss is discov-
ered either implicitly or explicitly. The implicit method
is called early timeout. It consists of a break in the

6



Figure 2. Triggering of XSTP–probing
mechanism by a false early timeoutevent.

POLL/STAT segment interleaf. XSTP transmits a con-
figurable number of POLL segments every round trip.
After the first round trip, STAT segments start to arrive.
The rate of arriving STAT segments becomes similar to
the rate of leaving POLL segments, producing an inter-
leaved pattern of a sent POLL followed by a received
STAT. If either a POLL or a STAT is dropped in the con-
nection, then the session detects a break in the interleaf
pattern within a maximum of one RTT and a minimum of
��������� ��� ��� , as shown in Fig. 1, where
����� ��� ��� is three. This depiction is in con-
trast to TCP–probing, where a timeout usually spans
multiple RTTs.

The explicit loss detection method relies on receiv-
ing feedback from the receiving session in the form of
either a STAT or a USTAT segment. However, it is
only after validating the gap reports in these segments
and finding at least one segment worthy of retransmis-
sion that XSTP–probing is triggered. These conditions
avoid premature triggering due to an invalid alarm. This
method can be contrasted to TCP–probing’s three DU-
PACK heuristic, which is only a best effort and may lead
to premature probing.

As XSTP–probing starts up, the session goes into
probing mode. This mode supersedes the current state
in the sender. Again, there is a contrast to TCP–probing
going into the newly introduced “PRX SENT” states.
After that event, the mechanism suspends new data trans-
mission and records the current timestamp and RTT esti-
mate (	
����� and	
������ ).

Figure 3. Phases of a probing cycle as it
happens in the network.

In the case of TCP–probing, a complete cycle is la-
belled with a version number that is stored and reflected
by all segments (two probes and two probe acknowledg-
ments) participating in the cycle. Only after the first
probe exchange is successfully completed, does the other
exchange start. If any segment in that cycle gets dropped,
then the whole cycle is abandoned and a new one is ini-
tiated with a new version number. The loss of a segment
is detected by means of a timeout (set to the currently
estimated RTT). On the other hand, XSTP–probing does
not use a timeout. Rather, XSTP sends a probe segment
every RTT irrespective of whether a probe acknowledg-
ment is received or not. The advantage becomes clear
when the RTT gets a little extended (a common phe-
nomenon in LEO satellite links where the RTT experi-
ences moderate variations). In this case, the previous ex-
change is not ignored but is rather given more time (up
to one more RTT) to complete. If after that time it is
still not completed, then a new exchange begins and the
old exchange becomes obsolete (since it is followed by
two new probe exchanges). This situation is depicted in
Fig. 2, where PROBE1 gets transmitted when no STAT
arrived since the last POLL because an extension of the
RTT.

XSTP–probing defines a map between the sent probe
(POLL) timestamps and their corresponding acknowl-
edgment’s (STAT) RTT measurement. Whenever a probe
is sent, its timestamp is entered in the map. Also, when-
ever a valid probe acknowledgment is received, its RTT
measurement is associated the corresponding timestamp
in the map. The probing cycle does not complete until
two consecutive entries in the map get filled with RTT
measurements. The probing map has a constant size that
is set as a configuration parameter. The map also has a
policy of deleting the oldest timestamps to make room
for new entries. The map size should be set in proportion
to the expected error levels in the network. Fig. 3 illus-
trates different phases of a typical probing cycle as they

7



Figure 4. Phases of a probing cycle as re-
flected in the probing map.

occur in the network. Fig. 4 shows the corresponding
stages of the cycle as reflected in the probing map.

There are three more salient points. The first point is
related to an arriving probe acknowledgement that brings
back an empty gap report. This event is taken to indicate
that probing is started prematurely due to packet reorder-
ing or a falseearly timeoutevent. In this case, XSTP–
probing immediately terminates and restores new data
transmission at the previous level. The second point re-
lates to an arriving probe acknowledgment that does not
correspond to existing probes in the map. This scenario
appears in one of two situations: either the acknowledg-
ment took so long to arrive that its probe entry got deleted
from the map or it corresponds to a POLL segment that
had been sent before probing was started (timestamps
are smaller than	
�����). XSTP–probing ignores the
acknowledgment in the former case, it records it in the
map in the latter. During the first RTT of probing, an
entry in the map is reserved for this kind of acknowledg-
ments. The rationale to consider this acknowledgment
is that being close enough in time to the error (sent dur-
ing the same RTT containing the error), it provides in-
valuable information about the network condition at that
time. Since XSTP normally sends multiple POLL seg-
ments per RTT, several pre-loss acknowledgments can
be received. XSTP–probing overrides the reserved entry
in the map with every arriving acknowledgment. Inter-
estingly, this ability to handle pre-loss probes can allow
the probing cycle to finish much quicker (in around one
RTT) if the first probe acknowledgment also made it on
time (since two exchanges are required). The third and
final point is related to USTAT segments. Although they
are used as explicit triggers to the probing mechanism,
the segments are totally ignored while the probing mode
is on. Their gap reports, usually repeated by consecu-
tive STAT segments, are processed only after probing is

done.
One very important side of the probing mechanism

is the decision making criteria at the end of the probing
cycle to determine the probable cause of the error. Al-
though many possible heuristics can be used, the one in-
troduced by TCP–probing is adopted by XSTP–probing.
This heuristic compares the two probes’ RTT measure-
ments to the	
������ . If both probes are less than or
equal to the	
������ , congestion is not detected and
the error is considered link–related. Otherwise, conges-
tion control is applied. However, in some cases, the RTT
can moderately vary over the round trips (for example
due to LEO satellite mobility). In this case, the varying
RTTs can confuse the probing mechanism into thinking
that the RTT has extended due to congestion. For this
scenario, we define a configurable RTT tolerance param-
eter (ratio) in the probing algorithm to smooth out the
effect of that phenomena on the measurements. This pa-
rameter should be set based on the expected RTT vari-
ance in the network.

Congestion control measure depends on how long
the probing cycle takes to finish. If the cycle is long
enough to reach XSTP’s threshold for idle transmission,
the sender goes back to slow start; otherwise the conges-
tion window is reduced by the congestion avoidance al-
gorithm (the window gets halved). This congestion con-
trol logic is in contrast to TCP–probing where the sender
goes back to slow start if probing is triggered by a time-
out event. If the timeout later turns out to be inaccu-
rate, then the connection becomes needlessly overcon-
servative. After probing is done, the missing segments
reported by the last probe acknowledgement (STAT) are
retransmitted and the normal polling rate is restored.

4.3 Design

The XSTP–probing mechanism has three configu-
ration parameters: the maximum number of track-
able probe exchanges
�� ������, number of re-
quested probe exchanges��� ������, and RTT
tolerance ratio��� ���������. The probing ob-
ject’s local state contains a loss descriptor and a probing
map. The loss descriptor consists of a loss timestamp
(	
�����) and a loss round trip time (	
������ ). The
probing map, whose size is set to
�� ������,
contains timestamps of probes and their corresponding
RTT measurement. The entries are sequentially ordered
by timestamp value. The probing object also keeps an
activation flag, which is initially set to false.

A sender starts the probing mechanism with the cur-
rent timestamp and RTT estimate, which are used to ini-
tialize its loss descriptor before turning its activation flag
on. When XSTP probing is activated, the sender enters
the probing mode, which means suspending new data

8



transmission by closing the data sending interval, chang-
ing the polling rate to one POLL per RTT and disabling
further RTT backoff. The sender then initiates a probing
cycle, in which it sends a probe each round trip. For each
probe, the sender records the probe’s timestamp. This
method puts the timestamps in the next entry in the prob-
ing map. When all entries get filled, the probing object
starts overriding older entries. It is important to mention
that the first probe’s timestamp goes into the second not
the first entry in the map. The first entry is initially re-
served for potential pre–loss probes.

Whenever a probe acknowledgment (STAT) arrives,
the sender updates its congestion window by examining
the segment’s cumulative acknowledgment. After that,
the sender examines the segment’s gap report. If the
report is empty, then the sender immediately aborts the
probing mechanism and resets the measurement map and
loss descriptor. However, if some segments are reported
missing, then the normal gap validation is performed. If
at least one segment is determined worthy of retransmis-
sion, then the STAT is considered a valid probe acknowl-
edgment. In this case, the sender measures its RTT and
records the acknowledgment’s timestamp and RTT val-
ues.

The acknowledgment’s timestamp is compared to the
one of the loss descriptor. If the timestamp is smaller,
the acknowledgment is considered a pre–loss probe ac-
knowledgment and both its timestamp and RTT values
are stored in the first entry in the map. If the received
acknowledgment is not the first pre–loss acknowledge-
ment, the method overrides the older data in the first en-
try (usually pre–loss acknowledgements stop arriving af-
ter the first post–loss probe acknowledgment is received).
However, if the acknowledgment’s timestamp turns out
to be greater than the one in the loss descriptor, then
the sender looks up the acknowledgment’s correspond-
ing timestamp entry in the map and records its RTT in
the appropriate corresponding slot.

Finally, the sender checks if there are
��� ������ consecutive filled entries in the map.
If there are, then the probing cycle ends. The sender
calls the congestion detection heuristic. The sender
first applies the tolerance ratio��� ���������
to the RTT measurements (only those consecutive
��� ������ measurements that ended the probing
mode). The sender then compares the RTT measure-
ments to the	
������ . If any one of the measurements
is greater than the	
������ , then congestion is
signaled. The sender then terminates the probing
mechanism. If congestion is detected, the sender closes
its congestion window according to the congestion
avoidance algorithm. The sender then concludes by
retransmitting the missing segments, restoring the
polling rate and resuming new data transmission.

5 Simulation environment

Using simulation, XSTP–probing is tested in various
error conditions and performance is quantified. This sec-
tion describes the simulation environment, performance
metrics and test cases.

For simulation purposes, an implementation of the
XSTP protocol has been realized in the PIX frame-
work [BB02] over a recent distribution of Linux using
C++. In addition to XSTP, three other protocols are im-
plemented: an application protocol, a link protocol and
a protocol encompassing an error generating model, see
Fig. 5. Theapplication protocol(APP) is a bulk data pro-
tocol streaming large files across the network at a config-
urable speed. Bulk data transfer is the best traffic pattern
to study the effect of errors on the efficiency of transport
protocols. The long and continuous flow of data allows to
demonstrate the full capabilities of its error control strat-
egy. Configuration parameters for this protocol include
the file size, the chunk size and the streaming rate.

The link protocol is called theQueue Link Protocol
(QLP) and it is based on the POSIX message queues.
It represents nodes of a simulated network on a single
physical machine. Each session of that protocol is con-
figured with a message queue identifier, representing the
node’s link interface address, and a static forwarding ta-
ble mapping of destinations to corresponding message
queue identifiers. Using this protocol, it is possible to
simulate networks of various topologies.

The protocol encompassing an error generating model
is called theeXtended Delay and Drop protocol(XDEL-
DROP). It is based on a similar protocol of x–
Kernel [HP91] called VDELDROP. It models the delays
and drops of packets in a heterogeneous network (like
a LEO satellite access network). Each session of that
protocol is modelled as a continuous–time Markov chain
with two states. Each state has three configurable param-
eters: a mean sojourn time�� to model the persistence of
the state, a dropping rate�� to model the severity of the
error condition and a delay range� ���� to����� (�=1, 2)
to model the prevailing end–to–end delay in the network.
When a state is entered, the duration of the stay is expo-
nentially distributed with mean�� During that time, the
session receives incoming packets and either drops them
with a probability��, or forwards them after applying
the minimum delay����� or the maximum delay�����.
The choice of either delay is random with a uniform dis-
tribution, but is invariant during each stay in a state. The
minimum delay aims to correspond to the one way de-
lay across an uncongested network. The maximum delay
aims to correspond to some level of network congestion
delay. XDELDROP is configured above the link layer in
intermediate nodes (router nodes).

A LEO satellite access network is simulated (see

9



Figure 5. The simulation configuration.

Fig. 5). There are three nodes: a source, a router, and
a destination. In the source and destination, a commu-
nication suite consisting (from top to bottom) of APP,
XSTP and QLP is installed. In the router, a suite con-
sisting XDELDROP directly over QLP is installed. Each
node is run in a separate process on the same physical
machine.

The application in the source node is configured to
be a data source, streaming a large (10,000,000-byte)
file in chunks of 1000 bytes each, which is equivalent
to the XSTP session’s maximum segment size (MSS).
This configuration is chosen to avoid any buffering de-
lays and to neutralize some XSTP algorithms such as the
Nagle’s algorithm, which delays sending small segments
for some time until previous acknowledgements are re-
ceived. A single connection from the source to the des-
tination is run in each test. XDELDROP in the router
models the effect of a complex network. Different er-
ror conditions are simulated including a bit corruption
condition, a handoff condition and a limited connectivity
condition. Every one of these conditions is coupled with
a congestion condition.

XDELDROP is configured to have two distinct states:
an error–free state (called the good state); and an error–
prone state (called the bad state). A parameter fixed for
both states throughout the tests is the packet forwarding
delay range, which is set to a minimum of 100 msec and
a maximum of a 150 msec. The minimum represents
a hypothetical normal one–way delay when there is no
congestion, while the maximum represents the delay un-
der a congestion. The values are chosen to distinguish
congestion from non–congestion.

XDELDROP is in either one of four states: no error,
moderate congestion, link error, and severe congestion.
The no error state model forwarding all packets (good
state) after applying the minimum forwarding delay. The
link error state models dropping packets (bad state) while
applying the minimum delay to the forwarded ones if
any. Similarly, the moderate congestion state models
forwarding all packets (good state) after applying the

maximum forwarding delay. The severe congestion state
models dropping packets (bad state) and applying the
maximum delays to forwarded ones if any.

The sender and receiver buffer sizes are set to 64000
bytes, while the maximum segment size (MSS) is set to
1000 bytes, which leads to maximum window size of 64
segments. The polling frequency is also set to three per
RTT and sending a POLL with the first burst is enabled.
In addition, the USTAT sending threshold is configured
to be three out–of–order segments. The initial conges-
tion window is set to one segment size and maximum
burst size is set to eight segments. The probing option is
configured the same way for all tests in the simulation.
The maximum number of trackable probes is set to four.
The number of consecutive RTT measurements sufficient
to finish the probing cycle is set to two measurements.

The relevant performance metrics are the effec-
tive throughput, transmission overhead and through-
put/overhead ratio. The effective throughput is defined
as the average data rate (in bps) from the point of view
of the sink. It is calculated, in bps, using the following
formula:

�����	
 	��
���
 � 
���
 ������
��
 	���

The transmission overhead is defined as the percentage
of extra bytes expended in the transmission of the data
bytes. The transmission overhead is calculated, in %,
using the following formula:

	����
 
���
 � ��	
	
 ���� � 
���
 ������
���
 ����� � ���

The throughput/overhead ratio is defined as the effective
throughput achieved per one percent of expended trans-
mission overhead. The ratio is calculated using the fol-
lowing formula:

	��
���
�
���
 � �����	
 	��
���
�	
	
 	����
 
���


It measures the protocol’s ability to manage the usual
tradeoff between throughput and overhead.

Tests are conducted to represent three different satel-
lite link error conditions: bit corruption, handoff and
limited connectivity. For each category, XDELDROP is
configured to produce phases of a category of link er-
ror in addition to phases of congestion. This configura-
tion permits the analysis of the mechanism’s effect on
performance for each type of error independently with
congestion. For each test, two versions are configured:
one with the XSTP mechanism on, and another one with
it off. Each test is replicated twenty times (to smoothen
out the statistical variations) with only one statistical data
sample taken at the end of each test (after all data is sent
from the source to the destination).

In the bit corruption tests, the good and bad states
have the same mean duration time. While the good state
has a drop rate equal to zero, the bad state’s drop rate is
varied from 0-50%. In the handoff tests, the good state
is configured to have a zero drop rate, which makes it

10



forward all packets in both directions. The bad state is
configured to have a 100% drop rate. The duration of
the good state is larger than the duration of the bad state
in this test. Different levels of handoff rates and dura-
tion (rendezvous) are tested by varying the mean dura-
tion time of both the good and bad state. To simulate
a required handoff rate and rendezvous combination, the
bad state’s mean duration is set to the handoff rendezvous
and the good state duration is calculated as:

���������
�������� � ����� �������
��

In the limited connectivity tests, the good state is con-
figured to have a zero drop rate The bad state is con-
figured to have a 100% drop rate. The duration of the
bad state is larger than the duration of the good state in
this test. Different levels of connectivity rate and dura-
tion (rendezvous) are tested by varying the mean dura-
tion time of both the good and bad state. To simulate the
required connectivity rate and rendezvous combination,
the good state’s mean duration is set to the connectivity
rendezvous and the bad state duration is calculated as:

���������
�������� � ����� �������
��

6 Simulation results

In this Section, the results of the simulation, defined in
Sec. 5 are reported and discussed. XSTP with the prob-
ing option turned off/on is referred to as XSTP–OFF/ON.
It is important to keep in mind that the XSTP protocol is
already more tuned to carry out error control than stan-
dard TCP. Katz and Henderson [Kat99], [HK97] showed
that the protocol can effectively recover from multiple
errors (including link errors) in the same round trip. It
is also interesting to mention that TCP–probing was only
compared against the standard versions of TCP. There-
fore, in contrast to TCP–probing, the performance gains
achieved by the XSTP–probing mechanism are relative
to a more extended protocol, which gives the results fur-
ther significance.

For each test in the simulation, the total connec-
tion time and three kinds of transmission overhead are
tracked: the retransmission overhead, forward control
overhead and reverse control overhead. While it is gener-
ally sufficient to observe the total transmission overhead,
in some cases it helps to look at an individual overhead
component to gain more insight. The complete measure-
ment data along with their standard deviation and 95%
confidence interval are reported in [Mage03]. This data
is used to calculate three different metric values: the
effective throughput, total transmission overhead, and
throughput/overhead ratio. The analysis is outlined first
by the error category and second by the affected metric.

6.1 Bit corruption tests

In these tests, packets are dropped in both the good
state and bad state with a certain probability. On the
other hand, packets surviving the drop are forwarded af-
ter being subjected to one of the two configured delays.
The same error condition is applied to both directions of
the connection at the same time. Usually, when packet
drops are accompanied with extensions to the RTT, a
congestion condition in the network, resulting from net-
work over–buffering is assumed. Otherwise, the event is
only indicative of link bit errors.

In this category of tests, an XSTP–OFF sender usu-
ally detects a loss by a STAT or a USTAT segment re-
porting back a non–empty gap report. The session re-
sponds by updating the next unacknowledged segment,
which may expand the congestion window. Then, the
session examines the gap report and validates each re-
portedly missing segment. In the case of a USTAT re-
port, the segments should not have been retransmitted be-
fore. For a STAT report, on the other hand, enough time
(usually one RTT subject to backoff) must have passed
since each segment was last transmitted. After examin-
ing all the gaps, and should at least one segment need
retransmission, the sender performs the required retrans-
missions before closing its congestion window using the
congestion avoidance algorithm. The sender then contin-
ues its normal transmission of new data segments only if
there is still room in itssendwindow. Although the US-
TAT acknowledgment mechanism is somehow resilient
to premature reporting of gaps due to packet reordering,
both the USTAT and STAT mechanisms are not totally
immune from reporting bogus gaps. This bogus report-
ing can occur in the case of unexpected levels of packet
reordering in the network.

Similarly, when an XSTP–ON session receives a
STAT or USTAT gap report, it performs the usual val-
idation on the report. However, should the session de-
termine that one or more segments pass the criteria and
hence need retransmission, it does not perform the re-
transmission but rather activate the probing mechanism.
This activation involves suspending the new data trans-
mission and initiating a probing cycle. The cycle does
not finish until a specific number (two in this case) of
consecutive probe exchanges are completed. If the prob-
ing mechanism detects an increase in the RTT of the
network compared to the RTT prevailing before the cy-
cle got triggered, the mechanism takes this increase as a
sign of congestion. The probing mechanism reacts by ap-
plying measures similar to those applied by XSTP-OFF.
However, if no increase in the RTT is detected, the mech-
anism resumes the new data transmission withImmedi-
ate Recovery. Moreover, if any probe acknowledgment
brings back an empty gap report, the probing mechanism

11



Figure 6. Effective throughput under bit
corruption with 10 seconds mean duration

considers that a sign of premature probing. The mecha-
nism terminates and resumes transmission withImmedi-
ate Recovery.

In this category of tests, the experiments are per-
formed with a mean duration of 10 seconds, as shown
in Fig. 6. Additional tests with a mean duration of one
second are presented in Ref. [Mage03].

The tests are repeated with different error intensi-
ties ranging from 0 to 50%. The effective throughput
is measured in each case. One important observation
is that XSTP–ON achieves consistently higher effective
throughput than XSTP–OFF (from 3 to 150%). This is
due in large to the probing mechanism’s ability to pro-
ceed withImmediate Recoverywhen link errors are de-
tected, and therefore avoid to unnecessarily reduce the
transmission rate. However, the advantage is more ap-
parent in the 10–second tests than in the 1–second tests.
The reason relates to the insufficient time in the 1–second
tests for the sender to demonstrate its full error control
capabilities. Sessions in both cases expand their conges-
tion window size in the error–free phase. However, that
size reaches a more dramatic level under a 10–second
phase than under a 1–second one. In fact, the size after
the 1–second cycle is usually not that different from the
initial window size.

Another observation is that the more intense the error
condition, the longer it takes the probing cycle to finish,
due to the high probability of probe or acknowledgement
loss. During that cycle, the session is effectively sitting
out the error condition. Also, in case of severe error con-
ditions with deteriorating RTTs that prevent an acknowl-
edgment from coming back for sufficiently long time,
the session can eventually go back to slow start after the
probing is finished, which further stretches the connec-
tion time. This tends to make the session more conserva-
tive and therefore lowers throughput. On the other hand,

Figure 7. Overhead under bit corruption
with 10 seconds mean duration

if the error condition is light, the probing cycle finishes
much more quickly. If no RTT extensions are detected,
the session resumes transmission at the same speed as
before probing.

It is also important to realize that the XSTP-OFF ses-
sion does not reduce the congestion window further in
response to more reported losses until the previous win-
dow of segments is confirmed received. This sequence
has the beneficial effect of avoiding to reduce the con-
gestion window multiple times in response to the same
loss event. In addition, XSTP–OFF suspends its data
transmission and only maintains a low frequency polling
cycle until the window is reopened. This polling cy-
cle becomes much like the XSTP–probing cycle, except
with a different frequency that could also be subjected
to backoffs in the absence of arriving STATs. Under se-
vere error conditions, the polling cycle can be extended
enough to miss windows of error–free transmission in
the connection, which increases the overall connection
time and hence lowers the achieved effective throughput.
On the other hand, XSTP–probing maintains the probing
frequency at one probe per RTT. The RTT value can still
be updated with each arriving probe acknowledgment to
approximate the RTT prevailing in the network. Also,
since POLLs (probes) are being sent even before prob-
ing started, the chance to quickly collect the requested
number of acknowledgments (STATs) improves consid-
erably under moderate error conditions. The aforemen-
tioned generally favors effective throughput as transmis-
sion is resumed much quicker after appropriately adapt-
ing to the error condition.

The total overhead is plotted against the various bit
corruption rates in Fig. 7.

The probing mechanism generally reduces the total
transmission overhead. As XSTP–probing activates the
probing cycle, it suspends new data transmission to pro-

12



Figure 8. Throughput/overhead ratio under
bit corruption with 10 seconds mean dura-
tion

tect new packets from getting dropped. Through that
probing cycle, the mechanism effectively waits until the
error condition clears away before committing to new
data transmission. In addition, the probing mechanism
tends to keep the session’ssendwindow at higher levels
due to itsImmediate Recoveryoption when link errors
are detected. However, this also has the side effect of
increasing the number of initial losses incurred by the
session at the start of a loss event. At some error levels
(like at 5% and 20% when the duration is 10–second),
the reduction in overhead achieved by suspending trans-
mission is more than recouped by the overhead incurred
as a result of having a large window at the start of an
error phase. Another observation is that at some level
of increasing error rates (20% in this case), the prob-
ing mechanism manages to actually reduce the overhead.
This is in large due to ability of the probing mechanism to
start its cycle earlier using theearly timeoutfeature. The
probing cycle also gets extended because of the deterio-
rating error rates. For these reasons, the session becomes
more conservative, which leads to an overall reduction
in the retransmission overhead. In most cases, the prob-
ing mechanism succeeds in lowering the overhead by a
significant ratio (44% at the 50% point in 10–second du-
ration tests).

The Throughput/overhead ratio is a metric to mea-
sure the amount of throughput achieved per one percent
of overhead. In Fig. 8, it is shown that this metric is
inversely proportional to error rate. As error deterio-
rates, the amount of throughput achievable per a percent-
age of overhead decreases. The figures also show that
XSTP–probing helps the session achieve more effective
throughput with a lower level of overhead expenditure.

6.2 Handoff tests

In these tests, packets in both directions are dropped
in the bad state with a 100% probability, marking a pe-
riod of “blackout”, where connectivity is temporarily
lost. In the good state, packets are forwarded after be-
ing subjected to one of the two configured delays. If the
error condition occurs with noticeable increases in RTT,
it is indicative of an intermediate router over–buffering,
a symptom of a serious congestion condition in the net-
work. The duration and frequency of that condition de-
pends on the transport behavior of competing traffic in
the network. However, if that period occurs without any
RTT extensions, it is indicative of a handoff event. A
handoff occurs due to the mobility of both the user ter-
minal and satellite. The event takes place when either a
satellite or a base–station is switched over. This period
can vary in duration (rendezvous) or frequency depend-
ing on the speeds of both the satellite and user termi-
nal. In general for tests in this category, the connection
is mainly in the good state and only frequently in the bad
state.

An XSTP–OFF session does not detect the blackout
period, hence the loss, until the period is over and either
a STAT or a USTAT segment brings back a non–empty
gap report in the following good state. This inability to
sense the loss in connectivity makes the session suscep-
tible to drain some or all of the segments in its send win-
dow. Also, as a result of applying congestion control
measures, the session slows down its transmission speed
before retransmitting the reportedly lost segments.

On the other hand, an XSTP–ON session can detect
the blackout period much quicker by detecting a break
in the POLL/STAT interleaf. This ability allows the ses-
sion to only dump a fraction (������� ��� ��� )
of its current send window rather than the whole window,
which translates into gains in both effective throughput
and energy efficiency. As soon as the session detects
the loss, it activates the probing mechanism. In a LEO
satellite environment, the RTT can moderately fluctuate
with the mobility of the satellite, relative to the termi-
nal user. The RTT can also increase due to a congestion
condition starting to build up. In these cases, XSTP–
ON can prematurely go into probing mode, as a result of
theearly–timeoutfeature. However, as soon as the pre-
sumedly lost STAT segment arrives containing an empty
gap report, the probing mode is immediately terminated
with virtually little if any loss in throughput.

In this category, tests are performed with handoff ren-
dezvous of 0.5 and 1 second, as shown in Figures 9 and
10.

In each case, the tests are repeated with various hand-
off rates ranging from 1 to 15%. The effective through-
put is measured in each case. The first observation is that

13



Figure 9. Effective throughput under hand-
off with 0.5 second rendezvous

Figure 10. Effective throughput under
handoff with 1 second rendezvous

throughput is inversely proportional to the rate (hence the
frequency) of handoff. The reason relates to each handoff
occurrence costing the connection a portion of the send
window worth of retransmissions, which increases the
total connection time. Also, the throughput is expected
to be inversely proportional to the rendezvous duration,
due to the longer suspension of transmission. However,
a comparison of the 0.5 and 1 second figures does not
confirm this expectation. The reason for that relates to
the rendezvous being relatively short when compared to
the RTT, while the good phase duration is an order of
magnitude larger than the RTT. For example, in the 1–
second case, the rendezvous time is twice as much as the
0.5–case, but the good phase durations are also twice as
much. The loss in throughput realized by doubling the
rendezvous is more than made up for by also doubling
the good phase durations. This effect usually makes
the connection obtain larger send windows and therefore
shorter total connection time.

Another important observation is that XSTP–ON
achieves consistently higher effective throughput than
XSTP–OFF (from 4 to 86% gain). The main reason
for that observation is the ability of XSTP-ON to differ-
entiate congestion from handoff situations. This ability
makes the session more conservative in case of deterio-
rating RTTs, and more aggressive otherwise by keeping
a higher congestion window. Another reason for the ob-
servation is the ability of the protocol to quickly suspend
transmission as soon as it detects a “blackout” period,
and therefore avoid many retransmissions that usually
extend the connection time. The advantage of the prob-
ing mechanism is more apparent in the 1–second tests
due to the longer good state duration, which results in a
bigger send window when the session enters the handoff
state. Therefore, more packets get dropped for the 1–
second tests than for the other tests. Also, the number of
packet drops saved by the probing mechanism translates
directly into handsome gains for the connection effective
throughput.

The total overhead is plotted against the various hand-
off rates in Figures 11 and 12.

The general observation is that the expended overhead
is proportional to the handoff rates. This observation is
mainly due to the increase in segment loss and hence
the retransmission resulting from more frequent handoff
events. The overhead is also expected to be proportional
to the handoff rendezvous. However, a comparison of
the overhead levels in the 0.5 and 1 second cases does
not confirm this expectation. In the 1–second case, the
rendezvous is doubled but the good state duration is also
doubled, with respect to the 0.5–case. The increase of
overhead achieved by doubling the rendezvous is more
than wiped out by the overhead savings resulting from
faster transmission in the doubled good phase duration.

14



Figure 11. Overhead under handoff with 0.5
second rendezvous

Figure 12. Overhead under handoff with 1
second rendezvous

Figure 13. Throughput/overhead ratio un-
der handoff with 0.5 second rendezvous

The XSTP–ON session suspends new data transmis-
sion as soon as it activates probing by the early–timeout
event. That suspension effectively reduces the number
of segments lost from the send window and therefore
reduces the retransmission overhead. Also for the con-
trol overhead, XSTP–ON produces slightly less POLL
and STAT traffic than does XSTP–OFF. This reduction
is mainly due to the probing mechanism adjusting the
polling (probing) rate to once per RTT while the mecha-
nism is on. On the other hand, XSTP-OFF keeps its reg-
ular polling rate. It is interesting to realize that this much
smaller polling rate does not noticeably affect overhead
since the handoff rendezvous is usually quite short. Gen-
erally, the probing mechanism succeeds in lowering the
overhead by a significant amount (34% at the 50% point
in 1–second rendezvous tests).

In Figures 13 and 14, it is shown that the through-
put/overhead ratio is inversely proportional to the hand-
off rate. Also for the same handoff rate, the efficiency is
directly proportional to the handoff rendezvous, mainly
because it is more proportional to the good state dura-
tion than it is inversely proportional to the rendezvous.
The figures also show that using XSTP–probing helps
the session achieve more throughput with the same level
of overhead expenditure. The efficiency advantage in-
creases from the 0.5 to the 1–second tests, mainly due to
the impressive gains in the throughput and the reduction
in the overhead achieved in the 1–second tests.

6.3 Limited connectivity tests

In these tests, packets in both directions are dropped
in the bad state with a 100% probability, marking a pe-
riod of lost connectivity. In the good state, which is usu-
ally much smaller, packets are forwarded after being sub-
jected to one of the two configured delays. This setup

15



Figure 14. Throughput/Overhead ratio un-
der handoff with 1 second rendezvous

exemplifies limited connectivity conditions that result ei-
ther from extended physical obstruction to the satellite
signal, or from the unavailability of a satellite in range
due to limitations in the coverage. This condition can
also occur due to the constant mobility of the satellite
and the frequent mobility of the terminal user. When
the connection is later restored, it can either have a sim-
ilar RTT to that before the interruption or a much de-
teriorated RTT that is usually indicative of congestion.
Limited connectivity can vary in duration (rendezvous)
or frequency depending on the satellite service coverage
area and on the local environment (physical obstacles).
For tests in this category, the connection is mainly in the
bad state and only frequently in the good state.

An XSTP–OFF session does not detect the loss of
connectivity, hence the segment loss, until it is over and
either a STAT or a USTAT segment brings back a non–
empty gap report in the good state. This inability to sense
the loss in connectivity makes the session susceptible to
drain some or all of the data segments from its send win-
dow. While connectivity is lost, the session maintains
its usual polling cycles to sense when connectivity gets
back. However, due to the extended connectivity loss pe-
riods, the polling cycles get extensively backed off to a
level that compromises the ability of the session to detect
the mainly short connectivity windows. In this case, the
session either misses one or more connectivity windows
or at best detects a window long after one started. As
soon as the session detects the connectivity loss, it slows
down its transmission before retransmitting the report-
edly missing segments.

On the other hand, the XSTP–ON session can de-
tect the connectivity loss period much quicker by de-
tecting a break in the POLL/STAT interleaf. This detec-
tion ability makes the session only dump a fraction (1 /
����� ��� ��� ) of its current send window rather

Figure 15. Effective throughput under lim-
ited connectivity with 5 seconds ren-
dezvous

than the whole window, which translates into gains in
both throughput and energy efficiency. As soon as the
session detects the loss, it activates the probing mecha-
nism. The mechanism maintains a probe–per–RTT cycle
without applying any backoff. This feature has the ad-
vantage of quickly detecting the connectivity windows
within one RTT. On the other hand, it can also have an
adverse effect on the control overhead due to the amount
of POLL traffic transmitted during the extended probing
cycles. In the case of a premature timeout– event (a false
alarm), the probing mode is terminated as soon as the
next STAT arrives holding an empty gap report.

In this category, tests are performed with a connec-
tivity rendezvous of 5 seconds, as shown in Fig. 15.
Ref. [Mage03] also presents tests with a connectivity ren-
dezvous of 10 seconds.

Tests are repeated with various connectivity rates
ranging from 1 to 30%. The effective throughput is mea-
sured in each case. The first observation is that the more
frequent the connectivity, the larger the chance of trans-
mitting new data packets and the shorter the overall con-
nection time. Effective throughput is also proportional to
the rendezvous of the connectivity, especially when the
rendezvous is orders of magnitude larger than the RTT.
The reason relates to the fact that during longer connec-
tivity periods, the congestion window grows much bigger
than during shorter periods, resulting in better through-
put, hence shorter connection time.

Another important observation is that XSTP–ON
achieves consistently higher throughput than XSTP–OFF
(from 13 to 77% gain). The main reason relates to
the ability of XSTP-ON to differentiate congestion from
connectivity loss situations. This ability makes the ses-
sion more conservative in case of deteriorating RTTs,
and more aggressive otherwise by maintaining a higher

16



Figure 16. Overhead under limited connec-
tivity with 5 seconds rendezvous

congestion window. Another reason for this observation
is the ability of the protocol to quickly suspend trans-
mission as soon as it detects a loss in connectivity, and
therefore avoid many retransmissions that usually extend
the connection time.

The total overhead is plotted against the various con-
nectivity rates in Fig. 16.

The general observation is that the expended overhead
is not changing much in response to the changing con-
nectivity rates. The reason for that observation becomes
apparent when a closer look at the overhead components
is taken. The major component is the retransmission
overhead, which is usually incurred with every connec-
tivity loss event. The value of that overhead is roughly
the product of the number of connectivity loss events
and average number of drops per event. In the tests,
the bigger the connectivity rate, the higher the average
send window the session maintains. That higher window
translates into more average drops in the bad state. At
the same time, the higher window also means that more
packets on average will make it through in the good state,
leading to a shorter connection time and therefore a lower
number of connectivity loss events. In short, one part of
the product increases while the other decreases. There-
fore, the total retransmission overhead is kept somewhat
in a tight range.

In addition, it is also shown that XSTP–ON sessions
incur less overhead than XSTP–OFF sessions. The rea-
son relates to the ability of the probing mechanism to
detect the connectivity loss event much quicker using its
early–timeout heuristic. That ability reduces the amount
of segments dropped per loss event. Also by adapting to
the error conditions in the network, the probing mecha-
nism maintains a higher level of throughput and therefore
a shorter connection time. This feature allows the con-
nections to experience fewer loss events in total. It is

Figure 17. Throughput/overhead ratio un-
der limited connectivity with 5 seconds ren-
dezvous

also interesting to notice that the probing mechanism’s
advantage is lower in the 10–second tests than in the
other tests. This lower advantage is mainly due to XSTP-
OFF going back to slow start when connectivity is re-
sumed. In this case, XSTP–OFF maintains a higher aver-
age throughput, which shortens the total connection time.
Again, a shorter connection experiences fewer connec-
tivity loss events and hence has less retransmission over-
head. Another reason is the extension of the probing cy-
cle in the longer connectivity loss events. This extension
leads to an increase in the control overhead incurred by
the probing mechanism (a probe per RTT), which lowers
the overall advantage of the probing mechanism for these
tests.

In Fig. 17, it is shown that throughput/overhead ratio
is mainly proportional to the connectivity rate. Also for
the same connectivity rate, the efficiency is proportional
to the connectivity rendezvous. The figures also show
that using XSTP–probing helps the session achieve more
throughput with the same level of overhead expenditure.

7 Performance over packet radio

Packet radio refers to breaking up large blocks of data
into small units called packets and sending them using
radio signals. Characteristics of packet radio are multi
hop networks, wide range, slow speed, short frames and
high latency.

In this section, we explore the performance of a pro-
tocol stack integrating the following protocols: a File
Transfer Protocol, the Extended Satellite Transfer Proto-
col (XSTP), IPv4 with Dynamic Source Routing (DSR),
AX.25 and a Packet Assembler Dissembler (PAD) pro-
tocol depicted in Fig. 18. AX.25 [Karn85] and PAD pro-
vide the packet radio services. Experiments were con-

17



ducted at data rates of 1.2 Kbps and 9.6 Kbps, frame
size 255 bytes, using the Carrier Sense Multiple Ac-
cess (CSMA) medium access control protocol. We first
briefly review communications architectures related to
the one investigated in this work. Then we present and
discuss our performance results. More details about this
aspect of our work can also be found in Ref. [Li03].

FTP

XSTP

IPv4  with DSR

AX.25  (KISS)

PAD

Figure 18. Protocol stack for packet radio.

7.1 Packet communications in space

In space communications, packet radio is used for
CubeSat at data rates ranging from 1.2 Kbps to 9.6
Kbps [Heid00]. PACSATs are also users of packet ra-
dio [Pric90]. A PACSAT is a LEO satellite that carries
on-board memory for the purpose of data storage and
retrieval by ground stations. Its protocol suite is com-
posed of two application protocols, namely, a File Trans-
fer Level 0 (FTL0) protocol and a PACSAT Broadcast
Protocol (PBP) that both operate above the AX.25 pro-
tocol. CHIPSat [Daws02], a satellite launched on Jan-
uary 2003, uses TCP/IP and FTP for end-to-end satellite
operation. The idea of end-to-end operation on space-
craft over TCP/IP has been demonstrated by the UoSat-
12, however, CHIPSat is the first attempt to implement
the concept as the primary means of satellite communi-
cations. The Space Communications Protocol Standards
(SCPS) [SCP98] provide a suite of protocols to commu-
nicate with space vehicles. The stack includes a File Pro-
tocol (FP), a Transport Protocol (TP), addressing issues
in space, a Security Protocol (SP), ensuring integrity and
security, and a Network Protocol (NP), both connection-
less and connection-oriented. Point-to-point UHF 9600
bps data radio was used for the Lander to Rover commu-
nications link of the Mars Pathfinder mission. Although
it was not packet radio per se, e.g. there were neither en-
capsulation of data with headers nor addressing or rout-
ing, it had some of the transmission characteristics that
we find in packet radio such as slow speed.

Figure 19. Latency ( ������ ����� scale).

7.2 Experimental environment and perfor-
mance results

For this experiment, two PCs are used to simulate a
satellite and a ground station. Each of them is connected
to a Kenwood TM-D700A/E FM transceiver, which con-
tains a built-in terminal node controller (implementing
framing and the CSMA). Tests were performed in a nat-
urally noisy environment.

Each test involves retrieving a file of certain size from
the satellite to the ground station. Each test is performed
for 20-30 times. The average is reported, but results that
are dramatically affected by noise are discarded.

Fig. 19 plots the results of transferring files of sizes
from 1 B to 10 KB with data rates 1.2 Kbps and 9.6 Kbps.
Horizontal axis is����� of file size in bytes while vertical
axis is ����� of time in seconds. We observe that when
transferring files of small size (under 1 KB), bandwidth
is the primary determinant of the latency, as file transfers
at 9.6 Kbps are much faster than in 1.2 Kbps. The max-
imum PAD frame size is 255 bytes, an AX.25 header is
17 bytes, an IP header is 60 bytes (including source rout-
ing options), an XSTP header is 16 bytes, and an FTP
header is 5 bytes, therefore each frame could only carry
157 bytes of FTP data at the most. A 10 KB file need to
be fragmented into and transmitted in 66 frames. In this
case, the processing time is dominant over transmission
time because of the high number of small packets.

The throughput results, in bps, of transferring files
under 10 KB are presented in Table 1. It is interesting
to find that better throughput is achieved when transfer-
ring files of small size, which is the opposite of transfer-
ring files in wired communications. This is due to the
high processing time of large files as illustrated above.
We also express throughput as a fraction of the avail-
able bit rate, referred to as normalized throughput. The
result is shown as Table 2. The average normalized
throughput achieved in 1.2 Kbps is around 0.24, while

18



Data File size
rate 1 B 100 B 1 KB 10 KB
1200 bps 334.07 375.21 212.38 220.26
9600 bps 758.86 768.16 249.92 248.42

Table 1. Throughput in bps.

Data File size
1 B 100 B 1 KB 10 KB

1200 bps 0.28 0.31 0.18 0.18
9600 bps 0.08 0.08 0.03 0.03

Table 2. Normalized throughput.

as to 9.6 Kbps, the normalized throughput is pretty low.
AX.25 uses�-persistent CSMA for medium access con-
trol (MAC), where � is the probability of the trans-
mission when medium is idle. According to analytic
models [Klei75], the global throughput can theoretically
be pushed very high by increasing the global offered
channel traffic. We believe that, a normalized CSMA
throughput of 0.24 observed locally by a client under real
conditions and light load (two nodes only: ground station
and satellite) is consistent with theoretical estimations.

8 Conclusion

In this paper, a new error control strategy for STP that
adapts to the available error conditions in the network
is presented. The strategy is based on an end–to–end
probing mechanism installed at the STP sender and acti-
vated when a segment loss is detected. A loss is detected
by either anearly timeoutevent or an explicit feedback
from a STP receiver. The idea of the probing mechanism
is to suspend new data transmission upon discovering a
loss and wait until the error situation improves before
adjusting the transmission rate. The mechanism com-
pares the connection’s RTT both before and after prob-
ing, to determine if the error condition is congestion or
link–related. After this comparison, the mechanism re-
transmits the lost segments and resumes transmission of
new data. The new protocol with the probing option is
called theeXtended Satellite Transport Protocol(XSTP).
In the tests, XSTP–probing consistently helps the pro-
tocol achieve higher levels of throughput/overhead ratio
mainly by increasing the connection effective throughput
while maintaining lower levels of overhead.

An important point of note is that the probing mech-
anism is most helpful in mixed link and congestion er-
ror conditions, especially when link errors are more
prevalent. However, the more the errors turn out to be
congestion–related, the more conservative the connec-

tion becomes on average. This effect can counter the
throughput gains achieved by the probing mechanism for
non–congestion errors. At some point, the aggregate
negative impact on throughput can balance and some-
times exceed the positive impact. The same situation can
occur to overhead as well. It is prudent to leave the in-
vestigation of that pivotal point to a future work.

From the analysis of our experiments conducted over
packet radio, we found that the link peak throughput
is comparable to the theoretical estimations. We know,
however, that the overhead introduced by each protocol
layer occupies a big portion of the frame, which impedes
the performance. So an option to be considered to im-
prove the performance is compression of headers.

References

[ADG00] M. Allman, S. Dawkins, D. Glover, J. Griner,
D. Tran, T. Henderson, J. Heidemann, J. Touch,
H. Kruse, S. Ostermann, K. Scott, and J. Semke. On-
going TCP research related to satellites. RFC 2760,
February 2000.

[AGS99] M. Allman, D. Glover, and L. Sanchez. En-
hancing TCP over satellite channels using standard
mechanisms. RFC 2488, January 1999.

[BB02] M. Barbeau and F. Bordeleau. A protocol stack
development tool using generative programming. In
Proceedings of Generative Programming and Com-
ponent Engineering (GPCE), 2002. Lecture Notes
in Computer Science 2487.

[BPSK96] H. Balakrishnan, V. Padmanabhan, S. Se-
shan, and R. Katz. A comparison of mechanisms for
improving TCP performance over wireless links. In
Proceedings of ACM SIGCOMM ’96, Stanford, CA,
August 1996.

[BV98] S. Biaz and N. Vaidya. Sender–based heuris-
tic for distinguishing congestion losses from wire-
less losses. Technical report, Texas A&M University,
June 1998. Tech. Rep. TR98-013.

[Daws02] S. Dawson, J. Wolff and J. Szielenski. CHIP-
Sat’s TCP/IP Mission Operations Architecture - El-
egantly Simple. Proceedings of the 16th Annual
AIAA/USU Conference on Small Satellites, Logan,
Utah, 2002.

[Mage03] M.E. Elaasar. XSTP: eXtended Satellite
Transport Protocol. Master of Computer Science,
School of Computer Science, Carleton University,
January 2003.

[Heid00] H. Heidt, J. Puig-Suari, A. Moore, S. Naka-
suka and R. Twiggs. CubeSat: A New Generation

19



of Picosatellite for Education and Industry Low-Cost
Space Experimentation. Proceedings of the Thir-
teenth Annual AIAA/USU Small Satellite Confer-
ence, Logan, UT, 2000.

[HK97] T. Henderson and R. Katz. Satellite transport
protocol (STP): An SSCOP-based transport protocol
for datagram satellite networks. InProceedings of
2nd Workshop on Satellite-Based Information Sys-
tems, 1997.

[HP91] N. C. Hutchinson and L. L. Peterson. The x–
Kernel: An architecture for implementing network
protocols.IEEE Transactions on Software Engineer-
ing, 17(1):64–76, January 1991.

[HV99] G. Holland and N. Vaidya. Analysis of TCP per-
formance over mobile ad hoc networks. InProceed-
ings of IEEE/ACM MOBICOM ’99, pages 219–230,
August 1999.

[Karn85] P.R. Karn, H.E. Price and R.J. Diersing.
Packet Radio in the Amateur Service. IEEE Journal
on Selected Areas in Communications, Vol. SAC-3,
No. 3, May 1985, pp. 431-439.

[Kat99] R. Katz.Satellite Transport Protocol. PhD the-
sis, December 1999.

[KLB99] T. Kim, S. Lu, and V. Bharghavan. Improving
congestion control performance through loss differ-
entiation. Eighth International Conference on Com-
puter Communications and Networks, October 1999.

[Klei75] L. Kleinrock and F.A. Tobagi. Packet Switch-
ing in Radio Channles: Part I - Carrier Sense
Multiple-Access Modes and Their Throughput-
Delay Characteristics. IEEE Transactions on Com-
munications, Vol. COM-23, No. 12, Dece,ber 1975,
pp. 1400-1416.

[Li03] Z. Li. Performance of Generative Programming
Protocol Implementation. Master of Science, In-
formation and System Science, School of Computer
Science, Carleton University, May 2003.

[Pric90] H.E. Price and J. Ward. PACSAT Broadcast
Protocol. ARRL 9th Computer Networking Confer-
ence, pp. 232-238, August 1990.

[Sam99] N. Samaraweera. Non-congestion packet loss
detection for TCP error recovery using wireless
links. In IEEE Proceedings of Communications, vol-
ume 146, pages 222–230, August 1999.

[San99] R. Sangal. Performance analysis of the trans-
mission control protocol over low earth orbit satellite
communication systems. Master’s thesis, College of

Engineering and Technology, Ohio University, Au-
gust 1999.

[SCP98] Space communication protocol specification
(SCPS): Rationale, requirements and application
notes. Technical report, Consultative Committee for
Space Data Systems (CCSDS), August 1998. Green
Book, Draft 0.4.

[TBGP00] V. Tsaoussidis, H. Badr, X. Ge, and K. Pen-
tikousis. Energy / throughput tradeoffs of TCP er-
ror control strategies. InProceedings of the 5th
IEEE Symposium on Computers and Communica-
tions (ISCC), 2000.

[TB00] V. Tsaoussidis and H. Badr. TCP-probing:
Towards an error control schema with energy and
throughput performance gains. InProceedings of the
8th IEEE Conference on Network Protocols, Japan,
November 2000.

[TBV00] V. Tsaoussidis, H. Badr, and R. Verma. Wave
& wait protocol (WWP): An energy–saving trans-
port protocol for mobile IP–devices. InProceedings
of the 8th IEEE conference on networks, pages 469–
473, September 2000.

[TM01] V. Tsaoussidis and I. Matta. Open issues on
TCP for mobile computing. Technical Report 2001-
013, 3 2001.

20




