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ABSTRACT
Unauthorized Bluetooth devices or rogue devices can im-
personate legitimate devices through address and link key
spoofing. Moreover, they can infiltrate a Bluetooth net-
work and initiate other forms of attacks. This paper inves-
tigates a novel intrusion detection approach, which makes
use of radio frequency fingerprinting (RFF) for profiling,
Hotelling’sT 2 statistics for classification and a decision fil-
ter, for detecting these devices. RFF is a technique that is
used to uniquely identify a transceiver based on the tran-
sient portion of the signal it generates. Moreover, the use
of a statistical classifier proves advantageous in minimiz-
ing requirements for memory. Finally, the detection rate
is also improved by incorporating a decision filter, which
takes the classification results of a set of events into con-
sideration, prior to rendering the final decision. The aver-
age False Alarm Rate of five percent and Detection Rate
of ninety-three percent support the feasibility of employing
these components to address the aforementioned problem.
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1 Introduction

Of the many forms of attacks, which continue to be prob-
lematic in WiFi/802.11 or cellular networks, the rogue ac-
cess points (RAP) is considered to carry a high risk, as in-
dicated by Barbeau, Hall and Kranakis [1]. A RAP is first
programmed with the identifier of an authorized AP. It is
then deployed in order to obtain confidential information,
such as passwords and credit card numbers, from unsus-
pecting victims. This information is used to impersonate
users and to initiate various attacks on the network.

Bluetooth (BT) networks [2] are by no means imper-
vious to this form of attack. Within this domain, an unau-
thorized rogue device R can be programmed to assume the
identity of a legitimate device. For example, let us consider
a scenario, whereby a BT device M (master) communicates
periodically with one or more authorized devices (slaves).
Moreover, as they are memory-constrained, their unit keys
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Figure 1. Signal from a BT transceiver

serve as link keys for the purpose of authentication and en-
cryption. Finally, in order to expedite the authentication
process in subsequent sessions, device M stores the link
keys of all the slaves.

As aforementioned, a device impersonation attack
proceeds as follows. In order to initiate the attack, deviceR
requires the address and unit key of one of the slaves, e.g.
device A. The first requirement is fulfilled by capturing and
programming the 48-bit address of device A into device R,
as demonstrated by Hager and Midkiff [3]. As far as the
unit key is concerned, it is obtained, by device R, by initi-
ating and establishing a communication link with device A.
At the end of the session, device R would have obtained the
unit key of device A, which is used henceforth as the link
key [4]. Equipped with both pieces of information, device
R is now capable of authenticating itself, as device A, to M,
and thus gaining access to the network.

Given that the likelihood of this attack is possible, i.e.
no major technical challenges to overcome, and the impact
can be high, e.g. initiation of denial of service attacks, the
resulting risk can be considered major. According to the
specification from ETSI [5], this level of risk warrants the
development and implementation of countermeasures.

What would prove useful is a mechanism for detect-
ing rogue devices, in BT networks. Pioneered by the mil-
itary to track the movement of enemy troops and subse-
quently implemented by some cellular carriers (e.g. Bell



Nynex) to combat cloning fraud [6], radio frequency finger-
printing (RFF) has been used to uniquely identify a given
transceiver, based on its transceiverprint. A transceiverprint
consists of features, which have been extracted from the
turn-on transient portion of a signal [7]. Figure 1 illustrates
the location of the transient, using a signal from a 3Com BT
transceiver. The x-axis represents a sixteenµsec window of
the signal, which has been sampled at a rate of 500 million
samples per second. What can also be observed are the
three segments of the signal, namely channel noise, tran-
sient and data transmission. The key benefit of this tech-
nique is that a transient reflects the unique hardware char-
acteristics of a transceiver and thus cannot be easily forged,
unless the entire circuitry of a transceiver can be accurately
replicated, e.g. by theft of an authorized device.

In this paper, a novel approach, which makes use of
RFF, Hotelling’sT 2 statistics (a statistical classifier) and a
decision filter, is proposed for anomaly-based intrusion de-
tection (ABID) in BT networks. First, RFF is used to create
a profile of each authorized BT device/transceiver and to
associate each profile with the address of the corresponding
device. Next, the statistical classifier is invoked in orderto
determine if an observed transceiverprint is normal, i.e. it
matches the profile of an authorized device with a given ad-
dress. Once a set of transceiverprints have been classified,
the decision filter is applied. If a predefined percentage
of these transceiverprints have been classified as normal,
then there is a high probability that the signals did origi-
nate from an authorized device. Otherwise, an intrusion by
a rogue device, with a spoofed address, is suspected.

An application of this technique to the scenario, pre-
sented previously, is as follows. Once the profile of de-
vice A (slave) has been created and stored in the device
database [8] within device M (master), it is cross referenced
with the address of device A. This configuration permits de-
vice M’s security manager, which is responsible for ensur-
ing a predefined level of security, to perform both device
authentication and intrusion detection. Whereas device
authentication is carried out using a challenge-response
mechanism, intrusion detection is initiated by invoking the
classifier.

The remaining sections of the paper are organized as
follows. The details of the proposed ABID components
are presented in Section 2, followed by evaluation results
in Section 3. Section 4 briefly summarizes other related
work in the area of RFF. Finally, the conclusions drawn are
reported in Section 5.

2 Novel Approach: ABID using RFF

This section describes the framework and key activities that
are undertaken to fulfill two primary objectives: the cre-
ation of a profile for each BT transceiver and specification
of the classification system.
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Figure 2. Test case for TDPC

2.1 Intrusion Detection Framework

The intrusion detection framework is designed to classify
an observed transceiverprint as normal or anomalous. A
classification result ofnormal indicates a strong proba-
bility that the underlying signals did originate from the
transceiver of an authorized device. Likewise, ananoma-
lous result serves as an indicator of a potential intrusion.
When an alarm is raised, an appropriate response, based on
the security requirements of applications, is initiated.

The flow of information begins with the conversion of
an analog signal to a digital signal (will not be covered in
detail). Once in a digital form, the transient portion of the
signal is extracted by thetransient extractor. Upon isolat-
ing the transient, the amplitude, frequency and phase com-
ponents of the transient are extracted by thefeature extrac-
tor. In turn, these components are used for the extraction
of specific features that define a transceiverprint. Thesta-
tistical classifieris used to determine if a given transceiver-
print is normal or anomalous. Finally, thedecision filteris
applied to the classification results of a set of transceiver-
prints, in order to render a final decision regarding the sta-
tus, e.g. authorized or intruder, of a BT device.

A transceiver profile is created by extracting the
transceiverprints from a subset of the digital signals and
storing the corresponding centroid and covariance ma-
trix [9]. This exercise is undertaken prior to the classifi-
cation or detection process. In the case of BT networks,
the profiles could be created during the pairing process.

2.2 Transient Extractor

As the unique characteristics of transceivers are manifested
in the transient portion of a signal, a key objective is to iso-
late and to extract the transient. The challenge, however, is
identifying the starting point of the transient. We providea
brief overview of the technique, referred to as Transient De-
tection using Phase Characteristics (TDPC) by Hall, Bar-
beau and Kranakis [7]. It exploits the phase characteristics
of a signal. As far as the end point of a transient is con-
cerned, it is identified in an experimental manner and in
consultation with the BT specification [10].
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Figure 3. Histogram of detection errors for TDPC

Figure 2 depicts the application of TDPC using sig-
nal 8 from transceiver 49. More specifically, the second
plot supports the fact that the difference in phase variance
becomes constant at the starting point of a transient, a key
requirement for successful detection. As indicated by the
vertical line, in the first plot, the performance of TDPC is
good. The expected starting point is within 150 samples
prior to the actual value.

Figure 3 presents the distribution of detection errors.
The x-axis represents the spectrum of detection errors,
which signify the difference between the actual starting
point of transients and the results produced by this algo-
rithm. The mean of 21 and standard distribution of 51 for
TDPC support the use of phase variance for transient de-
tection. As a side note, the actual starting points are es-
tablished through visual inspection, due to the absence of
highly robust algorithms and the need to calculate detection
errors in a precise manner.

2.3 Feature Extractor

Once the transient has been isolated, the next requirement
is to extract the three primary components. We have opted
to make use of all three components in order to enhance
the characterization of transceivers. Figure 4 presents those
associated with signal 8 from transceiver 49.

The amplitude envelope and instantaneous phase are
obtained using standard algorithms [11] and are illustrated
in the first and second plot respectively. The preferred ap-
proach for obtaining the frequency characteristics of a non-
stationary signal, e.g. transient, is the application of the
Discrete Wavelet Transform (DWT) [12]. Due to its low
computational complexity, as defined by Choe et al. [13],
the Daubechies filter is used to obtain the DWT coeffi-
cients, depicted in the third plot. This information proves
useful in detecting variations in the frequency spectrum of
devices.

Once these components have been extracted, a
feature vector, also referred to as a transceiverprint,
is created using a set of features F1-F15. Details re-
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Figure 4. Components of a transient

garding the selection of these features are available in
the paper by Hall, Barbeau and Kranakis [14]. In or-
der to refrain from a detailed treatment of each feature,
an intuitive interpretation of three features is provided next:

Normalized DWT coefficients (F1) This feature repre-
sents the standard deviation of the normalized amplitude
of DWT coefficients. Normalization is achieved using the
maximum amplitude of these coefficients.Power per sec-
tion (F8) For this feature, power is calculated for each con-
secutive segment of a signal. This provides a trajectory
of the power level during the turn-on ramp.Normalized
DWT coefficients by levelsUnlike F1, the standard devia-
tion of the normalized amplitude of coefficients is obtained
for levels one to six. Whereas level six is associated with
the highest range of frequencies, specificities of the lower
frequency bands can be identified using the remaining lev-
els. What is interesting is that the level of details increases
as the levels become lower.

2.4 Profile Definition

In order to classify a transceiverprint, a profile of the source
is required. A subset of the transceiverprints, obtained from
the captured signals, is selected using k-means clustering.
This technique createsk subsets (or clusters) of data ele-
ments using the initial set of data. A number of iterations
are executed whereby elements from one cluster are moved
to another. This process continues until the similarity mea-
sure, i.e. the difference between the average data element
and others, within each cluster is optimal. We employ this
technique to select a representative set (one from each clus-
ter) of transceiverprints. This set is used to create the key
elements of a profile: the centroid and covariance matrix.

These two elements collectively represent theintra-
transceiver(within a transceiver) andinter-transceiver(be-
tween transceivers) variability, which dictate the False
Alarm Rate (FAR) and Detection Rate (DR). FAR is de-
fined as the number of transceiverprints from X classi-
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Figure 5. Inter-transceiver Variability
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Figure 6. Intra-transceiver Variability

fied as belonging to Y divided by the total number of
transceiverprints from X. On the other hand, DR is defined
as the number of transceiverprints from Y classified as an
intruder (from X’s perspective) divided by the total number
of transceiverprints from Y.

As far as the inter-transceiver variability is concerned,
the greater the variability, the higher the DR. This type of
variability can be assessed by comparing the mean (cen-
troid) and/or standard deviation of each of the features of
the profiled transceiverprints.

Figure 5 illustrates the inter-transceiver variability be-
tween transceiver 49 from 3Com and transceiver 4 from
Ericsson. What can be observed is that features 4, 6, and 8-
13 exhibit different characteristics, and hence contribute, to
a higher degree, towards inter-transceiver variability. This
level of variability permits the classifier to distinguish be-
tween these two transceivers.

While high inter-transceiver variability is desirable
for obtaining a high DR, it is also essential to have low
intra-transceiver variability, a prerequisite for low FAR.

Figure 6 depicts the range of intra-transceiver vari-
ability of the transceiverprints, associated with transceivers

49 and 4. In particular, the variability between transceiver-
prints is established by obtaining the Euclidian Distance
(ED) between the centroid and each of the transceiver-
prints. In the case of transceiver 49, the short range (0.4
to 1.0) and gradual slope are indicative of the consistency
of its signals. These characteristics will prove useful in
minimizing the FAR. On the other hand, transceiver 4 is
characterized by a wide range (0.5 to 2) and a steeper slope.

2.5 Statistical Classifier

After having created the transceiver profiles and having ob-
tained a transceiverprint, the statistical classifier is invoked.
The Hotelling’sT 2 statistics [9], is used for determining the
degree of similarity between an observed transceiverprint
and the profile of a BT transceiver, with a given address.

The memory per profile (MPP) of this classifier is
very modest and is defined by Eq.1

MPP (m,n) = mn + m(n2) (1)

wheren is the number of features,m is the size in
bytes, andmn andmn2 represent the memory requirement
for the centroid and covariance matrix respectively.

In order to determine whether or not a given degree
of similarity is normal, theT 2 value is transformed to fol-
low an F distribution. The transformation is carried out by
multiplying it by n(n−p)/(p(n+1)(n−1)), wheren rep-
resents the sample size andp is the number of features in
a transceiverprint. If the transformed value is greater than
the F value of 2.20 (for a ninety-five percent confidence
interval), the transceiverprint is classified as anomalous.

2.6 Decision Filter

In a wireless environment, characterized by noise and in-
terference, there is a potential for increased variabilitybe-
tween signals that are transmitted by the same transceiver.
Hence, a decision, based on the classification results of a
singletransceiverprint, is likely to produce sub optimal re-
sults. Therefore, a decision filter is used to compensate for
this type of error. First, asetof transceiverprints is indepen-
dently classified. Then, the filter is applied to the classifica-
tion results of the entire set. If eighty percent or more (used
in this iteration) of the transceiverprints, has been classified
as normal, then a final decision of normality is rendered.
Typically, this threshold would be established based on the
specific requirements of the application.

3 Evaluation

The purpose of the evaluation exercise is to assess the com-
position of a transceiverprint based on the classification
success rate. The following steps were carried out using
a set of signals captured from BT transceivers:

For each transceiver being profiled, the aforemen-
tioned features were extracted from the transients. Once
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Figure 7. Detection Rate

the outliers (approximately 5-10) were removed, a sub-
set (approximately 30-40) of the transceiverprints was se-
lected using k-means clustering and subsequently used to
calculate a centroid and covariance matrix. The remaining
transceiverprints (50) were used for testing purposes.

3.1 Details of Evaluation

In order to evaluate the profiling and classification aspects
of the proposed technique, signals from each of the 10
BT transceivers (3COM-4, Ericsson-4, Test Radios-2) were
captured. All subsequent processing and evaluations were
carried out using the Matlab software and associated tools.

3.2 Evaluation Results - RFF and Statistical Classifier

The FAR and DR served as our primary metrics. Addition-
ally, 40 iterations were used for the purpose of assessing
these metrics.

False Alarm Rate
All of the 10 transceivers, with the exception of

transceiver 4 from Ericsson (E4), have a FAR of zero
percent. Unlike the high intra-transceiver variability ofE4,
see Figure 6, the others have a low to moderate level of
variability. This characteristic permits the k-means clus-
tering algorithm to select a set of transceiverprints, which
accurately characterizes a transceiver via the centroid and
covariance matrix. Finally, the overall mean and standard
deviation are five percent and 0.03 respectively.

Detection Rate
Figure 7 illustrates the DR for the profiled

transceivers. The x-axis represents the transceivers, which
are identified using the termM#. WhereasM represents
the manufacturer, e.g. E=Ericsson, C=3Com and T=Test
Radio,# is the identifier of the transceiver.

There are a few observations that are of interest. First,
the overall mean of ninety-three percent and standard de-

viation of seven suggest the presence of inter-transceiver
variability between the 10 BT transceivers. Second, the av-
erage DR for the test radios is the highest at one hundred
percent, followed by those from 3Com at ninety percent
and Ericsson at eighty-seven percent. These results sup-
port the different levels of both inter-transceiver and intra-
transceiver variability. In particular, it is interestingto note
that E4 has one of the lowest DR. This should not come
as a surprise, since, as previously stated, it also has a large
intra-transceiver variability. Finally, although not depicted
in the figure, there is a degree of similarity between the
transceivers, i.e. signals, from the same manufacturer.

We compare the performance of this technique with
that proposed by Choe [13]. Although the underlying
frameworks are different, the overall concept is similar to
some degree. However, the number of profiled transceivers
was limited to three (2-Motorola HT-220, 1-Motorola MX-
330) in comparison to the 10 BT transceivers used in this
research project. Despite the increased complexity, the av-
erage success rate, represented by the DR of ninety-three
percent, is consistent with their rate of ninety-four percent.

4 Related Work

This section provides a brief overview of the various re-
search initiatives that have been undertaken to address the
requirements of the RFF process.

In the paper by Ellis and Serinken [15], the authors
examine the amplitude and phase components of signals
and arrive at the conclusion that all transceivers do possess
some consistent features. The detection of transients, based
on the variance in amplitude, is proposed by Shaw and Kin-
sner [16]. In terms of classification, different approaches
have been proposed. In the paper by Somervuo and Ko-
honen [17], the authors make use of the Self-Organizing
Map and a Learning Vector Quantization (LVQ) algorithm
to support variable-length feature sequences used for clas-
sification. While the use of DWT coefficients is explored
by Hippenstiel and Payal in [18], Toonstra and Kinsner [19]
exploit the properties of genetic algorithms for classifica-
tion purposes.

5 Conclusion

Based on preliminary evaluation results, i.e. average FAR
of five percent and DR of ninety-three percent, the use
of RFF, Hotelling’sT 2 statistics, and a decision filter, for
anomaly-based intrusion detection in BT networks, is tech-
nically feasible.

More specifically, the characterization of transceivers,
using multiple features, has resulted in a high DR. In addi-
tion, the use of a statistical classifier, that is memory con-
scious, could achieve sufficient performance for support-
ing various applications or services in BT networks. Fi-
nally, delaying the final decision until a sufficient number



of transceiverprints have been classified, increases both the
confidence level and classification success rate.

Nevertheless, there are some issues, which warrant
further attention. First and foremost, the success rates can
be further increased by optimizing the composition of the
transceiverprints and validating them using a larger set of
transceivers from the same manufacturer. Second, it would
prove useful to repeat the profiling exercise periodically
in order to determine the impact of various factors, e.g.
transceiver aging, on the classification success rate. Third,
as far as scalability is concerned, further research is re-
quired to determine the maximum number of transceiver
profiles, which can be supported by a node in a BT net-
work. Finally, field tests should be carried out in order to
assess the true performance of the proposed intrusion de-
tection framework, in particular, the digital signal process-
ing component.
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