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The Asymptotic Formulas Related to Exponents
in Factoring Integers
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Presented by P.Kenderov

For any positive integer n>1, say n=qj1432...q%, define h(n) min (&, «5,..., @) and
H(n)=max (x,, a,,..., a,). We take h(l) HQ1)= 1. In ‘this paper, making only use of elementary

argument, we prove that 2 h(i)=n+n""*{(3/2)/{(3)+n">({(2/3)/£(2) + co) +0(n*'?). Finally we give the
formula of sum of H(n). =t

For any positive integer n>1, say n=qf1g3%2...q7t, define h(n)=min (a,,
®,,..., o) and H(n)=max(a,, a,,..., ). We take h(l) H(1)=1.

P. Erdos suggested that X h(t)=n+c\/n +0(Jn ). His conjecture was
proved by Ivan Niven [1]. Iiﬁlll], he proved that

E h@)=n+/n{G/2/G)+o(/n)
i=1
and
lim 1/n 2 H@)=1+ 2 (1-=Uk)~ 1),

n-* o i=1 k=2

where ({(k) is the Riemann-zeta-function.
In this paper, making only use of elementary argument we prove the
following theorem. ,

Theorem. 2 h(i) =n+n''2{(3/2)/¢(3) + n*3(L(2/3)/L(2) + co) + o(n/3),
i=1
where co=I1(1+p~ 43 4+p~5/3),
14
Finally we shall give the formula of sum of H(n).
Proof of Theorem. Define S,={k?|keN}, S;={k*|keN} and

Si(n)= "En 1, and define T,={m|h(m)=k and meN} and Ty(n)= ZS'. 1.
mesS3 meT i
It is clear that
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(1) n+Tym)+Tsm)S T hi)Sn+ Tyn)+ Tn)+ T(n)logy n.
i=1

In this paper, p; is the i-th prime.
From (1), we know that
T3(n)=XS, (n/(p} p82... pfr)),
where the sum is over the 3" terms with ,=0, 4 or 5 and r chosen so that p,,, >n.
By S;(n)=[ 3/n]l< 3/n, we have

Ty(m)SZ(n/(Pi1 p32...pfr)) P <n'® T1 (1 4pi %7 +p; %)

i=1
and L
) lim T,(n)/n'*<Zc,.

n—* o

In the other hér_ld, let {n;} be any sequence of integers with
32<n,<n,<n;...and lim n;= co. Let r; be the largest positive integer such that

j— @ .
njg(plpz...p,j)s, we have r;— oo when n; — co.
We have

Ta("j)gzss(”j/(l’ql ps2... pfj'-’)’

where the sum is_over the 3" terms with B; =0, 4, or 5.

By Sy(n)> 3¥/n—1, we get

T5(n;)>Z(n; /(P2 p22... Pf_,'-' )3 -3
and
ri
Ty(n;)/n}® > T1 (14 p;7 *2 4 p; %) =3 /n}/3,
i=1
Note that
3%i/n}* <3"/(p, p,.-- p,,j) <3/2(3/5)i2.

Hence we get

) L NV
By (2) and (3) we get
C)) Ty(n)=con'’>+o(n'’3).

From [1], we know that any element m of T, not in S, can be written
uniquely in the form

m=k’q,q,...4, (@, 92---9) |k, t21,
where q,, q,,..., q, are distinct primes. Hence we have
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©) Tm= = 1= X = = T k= T Z pk
msn 23 2

mr Sn mrosSnk|r m r Sn bk =r
meT,

= T uk= T k) T 1,
m2h3k6§n k§n”6 mthSn/k6
where m, r are positive integers and u(n) is the Mbobius function.
By an elementary argument, E. Landau [2] proved that if d, and d, are
fixed positive integers and d, # d; then
(©) T 1={(d, /x4 +{d, fd)x 2+ (x4 42)),

mdlndzgx

By (5) and (6), we get
Tom)= Z  ukNEG/2Hn/KE) " + LI/ + O(/k) ")

ksn
(7 =n2(3/2)/L(3)+n*?L(2/3)/{(2) + o(n'? 21/5 1/k%)+0(n'? 21/5 1/k?)
k>n k>n

+0(n'1%)=n"2[(3/2)/{(3) + n*PL2/3)/L(2) + O™ ).

_ By(1),(4) and (7), and since T(n)= O(n'’*) for any integer k =3 (see [1], p. 358),
this completes the proof.
We discuss the formula of sum of H(n) below.
Let Q,(x) denote the number of n<x such that n is a k-power free integer.

From [1], we know that when k22
- ] (log2n)
T H()=[og;nln— T Qi)
i=1 k=2
and
1Q,(n) —nl(k)~* | <3n*/.

Hence we get

n [log2n)
T H()=[log,nln—n X {(k)~'+0(n'*logn)
i=1 k=2
8) =(1+ [log"] {1={(k)"! })n+O(n'*logn)
k=2 ,
=(1+ ; {1-{k)~'}n+O0n Z. {1={(k)~ 1 })+(n'*logn).
k=2 k>[|032,.]
We have
T (-t '}=— T T phyk=- T uk) T UR
k> [log,n] k>(logyn) h=2 =2 k>(log,n)
©) =— £ p(h). h~Woszm+ V(] — p~1)= (2" ~llos2" Ezh“(h—l)")=0(1/n)-
h=2 h=

By (8) and (9), we obtain
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T H(i)=con+ O(n'"*logn),

i=1

where co =1+ X {1—{(k)"'}, and the series £ {1—{(k)"!} converges to 0.7
approximately. e k=
From the above proof, it is easy to see that making use of the result

Q,(m)= n/¢(2)+O(n''? exp { —c,(log n)*/5(loglogn) " /%) (see [3]) we can obtain
I H()=con+O0(n'exp { —c,(log n)**(log log n)~*/*).

i=1
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