
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Supporting a model-driven and iterative quality assessment methodology

The MoCQA framework

Vanderose, Benoît

Award date:
2012

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Sep. 2024

https://researchportal.unamur.be/en/studentTheses/0dd2ca1a-4890-4568-b261-64bd6a2bbd41

Supporting a model-driven and iterative

quality assessment methodology:

The MoCQA framework

Benôıt Vanderose

Thèse présentée en vue de l’obtention

du titre de Docteur en Sciences

PReCISE Research Centre

Faculty of Computer Science

University of Namur (FUNDP)

Namur, Belgium

December, 2012

c©Benôıt Vanderose

c©Presses universitaires de Namur

Rempart de la Vierge, 13

B - 5000 Namur (Belgique)

Toute reproduction d’un extrait quelconque de ce livre, hors des limites restric-

tives prévues par la loi, par quelque procédé que ce soit, et notamment par pho-

tocopie ou scanner, est strictement interdite pour tous pays.

Imprimé en Belgique

ISBN : 978-2-87037 -780-2

Dépôt légal: D / 2012 / 1881 / 42

Doctoral Committee

Prof. Vincent Englebert (Chair)

Faculty of Computer Science

University of Namur

Prof. Naji Habra (Advisor)

Faculty of Computer Science

University of Namur

Prof. Anthony Cleve (Internal Reviewer)

Faculty of Computer Science

University of Namur

Prof. Tom Mens (External Reviewer)

Faculty of Science

University of Mons

Prof. Lionel Briand (External Reviewer)

Faculty of Science, Technology and Communication

University of Luxembourg

i

Abstract

Software Quality has been a major and focal concern of Software Engineering

since its infancy. Despite the proficiency of research addressing quality, quantita-

tive quality assessment methods remain mostly inefficient in industrial contexts.

Besides, they are mainly used to control and not to guide the developers, decreas-

ing drastically their potential. As a result, although the field itself is mature and

provides a wealth of knowledge, the practical quality assessment of software has

still not reached a state where it may be performed satisfactorily.

In this research, we propose a framework that supports model-driven and it-

erative quality assessment in order to help leverage the potential of quantitative

assessment and integrate it into the software development process in a more co-

herent way. This Model-Centric Quality Assessment (MoCQA) framework defines

a goal-driven assessment methodology that allows the exploitation of operational

customised quality assessment models (or MoCQA models) through a dedicated

quality assessment metamodel. The use of a quality assessment metamodel guar-

antees the integration of heterogeneous quality models and software measurement

methods in MoCQA models and let these models adopt an ecosystemic viewpoint

on software quality. Besides, the methodology relies extensively on the involve-

ment of stakeholders and let them steadily construct a common mental model of

the quality aspects at stakes for a given development project.

Through these mechanisms, the framework intends to provide the necessary

support for the integration of multiple quantitative quality assessment methods

(both existing ones and customised ones) into any type of development and main-

tenance life-cycles in a meaningful, self-aware and flexible way.

iii

Résumé

La Qualité Logicielle est un défi majeur et capital du Génie Logiciel depuis ses

débuts. Malgré la profusion de travaux de recherche abordant la qualité, les

méthodes quantitatives d’évaluation de la qualité restent majoritairement inef-

ficaces dans un contexte industriel. De plus, elles sont principalement utilisées

pour contrôler les développeurs au lieu de les guider, diminuant de ce fait leur

potentiel. En conséquence, bien qu’étant un domaine mature ayant accumulé de

nombreuses connaissances, l’évaluation de la qualité des logiciels n’a toujours pas

atteint un état lui permettant d’être exécutée de manière satisfaisante.

Dans cette recherche, nous proposons un cadre de référence supportant une

évaluation de la qualité guidée par les modèles, itérative et incrémentale de

sorte à tirer avantage du potentiel de l’évaluation quantitative et à l’intégrer

de manière plus cohérente dans le processus de développement. Ce cadre de

référence MoCQA (Model-Centric Quality Assessment) définit une méthodolo-

gie d’évaluation guidée par les buts qui permet l’exploitation de modèles de

l’évaluation de la qualité personnalisés et opérationnels (ou modèles MoCQA),

grâce à un métamodèle de l’évaluation de la qualité. Ce métamodèle garantit

l’intégration de modèles de qualité et de méthodes de mesure hétérogènes au sein

des modèles MoCQA et permet à ces modèles d’adopter un point de vue écosys-

témique de la qualité logicielle. De plus, la méthodologie s’appuie sur l’implication

des acteurs afin qu’ils puissent se construire peu à peu un modèle mental commun

des aspects de qualité primordiaux pour un projet de développement donné.

A l’aide de ces mécanismes, le cadre de référence se veut capable de fournir

le support nécessaire à l’intégration de multiples méthodes d’évaluation (à la fois

existantes et personnalisées) au sein de n’importe quel cycle de vie de développe-

ment ou de maintenance, et ce d’une manière significative, réflexive et flexible.

v

Acknowledgements

Although carrying out doctoral research may appear as a lonely road at times,

I am fortunate enough to have met many people willing to show me the way all

along this road. I would therefore like to thank all the people who contributed

directly or indirectly to this research.

First of all, I would like to express my gratitude to my advisor, Prof. Naji

Habra, who guided me through all the challenges I have encountered during the

course of this research. Beyond his precious advices on my work, his mentoring

skills really helped me address these challenges in a more serene and focused state

of mind than I would ever have been able to reach by myself. Besides, I consider

myself very fortunate to have learned the fine art of negotiation - sometimes the

hard way - from such a master.

I would also like to thank the members of my doctoral committee, Prof. Lionel

Briand, Prof. Anthony Cleve, Prof. Vincent Englebert and Prof. Tom Mens, for

their valuable advices and encouraging feedback. Meeting them was an honour

and discussing my research with them has been a very enriching experience.

During the course of this research, many people contributed to help me apply

my work outside the walls of the Faculty. I would like to thank Samuel Hanoteau

for his dedication to the application of the MoCQA framework within his work

environment and for the resulting collaboration. Similarly, I wish to express my

gratitude to the members of the CETIC, and more specifically, to Christophe

Ponsard for believing in the relevance of the MoCQA framework and letting me

apply the framework in the various projects in which I’ve been involved. Finally,

I would like to thank Claude Dekrom for allowing me to field-test the MoCQA

framework in his work environment.

During the past years, many students contributed to the testing of a more than

experimental MoCQA framework. I therefore thank all of them and especially

Lorent Lempereur for his valuable contribution to the QuaTALOG project.

The effort carried out during the past years would have been unbearable with-

out a welcoming work environment. I therefore thank my colleagues and friends

Abdelkader, Alain, Hejer and Flora for making the workplace a nice place to

vii

spend all this time. Thanks to them, what could have been a simple office has

become a vibrant and lively place where many good times were - and still are -

shared. More generally, I would like to thank all the colleagues who contribute

to make this Faculty a place where hallways witness both hight-level intellec-

tual debates and (almost) appalling humour. I also thank the many colleagues

that contributed to this research by sharing their knowledge, dispensing useful

feedback and providing me with new and interesting ideas to explore.

On a more personal note, I would like to thank all the people who shape and

colour my every day life. First and foremost, I would like to thank the members

of my family for their love, trust and support, which provided me with the outline

on which I would be able grow as a person. Besides, in the light of the past few

years, I would like to thank my parents for teaching me what has been the most

essential principle throughout my work: always look at what has already been

achieved and not at the amount of work that is still awaiting.

I am also very grateful to be able to rely on close friends who have been around

for quite a long time now. I especially owe Johann, Sandy, Stéphane (a.k.a.

Vitou) and Ravi for dissolving many of my doubts, listening to my existential

questions and for participating in so many crucial debates on the meaning of

life, love and...stuff. Besides, I am very grateful to Ravi for always leading the

way towards the unknown territories I enter two years after him and being kind

enough to provide me with his invaluable insights afterwards. I also thank them

all, as well as all my other friends, for the good times we share, for the laughs

and joy and for the shades of colour they add to the overall picture.

Finally, I would like to thank my beloved wife, Anne, for her patience, un-

derstanding, support and for never asking me to be someone other than my silly

self. Her presence and unconditional love is the canvas that makes everything

else possible.

Contents

Contents ix

List of Tables xv

List of Figures xvii

I Research Context 7

1 Software Quality 9

1.1 Quality models . 10

1.1.1 First influential researches 10

1.1.2 ISO/IEC 9126 Quality Model and variations 13

1.1.3 Domain-specific quality models 14

1.1.4 Other quality frameworks 16

1.2 Software Measurement . 17

1.2.1 Fundamentals of software measurement 17

1.2.2 Software Measures . 19

1.2.3 Implementation of measurement programs 23

1.3 Software process improvement . 27

1.4 Quality modelling . 31

1.4.1 GenMETRIC and SMML 31

1.4.2 QMM and Quamoco . 32

1.4.3 Other quality metamodels 33

2 Research issues 35

2.1 Issues related to quality models . 35

2.1.1 Complexity of the operationalisation 36

2.1.2 Confusion between quality models and quality modelling . . 37

2.2 Issues related to software measurement 38

2.2.1 Conceptual misconception pertaining to measurement . . . 38

ix

x Contents

2.2.2 Lack of empirical validation 39

2.2.3 Complexity of measurement programs implementation . . . 39

2.3 Issues related to the integration of quality assessment into the soft-

ware development . 40

2.3.1 Spread of measurement methods 40

2.3.2 Problematic role of quality assessment 40

2.3.3 Impact of model-driven engineering 41

2.3.4 Impact of software ecosystems 41

2.3.5 Organisational issues regarding quality assessment 42

2.3.6 Cost and effort of quality assessment/improvement 42

3 Conceptualisation of the domain 45

3.1 Terminology . 45

3.2 Ontology . 51

3.2.1 Purpose . 52

3.2.2 Building the ontology . 52

3.2.3 Evaluation and documentation 52

3.2.4 Software Quality ontology 53

II Model-Centric Quality Assessment 57

4 Overview of the approach 59

4.1 Objectives of the approach . 59

4.2 Founding principles . 63

4.2.1 Constructivism . 63

4.2.2 Iterative / incremental life-cycle 64

4.2.3 Involvement of the stakeholders 65

4.2.4 Goal-Driven definition of measures 66

4.2.5 Ecosystemic viewpoint . 66

4.2.6 Definitional and analytic approaches integration 67

4.2.7 Reusability . 68

4.2.8 Domain-specific languages and expressiveness 68

4.2.9 Human aspect of software quality 69

4.3 The MoCQA framework . 71

4.3.1 MoCQA models . 71

4.3.2 Model-Centric Quality Assessment methodology 72

4.4 Structure . 79

5 MoCQA models 81

5.1 MoCQA models and Meta-Object Facility 82

5.2 Quality assessment metamodel . 84

5.2.1 Project package . 87

Contents xi

5.2.2 Measurement package . 102

5.2.3 Assessment package . 110

5.3 Designing the MoCQA model . 124

5.3.1 Components instantiation 125

5.3.2 Structural coherence . 125

6 Step 1: Acquisition 129

6.1 Overview . 129

6.1.1 Activities . 129

6.1.2 Formalisation . 132

6.2 MoCQA model design in practice 132

6.2.1 Customising existing quality models 133

6.2.2 Developing analysis grids 134

6.2.3 Tool support . 135

6.2.4 Complementarity with scenario-based analysis 136

6.2.5 Complementarity with Requirements Engineering 136

7 Step 3: Measurement Plan 139

7.1 Overview . 139

7.1.1 Activities . 139

7.2 MoCQA model transformations . 141

7.3 Operationalisation challenges . 143

7.3.1 Formalisation of the operationalisation 145

7.4 Preparing data collection . 146

7.4.1 Data Model . 146

8 Step 5: Exploitation 149

8.1 Overview . 149

8.1.1 Activities . 149

8.2 Quality Profiling . 150

8.2.1 Interpreting quality indicators 151

8.2.2 Supporting root-cause analysis 151

8.2.3 Exploiting MoCQA models during software evolution . . . 152

8.2.4 Exploiting MoCQA models at early stages of the development155

8.3 Reviewing MoCQA models . 155

8.3.1 Content integrity . 155

8.3.2 MoCQA-related indicators 158

8.3.3 Illustration . 162

9 Tool support 165

9.1 Tool-related challenges of model-driven quality assessment 165

9.2 Model-driven tools and MoCQA framework 166

xii Contents

9.2.1 Exploitation of model constraints 167

9.2.2 Exploitation of model transformation languages 168

9.2.3 Co-evolution of models and collaborative modelling 168

9.3 Dedicated and integrated tool support 169

9.3.1 XML-based Operational Customised Quality Assessment

Model . 169

9.3.2 MoCQA Utilities on the Go (MUG) 170

9.3.3 OCQAM editor . 172

9.3.4 QuaTALOG . 172

9.3.5 Towards and integrated tool support 175

IIIValidation of the approach 179

10 Validation process 181

10.1 Research questions . 181

10.2 Challenges . 183

11 Operationalisation of quality models 189

11.1 Objectives . 189

11.2 ISO/IEC 9621 quality model . 190

11.2.1 Overview . 190

11.2.2 Instantiation . 191

11.2.3 Results . 192

11.3 QualOSS documentation availability model 193

11.3.1 Overview . 193

11.3.2 Metamodel Instantiation . 195

11.3.3 Results . 196

11.4 Discussion . 197

11.5 Threat to validity . 198

12 Quality of software architecture 199

12.1 Context . 199

12.2 Objectives . 200

12.3 Architecture trade-off analysis method 200

12.4 Architecture analysis method with MoCQA 201

12.4.1 Utility trees and MoCQA models 202

12.4.2 First proposal of quantitative assessment 203

12.4.3 Second proposal of quantitative assessment 205

12.4.4 Third proposal of quantitative assessment 207

12.5 Results . 210

12.5.1 Support for utility tree processing 210

12.5.2 Support for quality traceability 210

Contents xiii

12.5.3 Support for architecture refactoring decisions 211

12.5.4 Support for architecture design decisions 211

12.5.5 Flexibility of the approach 211

12.6 Discussion . 212

12.7 Threat to validity . 212

13 Empirical studies 215

13.1 Preliminary study . 215

13.1.1 Context and objectives . 215

13.1.2 Description . 216

13.1.3 Results . 216

13.1.4 Discussion and threat to validity 216

13.2 Preliminary study: Quality of OSS 217

13.2.1 Context and objectives . 217

13.2.2 Description . 217

13.2.3 Results . 218

13.2.4 Discussion and threat to validity 218

13.3 Support for software maintenance and evolution 219

13.3.1 Planning of the study . 219

13.3.2 Design of the study . 220

13.3.3 Experimental study . 226

13.3.4 Results . 229

13.3.5 Discussion . 231

13.3.6 Threat to validity . 231

14 Supporting certification 233

14.1 Context . 233

14.2 Objectives . 234

14.3 Description . 235

14.3.1 RTCA DO-178b . 235

14.3.2 Variability and Software Product Lines 236

14.3.3 Applying the MoCQA framework 236

14.3.4 Towards selective certification 237

14.4 Results . 238

14.5 Discussion . 239

14.6 Threat to validity . 239

15 Quality Assurance 241

15.1 Context . 241

15.2 Objectives . 242

15.3 Description . 242

15.3.1 First quality assessment cycle 242

xiv Contents

15.3.2 Continuation of the quality assessment life-cycle 246

15.4 Results . 246

15.5 Discussion . 247

15.5.1 Impact of quality indicators 249

15.5.2 Human aspects . 249

15.5.3 Stakeholder classification 250

15.5.4 Target of the assessment . 251

15.5.5 Availability of results . 251

15.5.6 Support from the management 252

15.6 Threat to validity . 252

IVClosing comments 255

16 Discussion 257

16.1 Contribution . 257

16.2 Review . 259

16.3 Limitations . 261

16.4 Perspectives . 263

Conclusion 271

Bibliography 275

Index 291

List of Tables

5.1 Attributes characterising an artefact type construct 91

5.2 Relationships involving artefact types 92

5.3 Attributes characterising a behaviour type construct 95

5.4 Relationships involving behaviour types 95

5.5 Attributes characterising a derivation type construct 98

5.6 Relationships involving derivation types 99

5.7 Attributes characterising a base attribute construct 104

5.8 Relationships involving base attributes 105

5.9 Attributes characterising a method construct 107

5.10 Relationships involving methods . 107

5.11 Attributes characterising a derived attribute construct 109

5.12 Relationships involving derived attributes 110

5.13 Attributes characterising a function construct 111

5.14 Relationships involving functions . 111

5.15 Attributes characterising a quality issue construct 114

5.16 Relationships involving quality issues 115

5.17 Attributes characterising an assessment model construct 116

5.18 Relationships involving assessment models 117

5.19 Attributes characterising a quality indicator construct 119

5.20 Relationships involving quality indicators constructs 120

5.21 Attributes characterising an interpretation rule construct 123

5.22 Relationships involving interpretation rules 123

5.23 Mandatory attributes . 126

13.1 Measurement values from the first version of the MoCQA model . . . 226

13.2 Measurement values from the improved version of the MoCQA model 227

13.3 Global completeness indicators . 229

xv

List of Figures

1.1 McCall’s quality model . 10

1.2 Boehm’s quality model . 11

1.3 ISO/IEC 9126 internal and external characteristics 13

1.4 ISO/IEC 9126 quality in use characteristics 13

1.5 SQuaRE’s product quality characteristics 15

1.6 SQuaRE’s quality in use . 16

1.7 Quality in conceptual modelling . 17

1.8 Relationship between real and formal worlds through measurement. . 18

1.9 GQM/MEDEA conceptual model . 25

1.10 MOSME data model . 26

1.11 MIM conceptual model . 27

1.12 CMMI maturity levels . 30

1.13 GenMETRIC underlying metamodel 32

1.14 Quamoco metamodel for specifying and evaluating software quality . . 33

3.1 The software quality assessment ontology 53

4.1 Integration of quality models and measurement/estimation methods . 73

4.2 The MoCQA methodology . 75

5.1 The four layers of modelling . 83

5.2 Multi-level hierarchy for the approach 84

5.3 Simplified view of the MoCQA quality assessment metamodel 85

5.4 Process view of the ISO/IEC 15939 standard 86

5.5 Project package of the quality assessment metamodel 87

5.6 Project level of the software quality ontology 89

5.7 Two basic artefact types . 92

5.8 An artefact type with children artefact types 93

5.9 Artefact types with a reduced entity population 93

5.10 Artefact types with a very focused entity population 94

xvii

xviii List of Figures

5.11 Example of a basic behaviour type . 96

5.12 Example of more specific behaviour types 97

5.13 Misleading relationship between 2 measurable entity types 97

5.14 Example of derivation type . 100

5.15 Example of automated derivation type 101

5.16 Measurement package of the quality assessment metamodel 102

5.17 Measurement level of the software quality ontology 103

5.18 Example of base attributes . 106

5.19 Example of measurement/estimation methods 109

5.20 Example of derived attributes and functions 112

5.21 Assessment package of the quality assessment metamodel 113

5.22 Assessment-level of the software quality ontology 113

5.23 Example of quality issues and assessment models 118

5.24 Example of quality indicators . 121

5.25 A complete (yet simple) example of MoCQA model 122

7.1 Introduction of a collection of entity type 142

7.2 Removal of a derivation type . 143

7.3 The MoCQA data model . 146

8.1 A simplified MoCQA model applied to co-evolution 153

8.2 Example MoCQA model . 161

9.1 MUG user interface . 171

9.2 QuaTALOG user interface . 174

11.1 ISOQM explicited metamodel . 190

11.2 Related quality assessment metamodel concepts 190

11.3 QualOSS robustness and evolvability quality model 193

11.4 QualOSS documentation availability model 194

11.5 QDAM explicited metamodel . 194

11.6 Quality assessment metamodel concepts 194

11.7 QDAM targeted artefacts . 195

12.1 BCS utility tree . 202

12.2 BCS utility tree expressed with MoCQA constructs 203

12.3 Hardware (deployment) view of the BCS 204

12.4 Evaluation based on behaviour types 205

12.5 Evaluation based on code-related artefact types 206

12.6 Evaluation based on design-related artefact types 209

13.1 Completeness quality factor decomposition 221

13.2 Basic MoCQA model (measurement and project components) 223

List of Figures xix

13.3 Refined MoCQA model (measurement and project components) 224

13.4 Boxplots for each of the 4 measures 228

13.5 Comparison between global indicators 229

14.1 Traceability requirements . 235

14.2 Test preparation and test execution 236

14.3 Modelling the traceability of test cases 237

15.1 Example of quality issues expressed during the case study 243

15.2 Example of MoCQA model designed during the case study 244

16.1 Collaborative and iterative validation/refinement methodology 265

Introduction

Quality has been a major and focal concern of software engineering since its in-

fancy. According to [Peters and Pedrycz, 1998], producing reliable software may

even be regarded as the only objective of software engineers. However, within

the context of a constantly evolving field like software engineering and with the

steadily increasing level of complexity of software, what software quality means

has become increasingly delicate to define. As new fields and paradigms of soft-

ware engineering have been appearing, quality concerns have been dispatched

into several different and more or less independent subdomains. Quality assess-

ment has therefore become a concern in every field of software engineering (from

requirements engineering to design and coding). As a result, several quality as-

sessment approaches (i.e., quality models, software measurement methods, etc.)

have been proposed for the past three decades. This increasing number or meth-

ods contributed to make Software Quality a vast and complex field of Software

Engineering.

Problem Statement

Despite the proficiency of research works addressing quality, the main observa-

tion remains the overall misguided and/or inefficient use of measures in industry,

leading to costly [Fenton and Neil, 1999] or useless measurement plans. Some

surveys (notably [Kasunic, 2006]) also show that measurement tends to appeal

more to the management than it does to the development team. This reflects the

fact that quantitative approaches are mainly used to control and not to guide the

developers, decreasing drastically the potential of quantitative quality assessment.

A notable curb to the adoption of quantitative approaches as an integrated

tool of the development is the vast amount of different proposed quantitative

measurement methods and the fact that they have been proposed for almost

every level of abstraction and type of products. This wealth of available methods

makes it complex to sort out the more suitable ones and use them correctly within

a development team. The same is true for specific quality models.

1

2 Introduction

Another hindrance to the general adoption of measurement is the frequent

lack of clarity about what metrics actually measure and the quality concepts

they reflect. This lack of clarity appears both on a structural level (due notably

to a general lack of experimental validation of metrics [Riguzzi, 1996]) and in the

way measures are used (due to the lack of awareness regarding what goal the

measurement pursues). Quantitative approaches are thus promising but require

frameworks that supply the theoretical support needed to clarify the intent of use

of the measures.

The constant evolution of Software Engineering induces many changes in the

way software is perceived and envisioned. As explained in [Schmidt, 2006], the

apparition of model-driven engineering, for instance, introduced a whole new

point of view on what software is, moving the focus on the intermediary artefacts

involved in software development and putting the focus on the models over the

code. In the context of quality assessment, model-driven engineering introduces

new challenges and the need for more flexible quality assessment frameworks

allowing to take into account multiple levels of abstraction as well as the rela-

tionships between artefacts from these different levels [Mohagheghi and Dehlen,

2008]. Moreover, the paradigm is still vaguely defined and encompasses several

different realities and practices [Vignaga, 2007], increasing the need for more

flexible and adaptive quality assessment methods.

More recently, the increasing attention paid to the notion of software ecosys-

tem [Lungu, 2009] led to a new shift in the way software is perceived. The notion

of software ecosystem forces developers to consider additional factors (such as

social aspects [Mens and Goeminne, 2011]) that influence the development of

software and, therefore, the way it may be assessed.

Finally, quality assessment possesses an intrinsic human-related aspect [West-

fall and Road, 2005] that cannot be ignored. Measurement methods may evolve

from the technical point of view and become very accurate at reporting defects

of a software system. However, the way the evaluation is perceived by the de-

velopment team remains a crucial factor in the successful exploitation of the

measurement values collected.

As a result, the main problem that still pertains to Software Quality is the

fact that, although the field itself is mature and provides a wealth of knowledge,

the practical quality assessment of software still has not reached a state where

it may be performed satisfactorily (i.e., in such a way it would fulfil all involved

actors’ expectations). The research work described in this dissertation intends

to bridge this gap between the theoretical richness and the practical misuses of

quality assessment. It also helps leverage the potential of quantitative software

quality assessment and integrate quality assessment into the software develop-

ment process in a more coherent way.

Introduction 3

Research questions

In order to tackle this problem, the following research questions have been for-

mulated in order to guide our research work.

[RQ1] How can we provide methodological elements to support a flexible and

meaningful quality assessment process?

In order to bridge the gap between the Software Quality body of knowl-

edge and the way it is exploited, a methodology that helps streamline the qual-

ity assessment process is required. Regarding Software Engineering itself, many

methodological refinements have been proposed to improve the way software de-

velopment is carried out (i.e., iterative/incremental methods, model-driven engi-

neering, etc.). Answering this question thus requires to consider which method-

ological elements of software engineering are applicable to quality assessment in

order to facilitate its execution.

[RQ2] How can we formalise the quality assessment process so that the hetero-

geneous expectations of all involved actors are understood by each other?

In order to address human-related aspects, a key aspect of quality assessment

is providing better ways to formalise its elements. Better formalisms (e.g., better

syntax, efficient graphical notations, etc.) should be provided in order to improve

the communication regarding actors’ expectations among them.

[RQ3] What practical techniques may support the effective integration of quality

assessment into the software development and maintenance processes?

Provided with adequate methodologies, the actors involved in software de-

velopment still need concrete mechanisms, tools and formalisms to support the

methodology. This question addresses the definition of such techniques (i.e.,

models, textual notations, tool-support, etc.) that are both applicable in the

methodological context defined and still applicable to quality assessment.

[RQ4] How can we ensure the coherent integration of various quality assessment

methods within the same environment?

In addition to the requirement of adequate techniques to support the quality

assessment process, the challenge of reusing existing quality assessment meth-

ods remains. Providing a formalised way (e.g., ontology, metamodel, etc.) to

integrate heterogeneous methods within the process is therefore another crucial

aspect of the successful execution of quality assessment.

[RQ5] How can quality assessment adapt to the evolution of the way software

is defined and perceived?

As explained before, software is not perceived as a black-box monolithic piece

of code anymore. This means that quality assessment methodologies have to in-

tegrate new ways of considering software (the same way model-driven engineering

4 Introduction

or software ecosystemic approaches do) in order to address it in a coherent way.

This question therefore supposes to redefine the abstraction level at which quality

assessment is envisioned.

Contribution

Taking all the above in consideration, the main contribution of this research work

is:

The achievement of a framework that provides the necessary support

for integrating quantitative quality assessment methods (both existing

and customised ones) into any type of development or maintenance

life-cycle, in a meaningful (i.e., useful for all stakeholders), self-aware

(i.e., allowing a critical review of the process) and flexible (i.e., easily

adaptable to any type of environment) way.

This Model-Centric Quality Assessment (MoCQA) framework relies on tech-

niques inherited from various fields of software engineering, such as (meta)modelling.

It relies on a quality-related ontological support to provide quality assurance

teams with a structured and flexible set of procedures that support the imple-

mentation of a quality assessment plan throughout the development life-cycle.

The approach implemented in the framework intends to be a transversal take on

quality that places quality assessment at the project level. It therefore provides a

global and integrated view on quality concerns for all involved stakeholders. Be-

sides, it addresses both product-oriented and process-oriented quality assessment

within the same context. Finally, it emphasises the importance of communication

about quality aspects and proposes several techniques to ensure the efficiency of

this communication.

Structure

This dissertation is organised as follows.

Part I addresses the context of our research work. Chapter 1 presents related

efforts that have been used as a foundation for the approach introduced in this

dissertation or are meant to complement it. Chapter 2 details the shortcomings

and various issues inherent to Software Quality. Chapter 3 concludes this part

of the dissertation with a conceptualisation of the research context designed to

support the construction of our approach.

Part II details the proposed approach, introduces the techniques the framework

relies on and the methodology provided to use them efficiently. Chapter 4 provides

an overview of the approach and details its theoretical foundations. Chapters 5

Introduction 5

to 9 describe practical aspects of the theoretical approach in order to provide a

comprehensive overview of our framework.

Part III addresses the validation of the framework. Chapter 10 provides an

overview of the validation process that was followed during this research work.

It defines a set of criteria to help structure the validation of the framework.

Chapters 11 to 15 then report case studies that were carried out to test the

framework and to contribute to show that the framework satisfies the previously

defined criteria.

Finally, Part IV provides closing comments, as well as a list of future efforts

considered to achieve the long-term objectives of the approach.

Part I

Research Context

7

Chapter 1

Software Quality

As explained in the introduction, Software Quality has been a fundamental con-

cern for software engineers for the past three decades. As a consequence, the

issues regarding how to define software quality, how to evaluate the overall qual-

ity of software products and how to grant a satisfactory level of quality have

been (and still are) abundantly investigated. This chapter intends to provide a

transversal overview of the current Software Quality body of knowledge and to

illustrate the vast scope of Software Quality as a field.

The research works presented in this chapter have been regrouped in four

subfields of study. Section 1.1 provides an overview of the declarative approaches

to quality assessment (i.e., quality models and quality frameworks). These ap-

proaches intend to define more accurately what quality is, as well as they aims to

structure and formalise this definition. In Section 1.2, analytical approaches to

quality assessment (i.e., software measurement) are described. These approaches

draw on the metrology body of knowledge in order to apply its concepts to soft-

ware engineering. They intend to allow a quantitative characterisation of soft-

ware products. Section 1.3 provides an overview of the quality improvement

approaches found in the Software Quality literature. These approaches build on

the notion that the overall quality of a software product results from the quality

of the processes used during its development life-cycle. They therefore seek to

evaluate and improve these processes. Finally, Section 1.4 addresses a more re-

cent trend in Software Quality, that is, the use of metamodeling techniques and

model-driven principles to support the definition and management of software

quality.

For each of these sections, the research efforts introduced are organised chrono-

logically inasmuch as possible and have been selected in order to provide a hint

at the variety and the profusion of quality assessment methods available to the

researchers and developers.

9

10 Chapter 1. Software Quality

1.1 Quality models

1.1.1 First influential researches

The idea of structuring software quality into smaller and easier-to-assess quality

factors is not new. The core of hierarchical quality models relies on this prin-

ciple in order to provide a better characterisation of software quality: software

quality is organised into several pillars that are further refined into quantitatively

assessable factors for which measures are defined. This approach to quality as-

sessment may be regarded as reminiscent of the divide and conquer algorithm

design method.

Figure 1.1: McCall’s quality model

1.1. Quality models 11

McCall’s quality model

The earliest proposal of hierarchical quality model can be found in [Mccall et al.,

1977]. McCall’s model introduces eleven quality factors related to three different

aspects of software quality: product revision (i.e., the ability to undergo changes),

product transition (i.e., the ability to adapt to new environments) and product

operations (i.e., its functional aspects). These factors (which are equivalent to

ISO/IEC 9126’s external characteristics) are refined into twenty-three criteria

(which are internal to the product). Those criteria are then associated with

actual metrics (percentage of positive answers to a list of questions associated to

the criterion). Figure 1.1, adapted from [Pfleeger, 1998], shows the relationships

between factors and criteria. Regarding McCall’s model, [Ortega et al., 2003]

states:

One of the major contributions of the McCall model is the relationship

created between quality characteristics and metrics, although there

has been criticism that not all metrics are objective. One aspect not

considered directly by this model was the functionality of the software

product.

Boehm’s quality model

Figure 1.2: Boehm’s quality model

Boehm’s quality model, defined in [Boehm, 1981], is essentially a refinement

of McCall’s. It adds some characteristics to the latter and increases the emphasis

12 Chapter 1. Software Quality

on maintainability of software products. The introduction of an assessment of

the utility of the product is worth mentioning. The proposal only includes the

quality factors hierarchy (shown in Figure 1.2) but no support for the evaluation

of the factors is provided. However, the metrics are part of the decomposition

since the “layers” of the quality model are defined as: high-level characteristics,

primitive characteristics and metrics. According to [Ortega et al., 2003]:

Boehm’s model is similar to the McCall model in that it represents

a hierarchical structure of characteristics, each of which contributes

to total quality. Boehm’s notion includes users needs, as McCall’s

does; however, it also adds the hardware yield characteristics not

encountered in the McCall model.

FURPS

Introduced in [Grady and Caswell, 1987], the FURPS model decomposes the

characteristics into functional (Functionality) and non-functional (Usability, Re-

liability, Performance and Supportability) ones. The use of FURPS consists in

setting priorities (i.e., defining which characteristic is more important if one of

them can be increased at the expense of another) and then defining the quality

attributes that are related to the characteristics and that can be measured. A

refined version of the model named FURPS+ [Grady, 1992] exists and introduces

more constraints on various aspects of the software development process.

Dromey’s quality model

Another influential proposal is Dromey’s model [Dromey, 1995; 1996]. The pro-

posed framework has been designed to help build an operational quality model.

The framework distinguishes three separates categories of quality models, de-

pending on the product that is assessed and its place in the software development

(Requirement Determination, Design, Implementation). It also takes into account

the fact that some high-level attributes (e.g., reliability or maintainability) can

not be ‘built into the software product’ but only provided by the identification of

clearly defined properties that have to be fulfilled in order to provide the desired

high-level attribute. Regarding this aspect, [Ortega et al., 2003] specifies that:

Dromey’s model seeks to increase understanding of the relationship

between the attributes (characteristics) and the sub-attributes (sub-

characteristics) of quality. It also attempts to pinpoint the properties

of the software product that affect the attributes of quality.

1.1. Quality models 13

1.1.2 ISO/IEC 9126 Quality Model and variations

Although it was first introduced in 1991 (and therefore before Dromey’s model),

the ISO/IEC 9126 has undergone several modifications in order to become the sta-

ble standard version of 2001 that has been used for many years [ISO/IEC, 2001a].

This model provides a hierarchical structure divided into 4 layers : quality char-

acteristics, sub-characteristics, attributes and metrics. It distinguishes internal

characteristics (static aspects of the software product) from external characteris-

tics (dynamic aspects of the software product) and also considers “quality in use”

characteristics, which are the quality characteristics considered from the end-user

point of view.

Figure 1.3: ISO/IEC 9126 internal and external characteristics

The ISO/IEC 9126 quality model relies on a definition of software product

that is very broad and encompasses various elements (i.e., computer programs,

procedures, and possibly associated documentation and data). It is decomposed

in six quality characteristics that are further refined in sub-characteristics, as

shown in Figure 1.3. It also structures in use quality according to four charac-

teristics as shown in Figure 1.4.

Figure 1.4: ISO/IEC 9126 quality in use characteristics

14 Chapter 1. Software Quality

The standard also defines number of metrics (discussed in Section 1.2) to

evaluate the quality characteristics, via specific attributes. However, one notable

feature of the ISO/IEC quality model is that it is very generic, due probably to

its international standard status. The set of metrics proposed to evaluate the

software product are consequently vague. According to [Ortega et al., 2003]:

One of the advantages of this model is that it identifies the internal

characteristics and external quality characteristics of a software prod-

uct. However, at the same time it has the disadvantage of not showing

very clearly how these aspects can be measured.

An aspect of the ISO/IEC 9126 quality model directly related to the previous

one is that it offers the possibility to be tailored and adapted to different domains.

It is thus often used as a basis for the development of various quality models ad-

dressing more specialised topics such as software architecture assessment [Losavio

et al., 2001; 2004], test specifications [Zeiss et al., 2007], B2B applications [Behka-

mal et al., 2009] or commercial off-the-shelf (COTS) solutions [Torchiano et al.,

2002] to name a few. This process of adaptation and tailoring is never trivial and

requires a vast effort in order to be accomplished thoroughly.

In recent years, the ISO/IEC 9126 quality model has been improved and inte-

grated into the Software product Quality Requirements and Evaluation (SQuaRE)

standards [ISO/IEC, 2005b]. This second generation of quality standards aim to

satisfy “the evolving needs of users through an improved and unified set of nor-

mative documents covering three complementary quality processes: requirements

specification, measurement and evaluation [Suryn et al., 2003]. The SQuaRE

standards represent an attempt to align the various quality-related existing stan-

dards (i.e., ISO/IEC 91xx, 14xx and 15xx) in a harmonised structure. They also

reorganise the quality standards (as a set of 14 documents). These documents

introduce a new general reference model, detailed guides, a standard on Measure-

ment Primitives, a standard on Quality Requirements and a series of examples

designed to provide better guidance [Suryn et al., 2003]. Finally, the SQuaRE

standards provide a better integration of the Measurement Information Model

(discussed in Section 1.2).

As a result, SQuaRE’s quality model improves the ISO/IEC 9126 quality

model through a revision of the nomenclature of quality characteristics (e.g.,

“functionality” becomes “functional suitability”), a structural reorganisation of

the subcharacteristics and the addition of subcharacteristics (e.g., functional com-

pleteness, compatibility, etc.) as shown in Figure 1.5 and 1.6.

1.1.3 Domain-specific quality models

To conclude this review of influential hierarchical quality model proposals, it is

worth mentioning some examples of other quality models that, while not deriv-

1.1. Quality models 15

Figure 1.5: SQuaRE’s product quality characteristics

ing directly from the ISO/IEC 9126 quality model, have been developed in order

to address more specific domains. These “domain-specific quality models” are

numerous and intend to address specific elements (products or processes) in a

more focused way. Among others, an attempt of quality model designed specif-

ically for model-driven engineering can be found in [Mohagheghi and Dehlen,

2008], a model that addresses software product lines is introduced in [Trendowicz

and Punter, 2003] and a model that focuses on the conceptual modelling of data

models (ERA) in [Moody and Shanks, 2003].

16 Chapter 1. Software Quality

Figure 1.6: SQuaRE’s quality in use

1.1.4 Other quality frameworks

Hierarchical quality models are not the only structure used to define software

quality. The research works presented below are examples of quality frameworks

that diverge from those “divide and conquer” approaches.

Perhaps the most anti-hierarchical take on quality assessment is the use of

Bayesian Belief Networks (BBN) introduced in [Neil and Fenton, 1996] and [Neil

et al., 2000]. Basically, a BBN is a graphical network and each of its nodes is a

probabilistic variable while each of its edges is a causal link between variables.

Each node is associated with conditional probability functions that model the

uncertainty of the relationships between nodes. According to [Neil and Fenton,

1996], the use of BBN in quality assessment provides several advantages (e.g.,

association of intuitive graphical representation with underlying mathematical

basis, ability to use facts but also expert opinions as ’metrics’, possibility to

create and use complex models). This approach has been extended in order to

decrease the need to develop a specific BBN for each new development [Fenton

et al., 2007].

Some quality frameworks also rely on the semiotic theory. These frameworks are

used in the evaluation of conceptual models (from database relational schemes

to UML-based architectural diagrams). [Lindland et al., 1994] proposes such

a framework. It borrows three linguistic concepts (i.e., syntax, semantics and

pragmatics) according to which a given conceptual model will be assessed. As

shown in Figure 1.7, the syntactic aspects are concerned with the relationship

between the conceptual model and its language (e.g., syntactic correctness). The

semantic aspects address the relationships between the domain that is modelled

1.2. Software Measurement 17

Figure 1.7: Quality in conceptual modelling

and the model itself (e.g, completeness). The pragmatic aspects are focused on

the target audience and its interpretation of the model (e.g., comprehension).

The framework introduces a clear differentiation between the goals (what quality

factors are desired) and the means (how this quality goal will be achieved) and also

introduces the notion of feasibly of these goals. [Krogstie et al., 1995] introduces

an extended version of this framework which provides additional aspects (physical

quality, perceived semantics quality and social quality).

1.2 Software Measurement

1.2.1 Fundamentals of software measurement

The basics of software measurement (i.e., the characterisation of abstract con-

cepts) appeared in social sciences well before the idea of measuring software

emerged (e.g., in [Stevens, 1975]). Basically, fundamental measurement can be

defined as a means by which numbers can be assigned according to natural laws

to represent the property, and yet which does not presuppose measurement of

any other variables than the one being measured, according to [Torgerson, 1958].

Software measurement is not so much about natural laws than it is about char-

acterisation. The definition provided in [Fenton and Pfleeger, 1998] is therefore

more adequate:

Formally, we define measurement as a mapping from the empirical

world to the formal, relational world. Consequently, a measure is the

number or symbol assigned to an entity by this mapping in order to

characterise an attribute.

This mapping relationship between empirical world and measurement is for-

malised in [Chirinos et al., 2005], as shown in Figure 1.8.

18 Chapter 1. Software Quality

Figure 1.8: Relationship between real and formal worlds through measurement.

Representational theory

[Basili and Weiss, 1984] proposes a first methodology for the collection of software

measurement data. From this point on, many measurement definition, validation

or exploitation frameworks have been proposed. Their goals are either to struc-

ture and/or analyse measurement methods and discuss their validity issues.

[Kitchenham et al., 1995] proposes such a framework. It establishes both

theoretical and empirical methods for validating the properties of the elements

of the measurement and the models used to define those elements. [Fenton and

Pfleeger, 1998] provides a coherent and rigorous framework for controlling, man-

aging, and predicting software development processes. Other notable software

measurement frameworks may be found in [Jacquet and Abran, 1997], in [Zuse,

1997] or in [Lopez et al., 2003]. All these frameworks rely on the representational

measurement theory. This theory [Morasca, 2001]:

formalises the ‘intuitive’ empirical knowledge about an attribute of a

set of entities and the ‘quantitative’ numerical knowledge about the

attribute. The intuitive knowledge is captured via the so-called empir-

ical relational system and the quantitative knowledge via the so-called

numerical relational system. Both the empirical and the numerical re-

lational systems are built by means of set algebra. A measure links

the empirical relational system with the numerical relational system

in such a way that no inconsistencies are possible, as formalised by the

Representation Condition. In general, many measures may exist that

quantify equally well one’s intuition about an attribute of an entity

(e.g., weight can be measured in kilograms, grams, pounds, ounces,

etc.).

1.2. Software Measurement 19

Axiomatic approaches

In parallel to the frameworks based on the representational theory, many research

efforts (called axiomatic or property-based approaches) have been carried out to

develop new approaches to the definition and validation of measurement methods.

The axiomatic approaches differentiate themselves from the other frameworks

by the way they describe the expected properties of measures. The aim is to

describe the characteristics of the measures defined for software attributes via

mathematical properties that they should satisfy, while relying on an abstract

description of the software artefacts.

Early attempts can be found in [Prather, 1984], in [Weyuker, 1988] and

in [Tian and Zelkowitz, 1992] which all focus on single attributes (mainly com-

plexity) or general properties for software measures. An effort to provide a precise

mathematical definition of several attributes (size, length, complexity, cohesion,

coupling) following this axiomatic approach can be found in [Briand et al., 1996]

and a stable and usable validation framework that relies on axiomatic approaches

was introduced in [Morasca and Briand, 1997]. This second main branch of mea-

surement definition and validation is still constantly evolving and introduces new

refinement, as in [Morasca, 2008].

However these two categories of approaches to the definition of software mea-

surement methods coincide on the fact that a measure (or metric) is defined in

order to characterise an attribute of an entity and that some measures can be

more or less adapted to a given attribute.

Metrology and unified terminology

Finally, it is worth mentioning efforts, such as [Abran and Sellami, 2002], intend-

ing to tie software measurement with metrology (i.e., “the science of measure-

ment, embracing both experimental and theoretical determinations at any level

of uncertainty in any field of science and technology” [ISO/IEC, 2007b])) con-

cepts or aiming at the unification of the software measurement terminology, such

as [Garćıa et al., 2006] or [Habra et al., 2008]. Similarly, the ISO/IEC 153939

standard [ISO/IEC, 2007a] recently included in the SQuaRE standard builds on a

terminology that is for the most part aligned to the metrology vocabulary [Abran,

2010].

1.2.2 Software Measures

Although the initial concern of Software Measurement was to address the source

code, many attempts to provide reliable measures for various software products

have been carried out in the past two decades. As a result, the field of Software

Measurement regroups many more or less validated measure proposals, aiming to

characterise many different types of entities (e.g., code, diagrams, etc.).

20 Chapter 1. Software Quality

Requirements and specifications

Although a widely used measure for requirements is the count of their number as

an estimation of size, effort or cost [Morasca, 2001], this method presents several

limitations (e.g., the fact that the result and its soundness is very sensitive to

the level of granularity of the requirements) and has rapidly been calling for

improvements.

Originally introduced in [Albrecht, 1979], function points are designed to ex-

tract information from the requirements and have been used as a measure of

several attributes [Abran and Robillard, 1994] including, size, productivity, com-

plexity, functionality and overall behaviour, to name a few. Despite some theo-

retical problems, function points are widely spread and have undergone several

variations: Mark II Function Points introduced in [Symons, 1991], COSMIC-FFP

which has become a standard for functional size estimation [ISO/IEC, 2003b] and

various others whose description can be found in [Bundschuh and Dekkers, 2008],

among others.

Besides, a number of metrics have been defined to address UML uses cases.

Most notably, [Marchesi, 1998] introduces an indicator of complexity based on the

use cases while [Saeki, 2003] provides a set of metrics designed to be indicators

of the modifiability of the system. Other sets of metrics have been proposed and

a complete study can be found in [Genero et al., 2005a].

In the meantime, software specifications, due to the fact that they are often

written in plain text, received few attention regarding measurement methods.

Measurement methods have nonetheless been defined for some formal and semi-

formal types of specification. Notably, [Briand and Morasca, 1997] presents a

preliminary study that was carried out on TRIO+ specifications (a formal object-

oriented specification language) where internal attributes are used as quality in-

dicators. [Boloix et al., 1993] defines measures for specifications written with

data flow diagrams. An attempt to define a measurement method addressing the

comprehensibility (attribute) of a specification written in Z language is discussed

in [Finney et al., 1998]. Finally, we may also mention a proposal of measures

defined for a number of internal attributes (i.e., size, length, complexity, and

coupling) of software specifications written with Petri nets in the context of con-

current software systems, which is introduced in [Morasca, 1999].

Conceptual models and high-level design

The attention paid to design activities in the development life-cycle has been

increasing steadily since the beginnings of Software Engineering. From a sec-

ondary role as documentation, the elaboration of conceptual models has evolved

and is now considered as a central and full-fledged activity (due, among others,

to the apparition of model-driven engineering). It is thus not surprising that

1.2. Software Measurement 21

the amount of proposed measurement methods linked to the conceptual steps of

software development has increased consequently.

One well-known metrics proposal can be found in [Chidamber and Kemerer,

1994]. The proposal contains six metrics (Weighted Methods per Class (WMC),

Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling between

Object Classes (CBO), Response for a Class (RFC) and Lack of Cohesion of

Methods (LCOM1)) designed for both code and high-level design. Only three of

them can be applied to UML class diagrams (WMC, DIT, NOC). This suite of

metrics mainly addresses the complexity (attribute) of design with the purpose

of tying it to quality characteristics such as maintainability or reliability. They

are applied to (object-oriented) classes. Several empirical validations have been

carried out to verify this set of metrics.

[Li and Henry, 1993] introduces another set of metrics defined at the class

level for coupling, complexity and size. Although some of those metrics do not

satisfy expected properties of the property-based framework described in [Briand

et al., 1996], the metrics have been successfully applied to estimate the main-

tenance effort of real systems. [Lorenz and Kidd, 1994] introduces other metric

proposals focusing on static characteristics of software design. These two sets

address internal aspects of the classes and not only their external organisation.

It is worth mentioning that [Brito e Abreu and Carapuça, 1994a] introduces

a complete collection of candidate metrics for both high-level design and code

defined for several attributes (design, size, complexity, reuse productivity and

quality) within the scope of a classification framework (TAPROOT). The well-

known MOOD suite is the next contribution from these authors. Introduced

in [Brito e Abreu and Carapuça, 1994b] and improved in [Brito e Abreu and

Melo, 1996], the purpose of this set of metrics is to explore typical object-oriented

mechanisms (i.e., inheritance, polymorphism and information hiding) and their

impact on quality and development productivity. The suite has been theoretically

validated using Kitchenham’s framework [Kitchenham et al., 1995] and applied in

the context of several empirical studies. A MOOD2 version has been introduced

but neither theoretically nor empirically validated, according to [Genero et al.,

2005b].

Efforts concentrating on cohesion and coupling (attributes) of the high-level

design of an object-based system can be found in [Briand et al., 1997a], in [Har-

rison et al., 1998] and in [Briand et al., 1999]. [Bansiya et al., 1999] and [Bansiya

and Davis, 2002] address encapsulation, composition and inheritance beside the

previous two attributes. We can also mention an attempt to adapt function point

analysis to the evaluation of object-oriented design in [Antoniol et al., 1999].

All the above proposals are not specifically designed for class diagrams and,

in most cases, they are designed to address both object-oriented design and code.

Conversely, [Marchesi, 1998] introduces a first effort to define UML-specific mea-

22 Chapter 1. Software Quality

sures. This proposed set of metrics addresses complexity, cohesion and coupling

attributes as well as the responsibilities balancing. Little theoretical or empirical

validation has been provided regarding this set of metrics.

[Genero et al., 2000] and [Genero, 2002] provide a set of metrics assessing

the complexity (attribute) of UML class diagrams. These metrics have been

theoretically validated through axiomatic approaches and measurement theory.

Their use as an early indicator of the maintainability quality characteristic of

class diagrams has been discussed and empirically validated in [Genero et al.,

2007].

Further details on measurement methods designed for UML class diagrams

can be found in [Genero et al., 2005b]. Additionally, an important research work

can be found in [Lange, 2007], regarding the assessment and improvement of UML

modelling. This work is connected with other efforts related on different levels,

such as [Lange and Chaudron, 2004] which explores the completeness (attribute)

of UML models and the way to assess it or [van Opzeeland et al., 2005] which

investigates the correspondence between UML designs and their implementations,

to name a few.

Metrics have also been proposed for UML statechart diagrams. In [Miranda

et al., 2003], a set of metrics addressing their complexity and size is defined

and, more recently, [Cruz-Lemus et al., 2009] addressed the assessment of the

understandability of statecharts diagrams. An attempt to formalise statechart

diagram metrics using OCL expressions has been introduced in [Reynoso et al.,

2008]. It is also worth mentioning the existence of measurement method proposals

for statecharts not linked to UML, as in [Derr, 1995].

Finally we can also mention some efforts to assess the quality of database

conceptual models. Notably, [Si-Said Cherfi et al., 2007] proposes a set of metrics

(addressing clarity, simplicity, expressiveness, minimality) applied to different

versions of Entity-Relationship conceptual schemas. [Genero et al., 2005a] also

addresses this issue.

Low-level design and code

A widespread measurement proposal for low-level design is found in [Henry and

Kafura, 1981]. The Information Flow Complexity (IFC) is based on the fan-in

(the input parameters and the global data structures from which the function

retrieves information) and the fan-out (the output parameters and the global

data structures that the function updates) of functions.

At the code level, many measurement methods are found, from the very com-

mon yet controversial number of lines of code defined for the size (attribute)

of code to much more elaborate metrics. Among others, we can mention the

following research works.

1.2. Software Measurement 23

One well-known measurement method that has been defined to assess the

complexity of source code is the Cyclomatic Complexity proposed in [McCabe,

1976]. This measure is based on the control flow graph of the program. It relies

on the assumption that the higher the number of paths in a program is, the higher

its control flow complexity will be. The computation of the cyclomatic number

is based on graph theory results.

[Halstead, 1977] proposes a set of metrics designed for several attributes of

the source code (e.g, program length, length estimator, volume, potential volume,

an more). However, according to [Morasca, 2001]:

Halstead’s Software Science’s theoretical foundations and derivations

of measures are somewhat shaky, and it is fair to say that not all of the

above measures have been widely used in practice. However, due to

their popularity and the availability of automated tools for computing

them, some of the above measures are being used.

Object-oriented programming also constitutes the right field for a vast amount

of software metrics. As a matter of fact, most of the above measurement methods

addressing high-level object-oriented design can be used at the concrete code level

(and were generally defined for C++ language).

Other measures

It is worth mentioning the large number of metrics defined in the ISO/IEC 9126

standard, dispatched in [ISO/IEC, 2001b], in [ISO/IEC, 2001c] and in [ISO/IEC,

2001d]. These metrics assess all parts of the software products, from design to

code and runtime behaviours and are tied to the quality characteristics defined

in the ISO/IEC 9126 quality model.

Besides, many other types of software-related entities could be (or even have

been) assessed from the documentation-related products (as in [Matulevicius

et al., 2009]) or test-related products (examples may be found in [Morasca, 2001]).

Similarly, a proposal of metrics designed to relate OCL expressions to cognitive

complexity is introduced in [Genero et al., 2005a]. Another example is the pro-

posal of metrics designed to address the model transformations that can be found

in [van Amstel et al., 2009].

1.2.3 Implementation of measurement programs

In spite of the wealth of quantitative approaches and generic frameworks avail-

able, the development and successful use of measurement in actual situations

still remains a difficult and demanding task. The research works presented in

this section focus on the operationalisation of software measurement and quality

assessment. Some of them focus on the generation of customised measurement

24 Chapter 1. Software Quality

plans (i.e., measurement plans that are specifically adapted to a given environ-

ment), others address the theoretical or logistical support essential to a successful

quality assessment program.

GQM and GQM/MEDEA

The first fundamental rule to deploy a successful measurement plan is that the

purpose of any measurement should be clearly stated from the beginning. De-

scribed in [Basili et al., 1994], the Goal/Question/Metric (GQM) approach relies

on an application of this rule. It provides a framework that helps define the

relevant measures from predefined measurement goals. The definition of a mea-

surement goal is provided according to five dimensions (Object of Study, Purpose,

Quality Focus, Point of View, Environment). This goal is then translated into

relevant questions (e.g., how high is the defect density?) that are refined in met-

rics destined to provide the answer to this question. This approach has several

advantages: it is environment specific (i.e., the goals and questions are designed

for a given context), it integrates easily into the development process and reverses

the usual bottom-up software measurement approaches (i.e., everything that can

be measured is measured and the conclusions are drawn afterwards). However, it

lacks the support to ease the derivation of metrics from the initial questions (which

is not trivial) and is not related to any specific quality framework or model. Sev-

eral refinements of GQM have been proposed in order to address the difficulty to

define the measures according to goals, such as an attempt of automated support

in [Lavazza and Barresi, 2005] or the Goal/Argument/Metric(GAM) described

in [Cyra and Górski, 2008].

Among these refinements of the GQM approach, the GQM/MEDEA frame-

work builds on the goal-driven definition of measures, coupled with a set of em-

pirical hypotheses. The aim of the approach is to provide a “measure definition

process, usable as a practical guideline to design and reuse technically sound and

useful measures” [Briand et al., 2002]. The framework provides a detailed descrip-

tion and an information flow of the various activities involved in the definition

of measures. Measures are links to corporate goals and the development environ-

ment, and the overall approach helps justify, interpret, and reuse measures, as well

as “identify problems that may arise during the definition of measures, taking into

consideration that it is a highly human-intensive process” [Briand et al., 2002].

The other notable feature of the framework is the introduction of a conceptual

model (shown in Figure 1.9) that constitutes the foundation of a repository de-

signed to contain all the knowledge relevant to measurement and therefore poses

the bases of the metamodel-based approaches described in Section 1.4.

1.2. Software Measurement 25

Figure 1.9: GQM/MEDEA conceptual model

SQUID and MOSME

The SQUID (Software QUality In the Development process) approach, defined

in [Bøegh et al., 1999], intends to support the quality management during the

development process through defined activities and a provided tool-set. It com-

bines the process and product approaches to software quality and is based on three

models (a product view, a data view, and a quality view of software) that are

connected by means of software measurement. Three entity types (deliverables,

activities, events) are considered in the product view and provide a description

of the software development process. The quality view defines software quality

characteristics, sub-characteristics and attributes (measurable properties). This

view is connected with the ISO/IEC quality model and its own definition of soft-

ware product. The data view is in charge of the data elements to be collected

and divides them into three categories : actual, target and estimate values.

A notable research work inspired by the SQUID approach can be found

in [Chirinos et al., 2005]. This approach also proposes a data model for soft-

ware measurement (shown in Figure 1.10). This Model for Software Measurement

(MOSME) intends to define explicitly software measures, providing a more struc-

tured view than (yet compatible with) SQUID. It intends to address the problem

“of constructing software measures to obtain reliable, repeatable and comparable

values”. The MOSME data model focuses on the definition and modelling of the

elements involved in software measurement, particularly the counting rules and

the role played by the context of use.

26 Chapter 1. Software Quality

Figure 1.10: MOSME data model

ISO/IEC 15939 and MIM

The ISO/IEC 15939 standard“identifies the activities and tasks needed to success-

fully identify, define, select, apply,and improve software measurement within an

overall project or organisational measurement structure” [Garćıa et al., 2006]. The

standard relies on two components to structure the measurement definition and

exploitation activities: a software measurement process that defines the activities

involved in the measurement process and a conceptual model that structures the

various elements involved in this process. Additionally, it provides a terminol-

ogy of measurement-related terms commonly used in the software industry and

mostly aligned with the concepts of metrology [Abran, 2010].

The software measurement process defined in ISO/IEC 15939 relies on the de-

sign of an information product, that is, a set of measures and indicators defined to

satisfy an information need expressed by an individual or group of individuals in-

volved in the software development. It emphasises the difference between purely

measurement-related activities (i.e., the data collection and data preparation)

and the definition and interpretation of indicators in order to satisfy information

needs (i.e., quality assessment). As shown in Figure 1.11, the Measurement Infor-

mation Model (MIM) defines and structures the relationships between measures

and information needs. It also formalises how attributes are combined in order

to provide an indicator that satisfies a specific information need.

1.3. Software process improvement 27

Figure 1.11: MIM conceptual model

1.3 Software process improvement

Process improvement consists in the definition of a series of actions taken in order

to analyse and improve existing business processes so that the organisation meets

its goals (e.g., increasing profits and performance, reducing costs, etc.). Although

the focus of software improvement is management-oriented, it is also regarded as

“a method to introduce process changes to improve the quality of a product or

service, to better match customer and consumer needs” [Cook, 1996]. As such,

several software process improvement frameworks have emerged or adapted, aim-

ing to improve the quality of software processes and, therefore, products.

Total Quality Management

Total Quality Management (TQM) relies on the continuous application of quan-

titative methods and the use of human resources to improve the material and

services supplied to an organisation, in turn increasing the level of satisfaction of

the customers at a steady rate, until fulfilled [Li et al., 2000].

TQM also adopts a specific view on quality in which the customer is the final

arbiter. The methodology may be regarded as customer-driven. It emphasises

28 Chapter 1. Software Quality

the continuous process improvement to achieve high quality products or services,

relying on the assumption that a better process will contribute to the improved

“total quality” of the organisation and, therefore, the quality of the final product.

[Deming, 2000] proposes 14 points of actions allowing to implement TQM.

These 14 points may be adapted to software development, as explained in [Li

et al., 2000]. Most of them consist in the definition of a suitable work environ-

ment (e.g., “drive out fear of job insecurity”, “eliminate slogans, exhortations,

and targets for the workforce”). More importantly, one of these points proposes

to eliminate “quotas” (i.e., schedule and metrics), stating that the metrics are

counter-productive if used as a control method.

TQM, which is arguably more of a philosophy or of the adoption of certain

work ethic, has helped many companies to improve quality of products and pro-

cesses, and in turn, increase the productivity and the profitability [Li et al., 2000].

However, the methodology is not void of flaws. Regarding the drawbacks of TQM,

[Li et al., 2000] states:

One caveat is that there is no free lunch for those who perform TQM

activities. Once you implemented TQM concept and methods, you

are bound to continually improve your products and processes. You

must constantly ask yourself “What and how can I do it better next

time?” [...] Most importantly, there is no such thing as few (i.e.,

the management) or mindless majority (i.e., the workers). Everyone

related to the value chain of the product is significant and must use

his or her mind constantly to play his or her own role well, otherwise,

the chain will be broken, and the TQM process will soon fall apart.

Therefore, implementing TQM is a process that must be carried out with a small

number of people, keeping the process manageable. Similarly, this process im-

provement methodology requires a strong emphasis from the top management in

order to keep all employees motivated and willing to adhere to the underlying

work ethic.

Six Sigma

Directly inspired by TQM, the Six Sigma management strategy seeks to iden-

tify and eliminate causes of errors/defects/failures in business processes. Six

Sigma relies on a focus on customers, a process orientation and a leadership

based on metrics. It aims to eliminate defects (i.e., anything which could lead

to customer dissatisfaction according to the approach) using the application of

statistical methods. The fundamental objective of the Six Sigma methodology

is the implementation of a measurement-based strategy that focuses on process

improvement and variation reduction [Antony, 2004].

1.3. Software process improvement 29

This emphasis on metrics coupled with the focus on customers is particularly

relevant in the context of software. As explained in [Biehl, 2004]:

By building critical customer metrics into software solutions (for ex-

ample, response times, cycle times, transaction rates, access frequen-

cies, and user-defined thresholds), [software engineers] can make ap-

plications self-correcting by enabling specific actions when process

defects surface in the improvement zone. These actions do not always

need sophisticated technical solutions to be beneficial.

Among the main limitations of Six Sigma, the difficulty to obtain quality-related

data remains an hindrance that needs to be overcome since many processes do not

provide quantitative data, although they are effort and time-consuming [Antony,

2004].

ISO/IEC 9000 standards

ISO/IEC 9000 standards provide a series of rules designed to formally organ-

ise processes to manufacture products while managing and monitoring progress.

These rules (called requirements) help ensure that the output (i.e., products or

services) of the organisational process meets the expectation of the customers,

that the quality system is consistently implemented and verifiable, that measures

are collected to demonstrate the effectiveness of various aspects of the system

and that the continuous improvement of the company’s ability to meet customer

needs is respected [Kantner, 2000].

Although the standards were originally created for the manufacturing sector,

ISO/IEC 9000 standards have been applied to software development as well. As

such, the implementation of ISO/IEC 9000 relies on the ISO/IEC 9126 standard

described in Section 1.1. Although the process of implementing the ISO/IEC

9000 standards is a rigorous process that may increase the costs, the added value

or ISO/IEC 9000 lies in the impact is has on the organisational culture. Indeed,

according to a survey reported in [Stelzer et al., 1996]:

It seems that it is not the technical contents of the IS0 9000 family that

makes it specifically appropriate for software process improvement.

The culture created by a company-wide improvement program seems

to be more important.

SPICE

Defined specifically for software processes, the ISO/IEC 15504 standard, also

known as Software Process Improvement Capability Determination (SPICE), is

“the reference model for the maturity models (consisting of capability levels which

30 Chapter 1. Software Quality

Figure 1.12: CMMI maturity levels

in turn consist of the process attributes and further consist of generic practices)

against which the assessors can place the evidence that they collect during their

assessment, so that the assessors can give an overall determination of the or-

ganisation’s capabilities for delivering products (software, systems, and IT ser-

vices)” [ISO/IEC, 2003a].

As explained in [Paulk, 1999], SPICE intends to help characterise the process

capability through a series of nine process attributes, applicable to any process.

These attributes represent measurable characteristics that help manage a process

and improve its capability to perform. Each process attribute describes an aspect

of the overall capability of managing and improving the effectiveness of a process,

in achieving its purpose and contributing to the business goals of the organisation.

The process attributes are grouped into capability levels (ranked from 1 to 5).

Capability levels ”constitute a rational way of progressing through improvement

of the capability of any process [Paulk, 1999].

CMMI

The Capability Maturity Model Integration (CMMI) is a framework that de-

scribes the principles and practices designed to lead to software process maturity.

It is intended to “help software organisations improve the maturity of their soft-

ware processes in terms of an evolutionary path from ad hoc, chaotic processes to

mature, disciplined software processes” [Paulk, 1999].

The underlying principles of CMMI are similar to those of SPICE. CMMI is

organised into five maturity levels, as shown in Figure 1.12. Each maturity level is

decomposed into several key process areas that indicate the areas an organisation

should focus on to improve its software process. CMMI also relies on measurement

1.4. Quality modelling 31

in order to monitor the maturity level. Detailed measures of software processes

and products quality are required at level 4. In order to satisfy to this level

of maturity, both the software process and products have to be quantitatively

understood and controlled.

According to [Staples et al., 2007], the main reason for organisations not to

adopt CMMI is their (small) size, the costs induced by the process, the time

needed to implement the framework or the existence of other SPI methods in

their context.

1.4 Quality modelling

We classify under the quality modelling category all efforts consisting in explicitly

modelling an aspect of the quality assessment process in order to guide this

process. The concept of quality modelling originates in fact from GQM [Basili

et al., 1994] described in Section 1.2. Although it is mainly an approach to

the implementation of measurement plans, GQM proposes to explicitly derive

any planned measurement from a hierarchy of quality goals expressed through

more concrete questions, therefore defining a hierarchical model of the quality

assessment process. During the past few years, several research efforts regarding

quality metamodels or software measurement modelling have been carried out

and contributed to advance the topic of quality assessment modelling.

1.4.1 GenMETRIC and SMML

Relying on a previous effort to describe a consistent terminology for software mea-

surement (in [Garćıa et al., 2006]), [Garćıa et al., 2007] provides an approach to

measure definition supported by metamodel. The approach provides a metamodel

(shown in Figure 1.13) that captures all the relevant concepts of measurement

theory and hierarchical quality models in order to describe software measure-

ment models for an entity type. The description of the entities and the measures

that can be applied to them is provided by a distinct metamodel (e.g., relation

database metamodel for a database schema). The framework is supported by a

tool (GenMETRIC) that allows the generation of software measurement models

and the calculation of measures.

The main advantage of this approach is to provide a generic and flexible

environment for software measurement which is not restricted to only one kind

of products or to a single quality model. The approach has already been adapted

successfully to various domains [Cachero et al., 2007].

Building on this metamodel, [Mora et al., 2008] intends to provide a sim-

ple and intuitive procedure to design a measurement model (i.e., a model that

defines all the relevant elements of a measurement plan). To this end, it in-

troduces a graphical domain-specific language (SMML) that is dedicated to this

32 Chapter 1. Software Quality

Figure 1.13: GenMETRIC underlying metamodel

task. SMML provides a set of pictorial representations of measurement-related

concepts and allow the graphically combination of them in order to provide a

model representation of what to measure and how to measure it.

1.4.2 QMM and Quamoco

[Deissenböck, 2009] provides an approach to the maintenance of software that

also relies on a quality metamodel (QMM). This metamodel is not inspired di-

rectly by any of the proposals presented in Section 1.1 and do not focus heavily

on the concept of software measurement. However, a vast effort aiming at the

operationalisation of the quality model is provided as well as the description of a

tool that supports the overall process.

Extending the scope of QMM, [Wagner et al., 2012] introduces a more generic

quality metamodel, addressing any quality factor. It also proposes an approach

(Quamoco) design to support the continuous assessment of Java and C# sys-

tems. The expressiveness of the quality metamodel (i.e., the ability of the quality

1.4. Quality modelling 33

Figure 1.14: Quamoco metamodel for specifying and evaluating software quality

metamodel to express several quality models) has been evaluated in [Klaes et al.,

2010].

1.4.3 Other quality metamodels

The support provided by a metamodel is also a common aspect of the following

efforts. In [Mens and Lanza, 2002], a metamodel supports the precise definition of

the artefact to measure (object-oriented systems to be more specific). This meta-

model and the graph-based description of generic metrics allow the generation of

typical object-oriented metrics.

[Lee and Chang, 2000] introduces RAMOOS, a tool support for the utilisation

of customised quality models in an object-oriented context, and [Khosravi and

Guéhéneuc, 2005] also stresses the importance of tool-supported customised qual-

ity models, while not relying on a metamodel to generate these quality models.

[Dubielewicz et al., 2006] provides a quality metamodel for requirements eval-

uation and assessment that is mainly inspired by the ISO/IEC quality model.

This metamodel allows the generation of quality models that are adapted to

various situation.

[Mohagheghi et al., 2008] builds on the quality framework introduced in [Mo-

hagheghi and Dehlen, 2008] and defines a quality metamodel to support the

framework. This metamodel does not align on the usual terminology of software

measurement.

Finally, a quality metamodel addressing design rationale (i.e., the decision

taking in the course of a model-driven engineering process) is introduced in [Gar-

ćıa Frey et al., 2011]

Chapter 2

Research issues

Chapter 1 showed that numerous efforts have been carried out in order to advance

the field of Software Quality. However, many limitations still remain and pre-

vent software quality assessment to leverage its full potential as a core activity of

Software Engineering. This chapter explores the main issues researchers are still

striving to address. Section 2.1 and 2.2 addresses intrinsic limitations of declar-

ative (i.e., quality models) and analytic (i.e., software measurement) approaches

to software quality, respectively. Section 2.3 is dedicated to issues regarding the

integration of quality assessment into the software development life-cycle.

2.1 Issues related to quality models

As we have seen, quality frameworks/models have been proposed very early in

the evolution process of Software Engineering. However, although they have

become part of the software quality landscape, their efficiency is still debated.

As explained in [Deissenboeck et al., 2009]:

Software quality models are a well-accepted means to support quality

management of software systems. Over the last 30 years, a multitude

of quality models have been proposed and applied with varying de-

grees of success. Despite successes and standardisation efforts, qual-

ity models are still being criticised, as their application in practice

exhibits various problems. To some extent, this criticism is caused

by an unclear definition of what quality models are and which pur-

poses they serve. Beyond this, there is a lack of explicitly stated

requirements for quality models with respect to their intended mode

of application.

35

36 Chapter 2. Research issues

This observation may in fact be refined into two main issues regarding quality

models. The first main issue is related to operationalisation concerns. The other

deals with the question of what quality models actually model.

2.1.1 Complexity of the operationalisation

As explained in [Wagner et al., 2009], one of the main limitations of quality

models is the difficulty to apply them in an actual software development context

and“make them work in a realistic environment and producing quantified results”.

As we may see in Chapter 1, hierarchical quality models may be divided into

two distinct families. One includes general quality models focusing on the ‘soft-

ware product’ (e.g., ISO/IEC-9126). The other includes quality models designed

for specific domains or intermediary products (i.e., requirements, design, etc.).

However, none of those two perspectives fully address the problem of how to

make quality models operational.

General quality models do not provide a sufficient level of detail to allow

an easy and quick operationalisation. Although they provide satisfying general

references or basis for quality assessment, their scope does not allow for very

specific or customised guidelines that would be applicable as-is to any quality-

related challenge a development team could encounter.

The specialised quality models are more operational by design since they

address smaller topics (e.g., requirements, documentation, etc.) but they induce

a multiplication of external models throughout the development life-cycle. This

multiplication of specialised models could result in a more difficult management

of the quality assessment and a waste of time, particularly if not all the quality

factors of the models are priorities in the given context.

These concerns regarding the operationalisation are not only related to the

structure of quality criteria they defined but also to the actual measures proposed

to assess their satisfaction. On the one hand, some quality models do not provide

any quantitative method at all. On the other hand, general quality models such

as the ISO/IEC quality model have to comply to their generic scope and cannot

provide very specific measures. Finally, some quality models have been defined at

an early stage of evolution of Software Engineering and are not always adapted

to more recent paradigms (e.g., model-driven engineering, object-oriented pro-

gramming, etc.).

Additionally, quality models do rarely address the specifics of the environ-

ment. As explained in [Dromey, 1996], quality assessment is highly sensitive to

context. An efficient quality model should therefore be tailored to take parameters

of the actual development environment (priorities, availability of given measur-

able entities, constraints that influence the interpretation of results, etc.) into

account. This limitation is directly observable in the case of the ISO/IEC qual-

ity and the important number of customised quality models that have emerged

2.1. Issues related to quality models 37

from the standard, as well as the fact that the customisation process is neither

straightforward nor trivial (as explained in Chapter 1).

In consequence, it is arguable that existing hierarchical quality models are

at best adapted to one paradigm or product. However, they cannot take the

environmental features of a development process (e.g., priorities, development

methodology, etc.) into account, nor can they evolve during the development as

the priorities or quality information needs change.

This lack of flexibility is reflected by the poor rate of adoption of quality mod-

els in very small to small companies. As shown in a survey conducted on 44 small

Belgian companies [Perez Garcia et al., 2012], only 19 percent of the respondents

stated their reliance on quality models. These results somewhat corroborate the

fact that although they provide a general reference to guide quality assessment

efforts, quality models do not provide a practical mechanism that may be used

directly in a given context, especially if this context does not possess important

resources to allocate on a customisation or operationalisation process.

2.1.2 Confusion between quality models and quality modelling

The idea of using models during software development as a tool to circumvent

the inherent complexity of a specific process is not new. However, for a long

time, models have mainly been used in very specific tasks or to design a partic-

ularly complex piece of code [Pressman, 2000]. The emergence of model-driven

engineering provided a different approach, putting models in the front of the

process as first class entities. Model-driven engineering is a vast field that en-

compasses various initiatives (one of the best known being OMG’s Model-Driven

Architecture) addressing many different opportunities to fully exploit models (i.e.,

automatic code generation, model transformations, etc. [Schmidt, 2006]). Model-

driven approaches contributed to a new vision of what software is by focusing on

the different models used to elaborate it all along the development process.

As a matter of fact, quality models are more reminiscent of the former paradigm

than they are fitting in the model-driven paradigm. They provide a structured

set of criteria that represent an attempt to define the concept of software qual-

ity, and (possibly) the quantitative methods to evaluate the extent to which the

product complies to this predefined characterisation. As such, they provide an

ideal vision of quality that one product should reach.

Another aspect of quality models that prevent the use of powerful modelling

techniques is their fixity. As explained in [Deissenboeck et al., 2009], “Although

most quality models conform to an implicitly defined metamodel they usually lack

an explicitly specified metamodel that precisely defines the set of legal model in-

stances”. The lack of explicit quality metamodels in hierarchical quality models

is coherent with the observation regarding the role of these models. Since they

38 Chapter 2. Research issues

provide a structured characterisation of the concept of quality, they are logically

“set in stone” and not prone to alteration.

In consequence, quality models should not be confused with quality modelling,

which would be the modelling of the actual quality-related aspect of a given soft-

ware product. An actual model of the quality-related aspect of a given software

development context would arguably be more helpful to the developers. Such

models would have to be specifically generated to adapt to a specific context and

to be evolutive in order to create an accurate quality picture of a software project

at any point of its life-cycle.

The investigation of metamodelling techniques applied to the field of Soft-

ware Quality is therefore a promising opportunity that should be pushed further.

However, it is crucial not to limit the notion of quality metamodels to the mere

recreation of existing quality models. Instead, efforts should be carried out in

order to see how quality-related metamodels may help bridge the gap between

declarative approach and software measurement in a more flexible way.

2.2 Issues related to software measurement

As shown in Chapter 1, software measurement relies on solid theoretical and

mathematical foundations. However, as the need for new types of measure in-

creases, the spread of mistakes or misconceptions in the definition of measures,

the lack of validation or the difficulty to implement a satisfying software mea-

surement program still hinder the maturity of this field.

2.2.1 Conceptual misconception pertaining to measurement

One of the main threats to software measurement is the widespread lack of con-

ceptual clarity of metrics [Habra et al., 2008]. Software measurement methods

in general lack clarity about the entity they are characterising or the attribute

they are supposed to evaluate. This often results in a misuse or misinterpreta-

tion of the values produced by measurement methods. This lack of clarity can

therefore lead to the irrelevance of any quality assessment made on the bases of

these numbers.

Besides, the evolution of Software Engineering induces a lot of possible con-

fusion regarding measurement. While a defined measure may be perfectly fit to

assess an artefact complying to a given paradigm, it may not be applicable in

others. For instance, the use of McCabe’s cyclomatic number may be adapted to

procedural programming, but will not provide satisfying results when applied to

object-oriented programming languages [Habra and Lopez, 2004].

A precise definition of measures (as well as a common understanding of its

conceptual elements among the various stakeholders) and their intent is therefore

crucial in order to avoid misuses of software measurement.

2.2. Issues related to software measurement 39

2.2.2 Lack of empirical validation

It is easy to confuse mere quantification with actual measurement [Abran and

Sellami, 2002]. Whereas numbers may be associated to software products in

a number of ways (e.g., score cards, expert’s rating, etc.), defining an actual

measure requires a lot of attention to the rules of metrology. This critical pro-

cess logically calls for cautious validation, both theoretical and empirical. The

question of software measures verification and validation methods has thus been

largely investigated in the literature (e.g., in [Kitchenham et al., 1995], in [Fen-

ton and Pfleeger, 1998], in [Zuse, 1997], in [Morasca and Briand, 1997], in [Habra

et al., 2008], etc.).

Despite the availability of validation frameworks, most analytical methods still

lack comprehensive and structured empirical (or theoretical) validations [Kozi-

olek, 2011]. Validation is a complicated and long process that requires a lot

of resources (especially empirical validation). The lack of validation is there-

fore understandable but contributes to the spread of poor software measures or

misused measurement procedures. Besides, as a quickly evolving field, Software

Engineering makes it even more difficult to provide a validated and common set

of measures since programming or designing paradigms emerge or are slightly

altered almost constantly.

As a result, although the systematic theoretical and empirical validations of

software measures should continue to be encouraged and carried out, practitioners

have to be provided with methods that help deal with the risk of inadequate

measures.

2.2.3 Complexity of measurement programs implementation

Even when provided with validated and reliable software measures, actually ap-

plying them in a consistent and manageable program remains as challenging. For

instance, some elaborated measurement procedure may be difficult to apply, or

even inapplicable at early stages of the development.

Similarly, although a goal-driven top-down measurement plan definition pro-

vides a clear understanding of the objectives pursued by the measurement process,

if the plan is not carefully taken care of, it may results in dead ends at some point

(e.g., a goal may rely on a resource that is not available in the context or not

measurable in the case of close-source libraries).

Besides, measurement-based approaches are not integrated enough with other

types of quality assessment methods, such as scenario-based approaches to archi-

tecture quality [Koziolek, 2011]. This lack of integration induces additional effort

in order to take advantage of different techniques with their respective pros and

cons.

40 Chapter 2. Research issues

Finally, and as a result of aforementioned shortcomings, software metrics are

widely misused or at least underused. In fact, studies (namely [Kasunic, 2006],

conducted by the Software Engineering Institute) show that metrics appeal more

to management than they do to analysts or programmers. This fact tends to show

that software measurement is mainly used as a control means while it would be

better used as a guide.

2.3 Issues related to the integration of quality assessment

into the software development

Software development life-cycles are already demanding activities on their own.

The focus put on quality assessment and software measurement may therefore

conflict in many ways. This section addresses the limitations that prevent a

facilitated integration of quality assessment as a continued and companion process

of the development itself.

2.3.1 Spread of measurement methods

As we have seen in Chapter 1, quantitative approaches are currently witnessing

many efforts to produce new and more accurate measurement methods adapted

to every type of software artefact. As a result, many options are offered to the

quality assurance teams when considering how to evaluate their products. The

first caveat in this context is to avoid the confusion about which measures are

selected and why. The stakeholders’ transversal understanding of the choice and

purpose of measures is essential to the successful integration of quality assessment

into the development process.

Besides, the lack of visibility of these numerous proposed metrics and the lack

of tool support for measure users to decide what metric is more suited and efficient

for a specific need is a threat to the efficient quality assessment of software.

A more systematic and structured classification of existing measures would be

beneficial to the sound use of quantitative approaches.

2.3.2 Problematic role of quality assessment

As explained before, the software development life-cycle is a complex set of ac-

tivities. During the course of these activities, many quality concerns and require-

ments may arise. This multitude of quality concerns/requirements throughout

various software processes and activities confers a key role to quality assessment.

However, and although quality assessment is the one key aspect that cannot be

disregard, it is still considered as a parallel or secondary activity. According

to [ISO/IEC, 2008], software quality assessment is not an end by itself but a

2.3 Integration of quality assessment into the software development 41

means to support other software engineering processes and is classified accord-

ingly (i.e., support process and not primary process). As a supporting activity,

quality assessment is thus closely linked to the activities it sustains. First, the

supported activities influence the way quality assessment is performed. Besides,

the results of the assessment impact the way the supported activity is performed.

Therefore, quality assessment should have its own life-cycle, allowing revisions

and corrections regarding how it is performed.

2.3.3 Impact of model-driven engineering

Model-driven approaches contributed to a new vision of what software is. Un-

fortunately this change implies a renewed envisioning of measurement as well.

Although metrics dedicated to conceptual models have already been proposed

(see Chapter 1), the relationship between these and previously proposed mea-

sures must be investigated (e.g., which metrics are applicable to which model(s)

and under which conditions?). Similarly model-driven engineering has to cope

with a view of software that is less “black-box” whereas classical quality models

still consider software to be a monolithic “product”. Model-driven approaches

create the need to envision new ways to conduct quality assessment. In fact,

since Model-Driven Engineering copes with different models and handles them as

distinguished products, the quality models have to take this into account and to

adapt consequently.

2.3.4 Impact of software ecosystems

Extending even more the scope of what software is regarded as, the emerging

notion of software ecosystems also impacts the way quality assessment should

be performed. One limitation of traditional quality assessment methods (ex-

cept for software process improvement frameworks) is their product-centric ap-

proach. However, the notion of software ecosystem, defined as a collection of

software artefacts and/or projects, developed and co-evolving in the same envi-

ronment in [Lungu, 2009], has recently drawn increasing attention. As explained

in [Lungu, 2009], “software projects exist in larger contexts ”. The analysis of

ecosystems requires different kinds of artefacts used and produced during the

software development process, beyond source code [Robles et al., 2006]. Quality

assessment should therefore not only rely on final products but on all possible

artefacts (e.g., source code, design, mailing list archives, etc.) and the various

processes (i.e., development and business models) that relate artefacts to each

other.

42 Chapter 2. Research issues

2.3.5 Organisational issues regarding quality assessment

Any software development project takes place in a larger context that motivates

its existence. This applies to any context, from the community-based open-source

software to the more conventional software development hosted within a company.

This larger context inevitability induces some constraints that can hinder sound

quality assessment.

First of all, due to the conceptual complexity behind measurement, the com-

munication between stakeholders with different points of view may be difficult.

Without a clear understanding of the goals and possible interpretation of mea-

surement values, different stakeholders may not be able to gain a common under-

standing of the current status of the project and the actions that must be carried

out. In consequence, the rationale of the quality assessment process should be

clearly stated and easily available for every stakeholders to consult so that they

may understand their part in the process.

Another crucial element is the psychological impact of measurement in an

organisation. As explained in [Westfall and Road, 2005], people who actually

develop and dedicate time to a project may regard quality assessment as a way

to control them and judge their abilities. Therefore, quality assessment is often

regarded as an inconvenience instead of a supporting process, which partially

explains the observation from [Kasunic, 2006], regarding the appeal of software

measurement. In consequence, it is crucial to provide methodologies that help

present quality assessment as a supporting activity which is beneficial as a guid-

ance mechanism.

2.3.6 Cost and effort of quality assessment/improvement

Finally, a recurrent problem of quality assessment is the time and effort it re-

quires and, ultimately, the cost it induces. As explained in [Fenton and Neil,

1999], an enduring observation regarding measurement plans remains the over-

all misguided and/or inefficient use of measures in industry, leading to costly or

useless measurement plans.

This waste of time, effort and money is mainly due to the lack of flexibility

of existing quality assessment methodologies. Quality models may require lots of

customisation and operationalisation in order to fit a context, or induce the use

of multiple specialised models.

Measurement values are time-consuming when it comes to their collection

and, if not defined adequately, may result in unexploitable output. The more

established software measures also require a level of maturity from the project

that postpone meaningful assessment until late in the development process, which

may result in dramatic efforts of maintenance and corrective actions.

2.3 Integration of quality assessment into the software development 43

The same applies (even more) to software process improvement [Conradi and

Fuggetta, 2002]. For instance, CMMI does not appear as suitable for smaller

organisations. The overhead generated by the deployment of such a software

process improvement framework may be regarded as too heavy.

As a heavy process, quality assessment should therefore be oriented towards

more flexible approaches, that is, a way to tailor or customise the heaviest ap-

proaches in order to make them compliant with smaller contexts without dramatic

overhead.

Similarly, provided that quality assurance is a demanding process requiring

acceptance and collaboration from many involved stakeholders, quality assess-

ment methodologies should also ensure that each effort of quality assessment will

be meaningful and therefore not result in a waste of time, effort or money.

Chapter 3

Conceptualisation of the domain

Terminology and ontology of Software Quality

As we have seen in Chapter 1, Software Quality is a very broad field in which

much research has been carried out. As a result, the domain of interest of this

dissertation is conceptually rich and complex. Therefore, this chapter intends to

narrow and structure this conceptual complexity in order for the remainder of

the dissertation to build upon. This conceptualisation effort is divided in two

parts. First, we provide a terminology of relevant concepts the remainder of the

dissertation will refer to. Then, we provide an ontology that has been designed to

structure these concepts and how they relate to each other. The terminology and

the ontology rely on diverse source material found in the Software Engineering

literature. Regarding Software Measurement, the terminology builds on previous

efforts aiming to align different terminologies of measurement such as [Garćıa

et al., 2006] , [Habra et al., 2008] or [Abran, 2010]. Other sources (e.g., ISO or

IEEE standards) were used to provide specific definitions for some terms. This

additional material is referenced throughout the chapter.

3.1 Terminology

This section provides the definition of several core concepts related to Software

Quality. Any future occurrence of those terms are used accordingly to the defi-

nition found in this section, unless otherwise stated.

Definition 3.1 (Entity).

Any distinguishable object in the empirical world for which a measurement can

be applied [Habra et al., 2008].

45

46 Chapter 3. Conceptualisation of the domain

Additionally, [Fenton and Pfleeger, 1998] refines the notion of object in the

empirical world and distinguishes three kinds of entities: products, processes and

resources. Products and resources may be assimilated to deliverables, as defined

within de CMMI framework. An entity is characterised by a set of attributes.

Examples of software entities to be measured include a piece of code, a design

artifact, a database, a programming task, a maintenance process or any other

intermediate software product or process [Habra et al., 2008].

Definition 3.2 (Entity class).

The collection of all entities that satisfy a given predicate. [Garćıa et al., 2006]).

Definition 3.3 (Entity population).

A set of empirical entities having similarities [Habra et al., 2008].

The last two terms are closely linked. As matter of fact, an entity class

characterises an entire entity population at once.

Definition 3.4 (Attribute).

A property of an entity that can be determined quantitatively, i.e., which a mag-

nitude can be assigned to [Habra et al., 2008].

The concept of attribute is also defined as a measurable physical or abstract

property of an entity in IEEE Standard 1061 [IEEE, 1998]. The additional in-

formation given by this second definition is relevant in the context of this work

since many resources are in fact abstract constructs.

Definition 3.5 (Base attribute).

A base attribute is a simple property defined by convention, with no reference

to other attributes, and possibly used in a system of attributes to define other

attributes [Habra et al., 2008].

Definition 3.6 (Derived attribute).

A derived attribute is a property defined in a system of attributes as a function

of base attributes [Habra et al., 2008].

Definition 3.7 (External attribute).

An attribute that can only be measured with respect to how the entity relates to

its environment [Habra et al., 2008].

Definition 3.8 (Internal attribute).

An attribute that can be measured purely in terms of the entity being measured [Habra

et al., 2008].

The distinction between internal and external attributes is specific to the

3.1. Terminology 47

ISO/IEC 9126 standard. Internal attributes may be evaluated statically (i.e.,

without any execution of the software system and therefore without interference

from environmental factors). External attributes must be evaluated dynamically

(i.e., during the execution of the software system and with regard to its environ-

ment).

Definition 3.9 (Measure).

The number or category assigned to an attribute of an entity by making a mea-

surement [ISO/IEC, 2001a].

Measure is also a synonym for measurement value.

Definition 3.10 (Base measure). Measure defined in terms of an attribute and

the method for quantifying it [SEI, 2010].

A base measure may be seen as a measure defined for a base attribute. Base

measure is also a synonym for the metrologic concept of base quantity [ISO/IEC,

2007b].

Definition 3.11 (Derived measure). Measure that is defined as a function of

two or more values of base measures [SEI, 2010].

A derived measure may be seen as a measure defined for a derived attribute.

Derived measure is also a synonym for the metrologic concept of derived quan-

tity [ISO/IEC, 2007b].

Definition 3.12 (Measurement).

The characterisation of an attribute in terms of number and symbols [Abran,

2010].

This definition adopts a general point of view in order to stay consistent with

most definitions found in the literature. Also defined as “a set of operations to

determine the value of a measure” in [SEI, 2010] and as “the use of a metric to

assign a value (which may be a number or category) from a scale to an attribute

of an entity”, according to [ISO/IEC, 2001a].

Definition 3.13 (Measurement function).

An algorithm or calculation performed to combine two or more base or derived

measures [Garćıa et al., 2006].

Definition 3.14 (Measurement life-cycle).

The whole process of measurement involving the design of measurement methods,

the application of measurement methods and the exploitation of the measurement

results [Habra et al., 2008].

48 Chapter 3. Conceptualisation of the domain

Definition 3.15 (Measurement method).

A logical sequence of operations, described generically, used in the performance

of measurement [ISO/IEC, 2007b].

Definition 3.16 (Measurement procedure).

A set of operations, described specifically, used in the performance of particular

measurements according to a given context [ISO/IEC, 2007b].

Definition 3.17 (Measurement plan).

A plan that specifies and organises the step of the measurement and specifies why

and what to measure, how to measure and who is responsible for the measurement

(adapted from [Briand et al., 1997b]).

In other words, the measurement plan specifies the goals of the measurement,

what measurement values to collect, through which measurement proce-

dures and from which entities. It also specifies who is supposed to perform

these activities.

Definition 3.18 (Metric).

The defined measurement method and the measurement scale [ISO/IEC,

2001a].

Also defined as “a function whose input are software data and whose output

is a single numerical value that can be interpreted as the degree to which software

possesses a given attribute that affects its quality” in [IEEE, 1998].

Definition 3.19 (Information need).

Insight necessary to manage objectives, goals, risks, and problems (ISO/IEC

15939 definition from [Garćıa et al., 2006]).

Definition 3.20 (Decision criteria).

Numerical thresholds or targets used to determine the need for action or further

investigation, or to describe the level of confidence in a given result [Abran, 2010].

Definition 3.21 (Analysis Model).

An algorithm or calculation combining one or more base and/or derived measures

with associated decision criteria (ISO/IEC 15939 definition from [Abran, 2010]).

In other words, the analysis model bridges the gap between pure measurement

(i.e., values that convey a neutral information) and actual quality assessment (i.e.,

values that convey a meaning that supports the decision-making process). Anal-

ysis models are defined in order to produce an indicator that can be interpreted

with regard to a set of decision criteria.

3.1. Terminology 49

Definition 3.22 (Indicator).

A measure providing an estimate or evaluation of specified attributes derived from

a model with respect to defined information needs.

An indicator is produced by an analysis model and interpreted according

to a set of decision criteria. Fundamentally, an indicator is an evaluation of a

derived attribute that conveys a interpretable meaning, regarding the quality

goals in a specific context. Indicators support the decision-making process and

the communication with stakeholders.

Definition 3.23 (Quality factor).

A condition or characteristic which actively contributes to the quality of the soft-

ware. [Mccall et al., 1977]

The definition of quality factor provided here is compliant with [IEEE, 1998]

that defines it as “a management-oriented attribute of software that contributes

to its quality”. Quality factor is a synonym for quality characteristic defined

in [ISO/IEC, 2001a]. In the remainder of this dissertation, the term quality

factor will be used as the general term to refer to a software attribute defined to

assess quality, regardless of the specific term used in a given quality model (e.g.,

quality attribute in CMMI, quality characteristic in ISO/IEC 9126, etc.).

Definition 3.24 (Quality model). The set of characteristics and relationships

between them, which provides the basis for specifying quality requirements and

evaluating quality [ISO/IEC, 1999].

Additionally, [Deissenböck, 2009] defines quality models as “structured collec-

tions of criteria for the systematic assessment of an entity’s quality”.

Definition 3.25 (Scale).

A structured set of values associated with an attribute which is used to compare

different entities according to that attribute [Habra et al., 2008].

The scale of a given attribute and guaranteed by its evaluation method is

essential in order to inform the measurer about the kind of modification the

measure can undergo in any subsequent processing. Five types of scales are used

in software measurement: nominal, ordinal, interval, ratio and absolute. They

are defined as follows [Fenton and Pfleeger, 1998]:

Definition 3.26 (Nominal Scale).

Nominal scales only provide a classification of data with arbitrary labels and no

ordering (e.g., repartition of each people in a group into two categories: Male or

Female). Accept both numeric and non-numeric values.

50 Chapter 3. Conceptualisation of the domain

Definition 3.27 (Ordinal Scale).

Ordinal scales provide an ordered classification of data where the distance between

values is not important (e.g., restaurant ratings). Accept both numeric and non-

numeric values.

Definition 3.28 (Interval Scale).

Interval scales provide an ordered and constant classification of data with no nat-

ural zero and where the distance between values is meaningful (e.g., temperature).

Accept only numeric values.

Definition 3.29 (Ratio Scale).

Ratio scales provide an ordered and constant classification of data with a natural

zero (e.g., height). Accept only numeric values.

Definition 3.30 (Absolute Scale).

Absolute scales are ratio scales that only allow the identity transformation. This

type of scale only allows the count of occurrences of an element or event.

Definition 3.31 (Unit of measurement).

A scalar attribute of an entity, defined by convention, with which other attributes

of the same type are compared in order to express their magnitude [Habra et al.,

2008].

Definition 3.32 (Value).

The magnitude assigned to an attribute of an entity represented by a number and

a reference [ISO/IEC, 2007b].

Definition 3.33 (Deliverable).

An item to be provided to an acquirer (i.e., a stakeholder that acquires or procures

a product or service from a supplier) or other designated recipient as specified in

an agreement [SEI, 2010].

This definition encompasses a broad scope of items, such as documents, hard-

ware items, software items, services, or any type of work product.

Definition 3.34 (Process).

A set of interrelated activities, which transform input into output, to achieve a

given purpose [SEI, 2010].

This definition of process is consistent with the definition of process provided

in [ISO/IEC, 2008]

Definition 3.35 (Process measurement).

A set of operations used to determine values of measures of a process and its

3.2. Ontology 51

resulting products or services for the purpose of characterizing and understanding

the process [SEI, 2010].

Definition 3.36 (Project).

A managed set of interrelated activities and resources, including people, that de-

livers one or more products or services to a customer or end user [SEI, 2010].

Definition 3.37 (Stakeholder).

A group or individual that is affected by or is in some way accountable for the

outcome of an undertaking [SEI, 2010].

In the remainder of this dissertation, we rely on this general description while

limiting its scope to the quality-related aspects of the software development life-

cycle. That is, the term stakeholder is used to refer to any individual (or group)

that is either responsible for the quality assessment or relying on the results of

quality assessment in any way. Therefore, the stakeholder population, as we define

it, includes : measurement users [Abran, 2010] or metric customers [Westfall and

Road, 2005], customers (i.e., ”the party responsible for accepting the product or

for authorizing payment” [SEI, 2010]), end users (i.e., “a party that ultimately uses

a delivered product or that receives the benefit of a delivered service” [SEI, 2010]),

etc.

Definition 3.38 (Software product).

The set of computer programs, procedures, and possibly associated documentation

and data [ISO/IEC, 2008].

3.2 Ontology

This section intends to structure and formalise the relationships between the

concepts defined in Section 3.1. The Software Quality ontology described below

has been built to model these relationships. Additionally, the ontology aims to

provide the conceptual foundation for the approach proposed in Part II of this

dissertation. The process of building followed the steps of the ontology building

proposed in [Uschold and King, 1995], which are the following:

1. Identify purpose

2. Building the ontology

3. Evaluation

4. Documentation

However, due to the nature or our purpose and the building process we ap-

plied, the third and fourth steps have not been carried out in a formalised way.

52 Chapter 3. Conceptualisation of the domain

3.2.1 Purpose

As explained above, the general purpose of the Software Quality ontology is to

structure the domain and to provide the conceptual foundations for the approach

proposed in Part II. This general purpose translates as a more concrete goal:

align existing Software Measurement ontological structures and integrate the ter-

minology of Section 3.1 into this aligned ontology. The other specific goal is to

use this ontology to investigate how declarative and analytical approaches are

related to each other and how we may provide an integrated view of those two

paradigms.

The ontology is thus not an end but a support for the remainder of the

dissertation. Additionally, it builds on a body of knowledge that is already well

established. Therefore, the process calls for less validation and documentation.

3.2.2 Building the ontology

The first step of the building process is the ontology capture step, which is defined

as [Uschold and King, 1995]:

1. identification of the key concepts and relationships in the domain of interest

(i.e., scoping)

2. production of precise unambiguous text definitions for such concepts and

relationships

3. identification of terms to refer to such concepts and relationships

In order to identify the key concepts (and provide the definitions) to include in

the ontology, we relied on the terminology provided in Section 3.1. Regarding the

structure of the ontology (and the name of the relations), we align the structures

proposed in [Chirinos et al., 2005] and in [Garćıa et al., 2006], as well as the

Measurement Information Model defined in [ISO/IEC, 2007a].

3.2.3 Evaluation and documentation

As explained above, the purpose of the ontology does not call for a heavy val-

idation or documentation process. Our efforts regarding the evaluation mainly

consisted in ensuring that the definition and the relationships of the concepts

contained in the ontology were compliant with any of the definition and relation-

ships provided by the multiple sources used to capture the concepts. Although

its purpose is more operational than definitional, we also took into account the

conceptual model proposed in the GQM/MEDEA approach [Briand et al., 2002]

and verified that no conflict existed between the two models (i.e., that no element

of the GQM/MEDEA conceptual model is incompatible with any concept of the

ontology) .

3.2. Ontology 53

Figure 3.1: The software quality assessment ontology

The documentation of the ontology mainly consists in the terminology pro-

vided in Section 3.1 and the remainder of this chapter.

3.2.4 Software Quality ontology

Figure 3.1 shows the resulting Software Quality ontology, expressed as an UML

class diagram. The ontology slightly extends the scope of the Software Measure-

ment ontology proposed [Garćıa et al., 2006] in order to integrate project-related

54 Chapter 3. Conceptualisation of the domain

concepts mostly inherited from the CMMI framework. In comparison to the

Model for Software Measurement proposed in [Chirinos et al., 2005], it provides

less focus on the mathematical concepts of Software Measurement. The same

applies to the GQM/MEDEA conceptual model [Briand et al., 2002], which pro-

vides more focus on the operational aspects of the measurement process (e.g.,

corporate objectives, tactical goals, etc.) that we did not include at this stage.

The ontology itself distinguishes 3 levels: assessment level, measurement level

and project level. The first two levels regroup concepts with an upper level of

abstraction that relates to the process of defining measures and indicators. The

last level displays concepts with lower level of abstraction, representing actual

resources and actual values. This division reflects the fact that quantitative

approaches to quality assessment are actually processes involving two separate

phases with different scope in terms of abstraction. Quantitative approaches

require a conceptual step where all the relationships between measures and their

meaning in terms of quality are defined and a subsequent operational step where

measurement is performed and the conclusions about quality are drawn thanks

to the implicit model developed in the conceptual level.

Assessment level

The assessment level encompasses concepts that we classified as goal-oriented

and stakeholder-oriented. The concepts at this level relate to the structuring of a

series of goals that the project has to satisfy to, and how the level of satisfaction

will be monitored on the basis of quantitative data defined at the measurement

level. It also describes how declarative approaches and analytical approaches

interact to provide the information required from the stakeholders.

As shown in Figure 3.1, the central concept is the quality model that de-

fines a set of quality factors. These factors may be structured hierarchically

and bridge the gap between an information need a stakeholder relies on

and measurable concepts (i.e., attributes). Quality models may define deci-

sion criteria, analysis models, measurement functions and measurement

methods, although it is not always the case, as we have seen in Chapter 1.

Analysis models rely on decision criteria and measures in order to pro-

duce an indicator that will respond to specific information needs.

Measurement level

The measurement level regroups concepts that we classified as purely related to

the quantification process, that is, the association of a given magnitude to given

properties of project-related elements. This distinction is mainly based on the

fact that this magnitude (or value) is a neutral information that does not convey

a quality information as-is (e.g., the size of an element). These concepts are

mainly inherited from the representational measurement theory.

3.2. Ontology 55

Figure 3.1 shows that the fundamental concept of the measurement level is

the attribute. Attributes may be base attributes or derived attributes and

may be internal or external. Although the tendency in the source material used

to build the ontology is to associate attribute and measures, we chose to put

the measurement methods and functions at the centre of this relationship.

This choice is justified by our will to clearly separate the measurement level and

the more concrete project level. Therefore, we can formalise that measurement

methods are defined for (base) attributes and measurement functions are

defined for (derived) attributes. Similarly scales are linked to methods and

function instead of measures, in order to emphasise the fact that the adequate

definition of the methods/functions is crucial to provide a measure within the

desired scale. Units may be defined at this level and are associated to a specific

measure, in order to emphasise the fact that units are closer to the actual value,

acting as a type characterizing the value. Measurement procedures are also

defined at this level, bridging the gap between the conceptual measurement

method and the actual measurement value.

At this level, the entities exist as entity classes, that is, generic descriptions

that characterise an entire entity population. Those entity classes may be

characterised by a set of attributes.

Project level

The project level focuses on the concepts that represents the more operational

level of the quality assessment process. The concepts regrouped at this level

characterise people involved in the project, the quantitative information they can

consult and the concrete elements characterised by this quantitative information.

Besides, this part of the ontology provides a basic typology of relevant quantifiable

elements, based on the review of existing measurement approaches provided in

Chapter 1.

As shown in Figure 3.1, from a measurement perspective, the project is an

aggregation of entities that may be deliverables or processes. The two sub-

types of entities are interrelated (i.e., deliverables may be used as input for a

process, and a process should result in one or more output deliverables). Ad-

ditionally, the deliverables may be classified as requirement-related, design-

related, code-related or documentation-related elements. Although this

typology may be refined, it provides a sense of the vast scope of the procurable

quantitative information.

The stakeholders have also been classified according to their status. All

stakeholders are associated to one or more information needs and may be

involved in the various processes of one project. External stakeholders

(i.e., customers, end-users, higher management, etc.) are generally involved in

a more indirect way (e.g., requirements elicitation, providing information on the

56 Chapter 3. Conceptualisation of the domain

domain in which the development takes place, etc.). On the other hand, internal

stakeholders (i.e., designers, programmers, etc.) are the main actors of the

processes in which they are involved.

The quantitative information at this level is comprised of three types of mea-

sures: base measures, derived measures and indicators. The information

needs of the stakeholders are satisfied by indicators, produced by an anal-

ysis model. Analysis models may rely on any type of measures in order to

produce their output. Derived measures may be computed thanks to base

measures or derived measures, through a measurement function. Finally,

base measures may only be acquired through the application of measurement

procedure targeting a specific entity.

Part II

Model-Centric Quality

Assessment

57

Chapter 4

Overview of the approach

Theoretical foundations and MoCQA framework

4.1 Objectives of the approach

As explained in Chapter 2, Software Quality still suffers from several shortcomings

and raises issues that researchers strive to address. Some of these concerns (such

as the need for empirical validation of measurement methods, improved agreement

on what attribute a given measure actually measures, etc.) cannot be addressed

globally. These concerns have to be studied separately and will find answer as

Software Quality matures as a field.

However, other issues (such as the organisational issues, the need for better

communication between involved stakeholders, the need for processes allowing

quality assessment to adapt to a specific context, etc.) may be solved through

the development of more adequate methodological constructs.

In order to address those concerns, we propose a theoretical approach to qual-

ity assessment that relies on three specific core notions. These notions are either

new in the field of quality assessment or already known notions that have been

revised. The introduction of those three notions impact how quality assessment

has to be performed. Therefore they require to adapt the quality assessment

methodology but are expected to provide several benefits that will help solve or

at least alleviate the above issues. These three notions are the following:

• Model-driven quality assessment

• Explicit and integrated quality assessment modelling

• Dedicated quality assessment life-cycle

The remainder of this section details each of these 3 notions.

59

60 Chapter 4. Overview of the approach

Model-driven quality assessment

This notion is not entirely new in software quality assessment. In many regards,

goal-driven measurement methods based on the Goal/Question/Metric approach

define a model (although it is somewhat implicit) of the measurement that must

be performed. That measurement model guides the quality assurance and this

approach is therefore model-driven. We propose to push this function of goal-

driven measurement models further by introducing quality assessment models

designed to provide useful information to the different members involved in the

development team as a reference regarding quality goals and related efforts.

As for goal-driven measurement models, the main objective of quality assess-

ment models is to assist the quality assurance team in the planning and execution

of the quality assessment process for a specific development context. The models

are therefore designed to record information on the quality goals and the evalu-

ation methods that are to be used. However, quality assessment models are also

designed to record more specific information on the resources the development

team is acting on and to relate these resources to the high-level quality require-

ments identified in the context. In order to help communicate with the managers

or end users, quality assessment models also record information on the way high-

level quality indicators should be interpreted and which actions should be taken

in the software development process according to these interpretations.

Recording this heterogeneous information in a central model and using this

model as a basis for the measurement process is the core of model-driven quality

assessment. It pursues the goal of ensuring that the quality assessment performed

is meaningful regarding the needs of all the relevant stakeholders.

Through quality assessment models, the quality assessment becomes a full-

fledged model-driven process. Model-driven engineering relies on design-related

models used through the implementation process to provide a software product

all stakeholders can agree upon. In the same way, our approach proposes to rely

on a quality assessment model that will result, through the process of applying

the measurement plan, in a quality profile that represents the quality-related

requirements and their current state of satisfaction, while granting a common

understanding of these elements among the various stakeholders.

Explicit and integrated quality assessment modelling

Explicit quality assessment modelling denotes the fact that, in addition to dif-

ferent types of information required to support an efficient model-driven quality

assessment, this information has to convey enough elements to make it useful

to the stakeholders. The focal point of explicit quality assessment modelling is

the expressiveness of the information the quality assessment model records. This

expressiveness of the model in terms of what concepts it is able to model is a key

to the efficiency of the process.

4.1. Objectives of the approach 61

Integrated quality assessment modelling means that the information contained

in the model has to include all relevant quality-related elements within the same

model so that all the effort regarding the quality assessment process is available

in a centralised way. Consequently, the quality assessment model should not

focus on a single product but take into account the set of all relevant artefacts

produced during the development into account. This also implies that the quality

assessment model should support the integration of quality factors from multiple

quality models and measurement/estimation from multiple sources.

More concretely, in order to ensure the usefulness of model-driven quality as-

sessment, quality assessment models have to demonstrate two additional features:

they have to be operational and customised.

A customised quality assessment model is specifically designed for a given

software development context, thanks to the merging of relevant quality factors

from multiple quality models and adequate measurement methods to evaluate

them. Instead of deploying specific quality models for various software products,

the customised quality assessment model models all quality assessment efforts

planned for the entire project. The design of such a model requires a mechanism

to align and convert the integrated elements and a means to keep track of the

various sources used in the same quality assessment model. Additionally, the

language used to express the quality assessment model must provide enough con-

structs to express and describe the resources available in the context in order to

define them as measurable entities and/or points of improvement.

In order to become operational, the quality assessment model must ensure

that each stakeholder has all the information she requires to perform the task she

is expected to achieve in the context of quality assessment

The quality assurance team has to be able to perform the evaluation (mea-

surement/estimation) and assessment (producing indicators) based on the quality

assessment model alone (without a heavy operationalisation process). The man-

ager and/or end users have to be able to understand the quality profile and

interpret it in an adequate way and in the same way the quality assurance team

does. Finally, the development team has to rely solely on the operational quality

assessment model in order to be aware of the implication of their current task in

terms of software quality. In other words, they have to be aware of the impact a

modification of the current resource they are working on will have on the overall

quality of the project, and which other resources are involved in this relationship.

The concept of operational customised quality assessment models is therefore

the basic construct that will support the notion of explicit and integrated quality

assessment modelling. Its goal is to guarantee that all that is needed to perform

the quality assessment in a sound way is available.

62 Chapter 4. Overview of the approach

Dedicated quality assessment life-cycle

Software development and quality assessment are often seen as separate activities

and therefore, the two processes remain more of less independent from each other.

While the notion of measurement life-cycle (see Section 3.1) already exists,

this life-cycle remains separated from the software development and does not

really coincide with the various stages of the development life-cycle.

Besides, during the past two decades, software development processes have

seen many efforts to improve their effectiveness. New paradigms have emerged

(i.e., model-driven engineering, Agile methods, etc.) and have altered the way

software development is conducted. Software development cannot be regarded as

a straightforward waterfall-like process anymore and the way quality assessment

is performed should follow this evolution.

In consequence, a quality assessment life-cycle should be envisioned with a

broader scope, as a process that follows closely the software development life-

cycle and helps adapt the quality assessment process to the requirements of a

particular stage of the development. The approach we propose postulates that

software development and quality assessment life-cycles are parallel activities that

impact on each other and therefore should be performed simultaneously.

In order to fit the context of a given software development project, the sup-

porting operational customised quality assessment model has to be designed and

refined in parallel to the products themselves. Consequently, it defines its own

life-cycle that must deal with its own decision-making process.

Thanks to the introduction of these core notions, the approach to quality

assessment we propose is expected to provide the following benefits:

• help plan and adjust the quality assessment process throughout the software

life-cycle;

• provide a quality assessment that fits the specific context in which it is

performed;

• help detect the flaws in software measurement methods that are used;

• improve the overall acceptance of quality assurance activities;

• improve the communication between stakeholders in order to ensure that

all of them are aware and understand the different goals regarding quality;

• improve the awareness of quality concerns among the various stakeholders

in order for them to converge towards said goals.

Indeed, while model-driven quality assessment as we envision it provides a

central mechanism (i.e., the operational customised quality assessment model)

for each stakeholder to refer to, explicit and integrated quality assessment mod-

elling ensures that the information contained in that model is not exclusively

4.2. Founding principles 63

useful to the quality assurance team. Besides, the quality assessment model pro-

vides enough measurement-related information to detect the weaknesses of the

current assessment strategy. Finally, the quality assessment life-cycle allows the

refinement and improvement of the quality assessment process as the software

development unfolds.

4.2 Founding principles

In order to implement the core notions described in the previous section, the

approach builds upon several related principles inherited from other fields of

software engineering as well as from software quality and software measurement.

The remainder of this section describes those principles and how they contribute

to the foundation of the approach.

4.2.1 Constructivism

Constructivism is a concept inherited from learning theory. [Jonassen, 1991]

explains that constructivism is a way to envision knowledge that opposes to the

more traditional objectivist view. It postulates that knowledge is constructed by

the knower based on mental activity while objectivism envisions knowledge as a

pre-existing truth that is obfuscated from the knower who must strive to discover

it.

These two different viewpoints on what knowledge is and how one acquires

specific knowledge (i.e., constructivism versus objectivism) typically applies to

software quality. Most declarative and analytic approaches (i.e., most quality

models and metrics) are implicitly based on the objectivist assumption that the

quality level is a pre-existent property of the software product. This pre-existent

software quality (resulting from the more or less efficient work of the development

team) has to be revealed by the quality assurance team thanks to measurement

and quality models. This explains partially why software measurement is mainly

performed at the end of a development cycle and still remains a control activity.

The quality assessment approach described in this dissertation adopts a more

constructivist approach to software quality. Quality is not seen as a pre-existent

aspect of the software product that must be discovered through measurement.

Instead, the approach envisions quality as a series of aspects that must be “in-

stilled” in the software product during development and maintenance, while soft-

ware measurement is a tool to monitor the level of achievement of this process.

This principle is close to the notion of “shared vision” implemented in the CMMI

framework, that is, “a common understanding of guiding principles, including

mission, objectives, expected behavior, values, and final outcomes, which are de-

veloped and used by a project or work group” [SEI, 2010].

64 Chapter 4. Overview of the approach

Consequently, our approach to quality assessment may be regarded as the

construction (among stakeholders) of a common knowledge that represents the

current level of quality. At the beginning of a project, each stakeholder has

his own perception of the quality requirements for the project (and therefore

possesses its own mental model of what quality is) and how these requirements

are prioritized. For instance, the developers may believe that they should focus on

time performance or memory use optimisation while managers want to accelerate

the time-to-market and the end users expect the software product to be stable

and user-friendly). Adopting a constructivist approach means that the approach

aims to reconcile those mental models in order to construct a shared mental model

of the quality expectations for the project. This way, all involved stakeholder

can collaborate efficiently to “implement” the quality requirements of this mental

model.

This principle supports transversally the core notions developed on Section 4.1.

Operational customised quality assessment models are constructivist mechanisms

by design. Their emphasis on recording the rationale behind any quality assess-

ment effort denotes this effort to reconcile divergences among the stakeholders’

perceptions. The fact that the models are built and refined all along the soft-

ware development life cycle, through the elicitation of quality requirements from

the various stakeholders, also contribute to this instillation of quality into the

software product.

4.2.2 Iterative / incremental life-cycle

In Software Engineering, the past two decades have witnessed the emergence of

an increasing amount of iterative and incremental approaches, the least of which

being the Agile paradigm [Beck et al., 2001]. These approaches are now widely

recognized as beneficial to a successful software development.

In software development, an iterative approach refers to a scheduling and stag-

ing strategy that allows rework of parts of the system. An incremental approach

refers to a scheduling and staging strategy in which pieces of the system are devel-

oped at different rates or times and integrated as they are developed [Cockburn,

2006].

[Read, 2005] explains that one of the main advantages offered by iterative/in-

cremental approaches, is to “provide a way to ensure the correct focus throughout

development by addressing areas of technical concern early on, developing the key

features/requirements first, obtaining real-world/customer/user feedback on early

releases, calibrating effort on an ongoing basis and enabling the technical solution

to evolve and be adjusted with minimal overhead”.

Another fundamental advantage of iterative and incremental approaches it to

allow mistakes during the course of a process and their correction in a short frame

of time [Cockburn, 2006]. Any activity relying heavily on a human processing is

4.2. Founding principles 65

prone to witness the apparition of mistakes but addressing them and correcting

them as they occur help people learn from the mistakes and is a beneficial pro-

cess overall. Booch [2004] refers to this process as “gestalt, round-trip design”,

emphasizing the human characteristic of learning by completing.

Despite an increasing level of automation witnessed in software metrics, qual-

ity assessment still remains a process that relies heavily on human processing

(e.g., prioritization of the quality goals, definition of the corrective actions to un-

dertake, etc.) [Briand et al., 2002]. As such, an iterative management of software

quality may be beneficial. As a matter of fact, [Dromey, 1996] already shows

that quality models should be refined gradually to fit the goals and the context

they are used in. In order to support the notion of quality assessment life-cycle,

this principle of successive iterations is crucial. The main hindrance to an early

quality assessment is the fact that measurement plans often require a certain

level of maturity in order to be applied. Relying on an iterative quality assess-

ment process makes the integration of less sophisticated measurement/estimation

methods possible during the early phases of the development. Then, the methods

are refined as the evaluated product gains in maturity. Although the first itera-

tions could integrate very rough and imprecise evaluation methods, they would

at least provide indicators regarding the global direction in which the software

quality is heading. On the other hand, addressing quality assessment through an

incremental process let the quality assurance team avoid dealing with goals that

are not yet clearly stated or measurable entities that are just not mature enough

to undergo any relevant evaluation.

This principle complements the constructivist view adopted by the approach.

If quality assessment is perceived as the construction of a common knowledge,

then quality assessment also implies that miscommunication inevitably arises

between stakeholders. Adopting an iterative/incremental approach to this con-

struction of quality knowledge is the key to steady progresses towards the shared

view of what quality means for a given software product. Following a construc-

tivist approach means reconciling the various mental models or the stakeholders.

As a consequence, relying on an iterative/incremental approach to the quality as-

sessment life-cycle means converging gradually towards a common mental model.

4.2.3 Involvement of the stakeholders

This principle is one of the cornerstones of requirement engineering. It is recog-

nized to be of crucial importance in order to lead a software development project

to a successful conclusion [Sharp et al., 1999]. Consulting the stakeholders in or-

der to understand their requirements regarding the product that will be developed

is therefore a widespread practice.

This principle also applies in the field of Software Measurement. As a matter

of fact, [Westfall and Road, 2005] states that identifying the customer for each

66 Chapter 4. Overview of the approach

metric is the first step towards useful software metrics. The author defines a

customer for a metric as “the person (or people) who will be making decisions

or taking action based upon the metric”.Those customers come in very different

types and have different objectives and needs. Besides, “if a metric does not have

a customer, it should not be produced. Metrics are expensive to collect, report,

and analyse so if no one is using a metric, producing it is a waste of time and

money.” [Westfall and Road, 2005]. In order to support the notion of explicit

and integrated quality assessment modelling and allow the quality assessment

life-cycle to be efficient, the involvement of the stakeholders is essential.

The proposed solution therefore integrates this principle by providing an as-

sessment methodology that is built around the “metric customers” (referred to

as stakeholders in this dissertation). The approach, allows them to define their

specific quality-related information needs and integrate them with the global qual-

ity goals for the development. This requires the identification of the stakeholders

and their requirements (as proposed by [Westfall and Road, 2005]). Besides, we

also have to link the various quality goals to each other. Pushing this principle

even further, stakeholders should be able to provide input to the quality assur-

ance team at each critical step of the quality assessment process (i.e., after the

evaluation in order to see if the evaluated quality seems to comply with their

practical experience).

4.2.4 Goal-Driven definition of measures

The fact that any measurement process should adopt a top-down approach is well

documented, beginning with the Goal/Question/Metric proposed in [Basili and

Weiss, 1984]. A top-down approach consists in establishing clear goals prior to

the definition of any measurement method. Conversely, a bottom-up approach to

measurement definition consists in measuring every possible entity in the context

through every possible measurement procedure available before any attempt to

link these results to any high-level quality goal.

The top-down goal-driven definition of measures provides a more focused mea-

surement plan and spares the effort and time that would be wasted on useless

measurement result collection. This principle is therefore crucial to support the

core notions of our approach. In consequence, the design of operational cus-

tomised quality assessment models has to be carried out following a top-down

process, allowing to relate measure to a specific goal in addition to its already

associated stakeholder.

4.2.5 Ecosystemic viewpoint

As explained in Chapter 2, software engineering has started to extend its scope

from pure software code to various elements surrounding the code itself. The

4.2. Founding principles 67

software development process involves several different products (i.e., design, doc-

umentation, etc.) that are linked together by complex relationships. In conse-

quence, many research works focus on the software ecosystem in order to gain a

better understanding of the environment in which the development occurs.

This principle also applies to our approach. In order to support the notion of

integrated quality assessment modelling, products should be studied in connection

with each other. Assessing a product in isolation from the others is likely to

be inaccurate since most of the artefacts produced within the development are

connected and interdependent. In order to provide a view that is compliant with

the notion of ecosystems, the approach proposed in this dissertation operates at

the software project level. Based on the definition of project provided in the

CMMI framework (see Chapter 3), we define the software project as follows:

Definition 4.1 (Software project).

A collection of deliverables linked together by transformational processes and

providing a collection of runtime features in order to satisfy a set of user require-

ments.

In the remainder of this dissertation, the term software project is used ac-

cording to this definition. This definition reflects the fact that software is not

considered as a black-box, but as a network of interconnected products display-

ing various levels of abstraction or maturity, associated with observable runtime

features. Additionally, this definition of software project is fully compliant with

the notion of software ecosystem (i.e., a collection of software artefacts and/or

projects, developed and co-evolving in the same environment). Indeed, a soft-

ware project could include various other software projects, perceived as separate

deliverables.

This specific perspective impacts the way operational customised quality as-

sessment models should record the information regarding the measured entities.

According to the definition, a quality assessment model targets a subset of the

software project, that is, a set of measurable entities that are part of a network

of resources. The quality assessment model should offer the possibility to keep

track of these relationships.

4.2.6 Definitional and analytic approaches integration

As shown in Chapter 1, many definitional (i.e., quality models) and analytical

(i.e., measures) approaches to software quality have been proposed. The shift

from a product-based approach to a more ecosystemic perspective (and the notion

of integrated quality assessment modelling) involves the coexistence of various

methods and quality factors within the same model.

This principle calls for an ontological support for the design of the operational

customised quality assessment models. An adequate ontological support makes

68 Chapter 4. Overview of the approach

it possible to align the various analytical and declarative methods in order to

include them in the same quality assessment model while avoiding any conceptual

mistakes.

4.2.7 Reusability

Reusability is widely believed to be a key to improving software development pro-

ductivity and quality [Biggerstaff and Richter, 1989]. The advantage of reusability

is that it solves two main problems inherent to software development. On the

one hand, it helps spare time by avoiding duplicate efforts for similar tasks. On

the other hand, reusability helps prevent making mistakes by avoiding to repeat

something that has already been done.

These two issues are common to the ones encountered in quality assessment.

Indeed, as we have seen in Chapter 2, the operationalisation is a non-trivial

process that requires time and effort in order to be executed correctly. Similarly,

we have seen in Chapter 1 that customisation is often required in order to adapt

quality models with a very generic scope to a specific context. This process is not

trivial either and requires some more effort and time. Reusing part of the effort

provided in these activities would help spare time and effort.

In order to support the core notions from Section 4.1, reusability proves even

more potent. Reusing an already customised hierarchy of quality goals stake-

holders agree upon helps avoid miscommunication between stakeholders. This

principle requires the operational customised quality assessment model to allow

some level of modularity regarding the elements that have already been included.

An already operationalised hierarchy of quality goals should be reusable as-is or

with minor modification (i.e., we may reuse an existing quality hierarchy with a

different set of metrics, provided that the metrics are compatible with the quality

goals, etc.). It therefore requires a mechanism that goes beyond the static defini-

tion of quality models or measurement methods and allows to understand their

intrinsic mechanisms in order to make them modular and, therefore, reusable.

This principle also contributes to balancing the extra effort needed to apply the

specifics of the approach (such as the involvement of the stakeholders, the mod-

elling effort that must be provided, etc.).

4.2.8 Domain-specific languages and expressiveness

Domain-specific languages (DSLs) are programming languages or specification

languages dedicated to particular problem domains, representations techniques

or solution techniques. Conversely, general purpose languages (GPLs) may be

applied to various problems, regardless of the specific domain of the problem

(e.g., Unified Modelling Language).

4.2. Founding principles 69

Domain-specific modelling languages are a common way to improve the mod-

elling process. They contribute to reducing the learning curve for the users and

improve the communication of specific ideas between team members. Besides,

DSLs are known to be enablers of reuse as explained in [Mernik et al., 2005].

DSLs can be a good support in the field of software measurement as shown in

[Mora et al., 2008]. The notion of explicit and integrated quality assessment mod-

elling requires an efficient way to accomplish the modelling tasks and therefore,

a domain-specific support has to be envisioned in order to support our approach.

4.2.9 Human aspect of software quality

Among the several good practices that have been identified by researchers re-

garding software measurement (i.e., goal-driven top-down definition of measures,

clear identification of the measurable entities, etc.), taking the human aspect of

software measurement into account is a key element to our approach.

As explained in [Westfall and Road, 2005], software metrics (and quality as-

sessment in general) affect people and people affect measurement, that is“whether

a metric is ultimately useful to an organization depends upon the attitudes of the

people involved in collecting the data, calculating, reporting, and using the met-

rics”.

[Westfall and Road, 2005] identifies specific guidelines to help decrease the

lack of acceptance regarding any measurement programs. Those guidelines are

the following:

1. Don’t measure individuals

2. Never use metrics as a “stick”

3. Don’t ignore the data

4. Provide feedback

5. Obtain ”buy-in”

The first guideline acts as a caveat regarding the use of productivity mea-

sures. Although it is tempting to try to improve the overall development process

by monitoring the individual productivity of the team members, productivity

measures typically menace to disrupt the team work flow by overemphasising the

individual. [Westfall and Road, 2005] adds: “Remember that we often give our

best people the hardest work and then expect them to mentor others in the group.

If we measure productivity in lines of code per hour, these people may concentrate

on their own work to the detriment of the team and the project”. Ultimately, it

is more efficient to address processes and products than individuals.

The second guideline implies that if a measure is used as a threat against an

individual, the risk of this individual reporting false data (i.e., over-optimistic

measurement results) increases. Measures should therefore be used to provide

70 Chapter 4. Overview of the approach

support and result in a collaboration between the stakeholders that aim to provide

a clear understanding of the current overall quality of the software project.

The third guideline recommends to value the measurement results that are

provided. More specifically, the measurement results should be integrated in the

decision-making process (regardless of whether they are positive of negative).

If data are ignored, the measurement program will likely become less and less

efficient, until it is simply abandoned. As explained in [Westfall and Road,

2005], “if the goals we establish and communicate don’t agree with our actions,

then the people in our organization will perform based on our behaviour, not our

goals”.

The fourth guideline relates to the involvement of the stakeholders. Measure-

ment programs should result in back-and-forth exchanges between the people

who collect the data, the people who design the program and the people who

define the quality goals. For one, this exchange helps maintain the motivation

regarding the data collection (since it shows that the data is actually used). It

also reduces the possible reluctance due the fact that people don’t know what

the measurement data is being used for. The knowledge and experience of the

team members may also be integrated in the quality assessment process through

a back-and-forth feedback. Besides, “feedback on data collection problems and

data integrity issues helps educate team members responsible for data collection.

The benefit can be more accurate, consistent, and timely data”.

Finally, the last guideline recommends to include the team members in the

design of the measurement program itself, so that the feeling of ownership is

enhanced and the overall acceptance of the program increased. In addition, “the

people who work with a process on a daily basis will have intimate knowledge of

that process. This gives them a valuable perspective on how the process can best be

measured to ensure accuracy and validity, and how to best interpret the measured

result”.

These guidelines ultimately summarize the core principle we propose to adopt

regarding the human aspect of measurement in our approach: shift from a control

paradigm to a guidance paradigm. Quantitative approaches to quality assessment

should help the development team instead of controlling its members. By making

available extensive information to all the stakeholders, the notion of explicit and

integrated quality assessment modelling contributes to this shift.

We propose to further implement the principle through the adoption of an hy-

brid point of view for the operational customised quality assessment models. The

ecosystemic viewpoint of the approach already guarantees that the relationships

between measurable entities (i.e., implementation, documentation, refinement,

etc.) are considered during the assessment. Allowing the definition of these rela-

tionships, that is, these processes, as measurable entities as well provides a way to

assess products and processes in the same context. Although people are involved

4.3. The MoCQA framework 71

in these processes, assessing the activity instead of the skills or productivity of

the people should remove the issues linked to the perception of the quality assess-

ment process. The shift from the control perspective to a guidance perspective

of quality assessment is also implemented through the iterative and participative

process of the approach.

4.3 The MoCQA framework

Introduced in [Vanderose et al., 2010], the Model-Centric Quality Assessment

(MoCQA) framework is an implementation of the theoretical approach defined

in Section 4.1. Concretely, this software quality assessment framework has been

designed to integrate (as seamlessly as possible) the principles described in Sec-

tion 4.2 to help plan and support quality assessment during software development,

from the early stages of development to the maintenance and evolution processes.

At its core, the framework defines a quality assessment metamodel based

on the conceptual level of the software quality assessment ontology described in

Chapter 3. The quality assessment metamodel therefore captures:

• concepts inherited from traditional quality models

• concepts inherited from software measurement

• a generalized typology of measurable entities

The quality assessment metamodel provides support (that is, an abstract

syntax) for the systematic and consistent design of operational customised

quality assessment models (described in Section 4.1), specifically designed for

a defined software project and its particular environment.

On top of its core quality assessment metamodel, the framework defines a ded-

icated assessment methodology designed to support a quality assessment life-cycle

built upon the design, exploitation and evolution of the operational customised

quality assessment models.

Through this assessment methodology, the framework provides the support

needed to produce coherent and structurally valid operational customised quality

assessment models. The approach also provides support for an effective use of

measurement (i.e., a measurement that is tailored according to the goals of the

stakeholders and focus on the satisfaction of their quality-related information

needs).

4.3.1 MoCQA models

Operational customised quality assessment models are the central mechanism

that supports the model-driven quality assessment process proposed by our theo-

retical approach. MoCQA models implements this concept within the framework.

72 Chapter 4. Overview of the approach

The main goal of MoCQA models is to centralize the relevant information to sup-

port the quality assessment process. Once defined, a MoCQA model takes the

role of a map that guides the execution of the quality assessment process and the

subsequent exploitation of its results.

Concretely, MoCQA models aim at providing the required support thanks to

the combination of :

• a hierarchy of quality goals specifically designed for a given development

environment (i.e., taking into account the specific environmental factors of

the software project and the quality requirements of its stakeholders);

• a set of customised measurement/estimation methods designed to monitor

the level of satisfaction of the various quality goals;

• a structured and detailed definition of the resources targeted by the mea-

surement/estimation methods, taking into account their relations to each

other and the multidimensional nature of the software project (i.e., multiple

levels of abstraction/maturity for the resources).

As such, MoCQA models actually implement the concept of quality assess-

ment model. Contrary to traditional quality models defining quality for a spe-

cific product, a MoCQA model extends this limited scope by documenting all the

relevant assessment-related aspects for a given project (i.e., what/how/why/for

whom we measure and inspect different parts of the project).

The quality assessment metamodel that supports the design of MoCQA mod-

els has been conceived to allow the alignment, tailoring and integration of qual-

ity models and measurement/estimation methods coming from different sources

(Figure 4.1). It therefore grants that MoCQA models are customised quality

assessment models.

The quality assessment metamodel also supports the detailed characterization

(i.e., relation between quality goals and stakeholders, status of a given measure-

ment/estimation method regarding its validation, etc.) of the information con-

tained in MoCQA models so that they may be regarded as operational quality

assessment models.

Finally, the quality assessment metamodel defines an abstract syntax for

MoCQA models. This abstract syntax facilitates the design and revision of

the models. Therefore, MoCQA models are not set in stone and are bound

to evolve during the software development life-cycle. The refinement and evolu-

tion of MoCQA models constitutes an adequate support for the notion of quality

assessment life-cycle.

4.3.2 Model-Centric Quality Assessment methodology

The introduction of operational customised quality assessment models brings the

quality assessment process conceptually closer to the model-driven engineering

4.3. The MoCQA framework 73

Figure 4.1: Integration of quality models and measurement/estimation methods

of the product itself (i.e., design of a model based on elicited requirements, “im-

plementation” of the quality assessment process through the measurement plan,

“testing” of the quality profile with regard to the needs of the stakeholders).

As a result, operational customised quality assessment models impact the

way software quality assessment is performed. The main impact is the necessity

to bind this conceptual model (mainly designed to communicate among stake-

holders) to the actual (and possibly tool-assisted) measurement process. The

second impact resides in the challenge of designing the model itself and acquiring

the necessary knowledge from the stakeholders. Finally, the process involves a

systematic reflection on the quality assessment process.

In consequence, the MoCQA framework introduces a specific methodology

designed to support the use of MoCQA models. This methodology is the key to

the implementation of the principles described in Section 4.2.

Among these principles, the goal-driven definition of measures can be found.

The assessment methodology defined by the framework therefore implements the

methodological principles of the Goal/Question/Metric approach [Basili et al.,

1994]. It is thus mainly a top-down methodology instead of a bottom-up ap-

proach. It is therefore possible to map the steps of the MoCQA methodology

with the steps of the GQM method to some extent.

However, the MocQA methodology deviates a little from the pure top-down

approach. The main jeopardy of a top-down approach to measurement is to

define a measurement plan that is not applicable in the end, due to the lack of

specific entities to measure or the use of a measurement that is not applicable in

the specific software development context. Therefore, the MoCQA methodology

74 Chapter 4. Overview of the approach

allows the description of the measurable entities at hand before the quality goals

are defined. The quality assessment metamodel makes that pseudo-bottom-up

approach possible since it still requires the definition of specific goals and metrics

for the measurable entities that have been considered to begin with. The process

is still performed in a systematic way but allows more flexibility in order to adapt

to a specific context.

In order to implement the iterative and incremental nature of the theoretical

approach described in Section 4.1, the MoCQA methodology breaks the overall

quality assessment process (or quality assessment life-cycle) into successive cycles,

as defined hereafter:

Definition 4.2 (Quality assessment life-cycle).

Any number of quality assessment cycles (and resulting decisions) occurring in

parallel to the software development and evolution life-cycle

Each iteration of the assessment methodology is thus called a quality assess-

ment cycle, that we define formally as follows:

Definition 4.3 (Quality assessment cycle).

The sequence of quality-related activities beginning with the planning of the as-

sessment and leading to the actual assessment of a software project. Each quality

assessment cycle results in a set of decisions made by the development team about

the forthcoming activities regarding the development life-cycle and the next quality

assessment cycle.

The fact that the MoCQA methodology breaks down the process into iterative

quality assessment cycles allow for a systematic revision of the quality goals (and

quality model) and assessment methods. At the end of each cycle, the quality

assurance team needs to reflect on the assessment performed so far and, together

with the stakeholders, decide if the indicators and the way they are defined are

relevant.

As shown in Figure 4.2, the quality assessment methodology defined by the

framework decomposes each quality assessment cycle into five successive steps.

• Acquiring contextual knowledge. This step focuses on the elicitation

of relevant contextual information on the software development environ-

ment and on the specific quality requirements.

• Designing the MoCQA model. This steps focuses on the creation and

structural validation of a MoCQA model by instantiation of the quality

assessment metamodel.

4.3. The MoCQA framework 75

Figure 4.2: The MoCQA methodology

• Tailoring of the measurement plan. This step addresses the definition

of practical guidelines for the measurement and quality assessment, based

on the conceptual definitions provided in the MoCQA model.

• Assessing the software project. This is the step where the actual

measurement-related and quality-related data (i.e., measurement results

and indicators) are collected in order to produce a quality profile of the

software project.

• Exploiting the quality profile. In this step the quality indicators are

interpreted and used as input of the decision-making process related to the

remainder of the development and/or the evolution processes and to the

next quality assessment cycles.

Steps 3 & 4 are optional for every quality assessment cycle, as will be explained

below.

The remainder of this Section provides more details on each of these steps.

Acquiring contextual knowledge

Input: The development context (i.e, stakeholders’ knowledge, processes doc-

umentation, quality standards or norms the products/processes have to comply

to, etc.).

76 Chapter 4. Overview of the approach

Output: The raw information to be modelled in Step 2 as well as constraints

that will be used throughout the quality assessment life-cycle.

Description: Ensuring that the quality assessment goals fit the specific devel-

opment context is a key aspect of the approach. The acquisition of a relevant

knowledge of this context is therefore the first step to perform.

Concretely, the acquisition step consists in listing all identified relevant envi-

ronmental factors that are not directly targeted by the quality assessment meta-

model (e.g., time constraints, budget constraints, constraints linked to develop-

ment process, availability of resources, etc.). These factors may be useful during

the exploitation step, especially in the decision-making process regarding the re-

mainder of the life-cycle.

This step is also designed to involve the various stakeholders in the definition

of the global assessment purposes in order to provide a quality assessment that

is relevant for all of them.

Designing the MoCQA model

Input: The contextual information collected in Step 1 and the quality assessment

metamodel.

Output: A MoCQA model designed to guide the remainder of the quality as-

sessment cycle.

Description: Fundamentally MoCQA models are instances of the quality as-

sessment metamodel defined by the framework. The process of designing a given

MoCQA model can therefore be regarded as an instantiation process constrained

by the raw information collected in the previous step. This design process, also

referred to as quality assessment modelling, is the central task of this step of the

assessment methodology.

Due to the fact that designing a MoCQA model represents the implementation

of a GQM-like approach, this instantiation process must follow a specific order.

Provided that MoCQA models can also be regarded as extended quality models,

the guidelines defined to design a customised quality model in [Dromey, 1996]

also apply to the design of a MoCQA model.

Tailoring the measurement plan

Input: The MoCQA model designed in Step 2 and the generic measurement plan

implicitly defined by the framework.

Output: A measurement plan designed to perform the actual measurement and

assessment of the software project.

Description: In essence, a measurement plan defines what measures have to

be collected and how to identify them (i.e., identify/locate behaviour/resource

X, Y, Z and apply measurement methods A, B, C to X, Y, Z). In many regards

4.3. The MoCQA framework 77

MoCQA models themselves may be regarded as abstract measurement plans.

This third step consists in the adaptation of this abstract measurement plan to

make it operational, that is, providing actual guidelines (adapted to the actual

environment) in order to allow the measurer to easily find the relevant measurable

entities and apply the adequate measurement methods.

Concretely, in this step, measurement procedures are defined for each mea-

surement method. Analysis models are structured and actual project resources

(i.e., measurable entities) are located and tagged according to the corresponding

measurable entity types defined in the MoCQA model. Other factors like the

frequency of assessment are also defined in the measurement plan.

This step may be ignored if the planning of quality assessment is not yet

complete and the aim of the current quality assessment cycle is to assess the

MoCQA model itself.

Assessing the software project

Input: The measurement plan defined in Step 3 and the actual resources from

the software project.

Output: A quality profile of the software project (i.e., a set of tagged resources/i-

dentified behaviours/activities, of measurement values, of quality indicators, and

their relationships) that may be exploited in order to take actions regarding the

software development process or the quality assessment life-cycle.

Description: During this step, measurement results are collected and the quality

assessment is performed, according to guidelines of the measurement plan imple-

menting the MoCQA model. This step consists in mapping the actual project

resources with the MoCQA model through the measurement plan. This mapping

translates in the analysis of the produced quality indicators on the basis of the

predefined interpretation rules and with respect to the predefined scope of the

quality goals.

This step may be ignored if the previous step has been ignored.

Exploiting the quality profile

Input: The quality profile produced in Step 4 and the decision model (that may

be informal) provided by the stakeholders.

Output: A set of decisions regarding the actions that have to be performed,

both in the context of the software development process and regarding the quality

assessment life-cycle.

Description: This step brings the current quality assessment cycle to an end

and is mainly concerned with the decision-making process based on the quality

indicators (interpreted according to the rules defined in the MoCQA model).

The decisions concern the continuation of the development life-cycle (i.e., what

78 Chapter 4. Overview of the approach

improvements have to be performed, what parts of the project call for more

investigation, what parts of the project may be considered satisfying).As such,

this step also requires the participation of the stakeholders.

Due to the iterative nature of the process, the exploitation step also concerns

the subsequent quality assessment cycles and how the assessment effort will be

refined or augmented.

Regarding the quality assessment life-cycle, four main outcomes may arise

from the decision-making process. Each of them will call for one of the allowed

feedback loops described in Figure 4.2 and detailed hereafter:

1. The regular case is the reuse of the tailored measurement plan. The mea-

surement and assessment step will likely be taken several times throughout

the development in order to monitor the evolution of the quality indicators

over time. Input data of the assessment models can help identify where

effort should be consented to meet the given quality objectives. This case

requires no conceptual redesign and redirect towards the measurement and

assessment step (i.e, step 4 of the assessment methodology).

2. In some cases, the measurement plan may need to be adapted after impor-

tant changes in the software project. For instance, a language migration

would require the user to redefine the guidelines provided to identify the

measurable entities. This case requires a light conceptual redesign and

redirect towards the measurement plan tailoring step (i.e, step 3 of the

assessment methodology).

3. Other cases will require the MoCQA model to be adapted after the ap-

parition of a new quality-related information need or if flaws in the quality

assessment process have been identified on the basis of the MoCQA model.

For example, the developers could introduce the documentation into the

software project and want to monitor its availability. The quality assur-

ance team may also discover a better measurement method to evaluate a

given attribute used in one to the analysis models. This case requires a

heavy conceptual redesign and redirect to the MoCQA model design step

(i.e, step 2 of the assessment methodology).

4. Finally, repeating the acquisition step (i.e, step 1 of the assessment method-

ology) could be necessary in some cases. The main reason for thoroughly

involving the stakeholders once again in this process is to refine the quality

profile and check if some quality goals have not been left out of the previous

analysis. However, the interpretation of indicators and/or the actions that

have been defined in the previous quality assessment cycle could raise con-

troversy among the stakeholders and require to redefine them collectively

to adapt the MoCQA model and improve the common understanding of

quality for the project.

4.4. Structure 79

4.4 Structure

Each of the above methodological steps raise specific concerns and challenges.

The next chapters focus on each steps of the methodology and elaborate on how

the framework addresses those concerns.

• Chapter 5 focuses on the design of MoCQA models. It provides the com-

plete specification of MoCQA models and a detailed description of the un-

derlying quality assessment metamodel that supports their design. Con-

cerns about structural coherence of the models are also addressed in this

chapter.

• Chapter 6 explores the tasks required in order to collect the information

during the acquisition step and provides an overview of possible methods

to facilitate this process.

• Chapter 7 details the tailoring of the measurement plan. The topics ad-

dressed in this chapter include how the introduction of MoCQA models

impacts the measurement process, consideration on how data models for

the persistence of measurement values should be adapted and how MoCQA

models may be enriched with metadata to bridge the gap between concep-

tual and operational levels of the quality assessment process. The assess-

ment step is discussed in this chapter as well.

• Chapter 8 addresses the exploitation step and how a quality profile may

be produced thanks to MoCQA models once the assessment step has been

performed. This chapter also discusses how MoCQA models may be used to

detect possible flaws in the quality assessment process, as well as be assessed

and revised themselves, therefore improving the next quality assessment

cycle.

Finally, Chapter 9 provides a description of the tool-support that has been

considered and/or developed during this research in order to improve the opera-

tional effectiveness of the MoCQA framework.

Chapter 5

MoCQA models

Customised Operational Quality Assessment Models

As explained in Chapter 4, MoCQA models are the cornerstone of the Model-

Centric Quality Assessment methodology. A MoCQA model is a model designed

to support the model-centric quality assessment of a given software project.

It records all the relevant information on the specific quality-assessment-related

aspects of a given context. It is designed to guide the execution of a quality

assessment cycle and the subsequent exploitation of its results.

MoCQA models implement the notion of quality assessment model described

in Chapter 4. This concept differs from the notion of quality model, defined as

a “structured collections of criteria for the systematic assessment of an entity’s

quality” in [Deissenböck, 2009].

Indeed, contrary to quality models that define statically a set of quality factors

for a software product and (possibly) the measures designed to evaluate them, a

quality assessment model extends this scope and documents all relevant quality-

related aspects to guide a quality assessment cycle, that is, the following:

1. a hierarchy of quality issues for the software project (i.e., quality goals

characterised by the quality factor they embody, the part of the software

project they are relevant for, the stakeholders they are defined for, the

indicators used to assess how they are satisfied and the way these indicators

should be interpreted.)

2. a definition of the quantification methods used to produce the indicators

(i.e., the attributes that have to be evaluated and the definition of the

measurement methods/functions used to evaluate them.)

3. a characterisation of the classes of entities to which the measurement has

to be applied, as well as the relationships between these classes of entities.

81

82 Chapter 5. MoCQA models

In consequence, a formal definition of quality assessment model may be the fol-

lowing:

Definition 5.1 (Quality assessment model).

A structured collection of quality issues (associated with their indicators, mea-

surement and/or estimation methods and related entity types), defined for the

systematic assessment the quality of a software project.

Although it requires an additional effort in order to become fully operational, a

quality assessment model (or MoCQA model) may therefore be regarded as a con-

ceptual representation of a measurement plan (i.e., it describes what/how/why/-

for whom we measure and inspect different parts of the project).

In order to implement the notion of explicit and integrated quality assessment

modelling, MoCQA models require a dedicated ontological support that permits

the integration of:

• qualify factors coming from diverse quality models to be embodied in quality

issues (concepts of hierarchical quality models)

• measurement or estimation methods coming from different sources (con-

cepts of software measurement)

• detailed descriptions of the entity classes that will be monitored (a gener-

alized typology of measurable entities)

Besides, as explained in Chapter 4, MoCQA models have a dedicated life-

cycle. They are designed on the basis of stakeholders’ quality requirements,

completed by the quality assurance team, refined and corrected as the software

development process occurs. The ontological support has to allow the systematic

and consistent design and refinement of successive versions of a given MoCQA

model.

Therefore, this ontological support is provided by the framework in the form of

a quality assessment metamodel. Designing a MoCQA model consists in instan-

tiating this metamodel. The approach therefore follows the four-layer modelling

procedure described in [Sprinkle et al., 2001] and shown in Figure 5.1. However,

the lower level does not intend to provide a computer based system but a quality

profile of the software project.

5.1 MoCQA models and Meta-Object Facility

In order to clarify the concepts of the MoCQA framework, this section describes

how the core elements of our model-driven approach fit into the Meta-Object

Facility (MOF) architecture [ISO/IEC, 2005a]. The Meta-Object Facility is the

conceptual architecture supporting the Model Driven Architecture (MDA) de-

5.1. MoCQA models and Meta-Object Facility 83

Figure 5.1: The four layers of modelling

fined the Object Management Group1 (OMG) [Miller and Mukerji, 2003]. The

MOF formalizes the four-layer approach shown in Figure 5.1 into four levels of

modelling (from M0 to M3). These four levels allow the representation of concrete

elements of the empirical world (e.g., a software system at level M0) through the

definition of models (e.g., a UML class diagram at level M1) based on metamodels

(e.g., the UML metamodel at level M2) which are themselves defined through a

universal and auto-defined meta-metamodel (level M3) [OMG, 2006].

Figure 5.2 shows how the core elements of the MoCQA framework match this

conceptual architecture.

The quality assessment metamodel logically fits at the M2-level and consti-

tutes the origin of the quality assessment modelling process.

MoCQA models and there constitutive elements belong to the M1-level.

They are therefore instances of the quality assessment metamodel. MoCQA

models contain definitions of quality-assessment-related aspects, divided in three

categories. First, the model contains the definition of quality issues (and related

indicators, interpretations, analysis models). The model also provides the defi-

nition of measurement methods (and associated attributes, functions, scale and

unit). Finally, MoCQA models defined at M1-level provide the specification of

the types of entity that will be measured.

As part of the M0-level, the approach copes with quality profiles. The quality

profile of a software project encompasses :

• the actual entities belonging to the entity populations defined by the entity

types from M1-level models

1http://www.omg.org/

84 Chapter 5. MoCQA models

Figure 5.2: Multi-level hierarchy for the approach

• the actual measurement values collected from them through the measure-

ment procedure defined for each measurement methods

• the quality indicators computed on the basis of the latter and a set of

interpretation regarding the software project

Although these elements are common to many (if not all) quality assessment

frameworks, the support offered by the MoCQA model is the fact that all of these

M0-level elements are conceptually related thanks to the M1-level model. The

relationships between the elements are therefore clearly stated and recorded. The

quality profile is the mechanism that allows stakeholders to obtain answers to

their information needs.

5.2 Quality assessment metamodel

This section details the M2-level of the MOF-based architecture described in

the previous section. In consequence, this section focuses on the specification of

the quality assessment metamodel that supports the MoCQA framework.

[Deissenböck, 2009] defines a quality metamodel as “a model of the constructs and

rules needed to build specific quality models”. Based on this definition, we may

propose the following formal definition for our quality assessment metamodel:

Definition 5.2 (Quality assessment metamodel).

A model of the constructs and rules needed to build specific quality assessment

model)

5.2. Quality assessment metamodel 85

The quality assessment metamodel has therefore to define all the concepts

(and the relationships between these concepts) that may be included in a quality

assessment model. In the context of our framework, it may also be considered an

abstract syntax for MoCQA models. It ensures the robustness and coherence of

MoCQA models’ design and evolution.

Figure 5.3: Simplified view of the MoCQA quality assessment metamodel

Figure 5.3 provides a simplified view of the MoCQA quality assessment model.

This figure illustrates the concepts (or constructs) available to design a MoCQA

model and how they may be associated. The attributes available to characterise

each of the constructs will be detailed in the remainder of this section.

As explained in the previous section, MoCQA models are built upon three

distinct components, each of them modelling a different aspect of quality assess-

ment. Any coherent and complete MoCQA model should displays these three

components. The concepts included in the quality assessment metamodel are

therefore regrouped in 3 distinct packages:

The assessment package defines the constructs dedicated to the structured

definition of quality issues and their indicators. This package is related to the

assessment-level of the software quality ontology described in Chapter 3.

The measurement package defines the constructs dedicated to the specification

86 Chapter 5. MoCQA models

of underlying measurement and/or estimation methods that provide the input for

the assessment. This package is related to the measurement-level of the software

quality ontology described in Chapter 3.

The project package defines the constructs dedicated to the modelling of the

entity types that will be measured or estimated. This package is related to the

project-level of the software quality ontology described in Chapter 3, although it

is not a direct translation, as we will explain in Section 5.2.1.

Figure 5.4: Process view of the ISO/IEC 15939 standard

The distinction between measurement and assessment in the quality assess-

ment metamodel is compliant with the ISO/IEC 15939 standard [ISO/IEC, 2007a].

As shown in Figure 5.4, the measurement package focuses on concepts that are

reminiscent of metrology (i.e., data collection and data preparation), whereas the

assessment package addresses concepts that relates to the interpretation of mea-

sures aiming to satisfy an information need. The remainder of this section details

each package of the quality assessment metamodel.

5.2. Quality assessment metamodel 87

5.2.1 Project package

The project package provides constructs dedicated to the characterisation of

the relevant measurable entities (e.g., diagrams, files, model transformations, etc.)

present in the software project. The project component of any MoCQA model

instantiates concepts of the project package in order to model a subset of the

software project (i.e., a subset of the deliverables, processes and features that

constitutes the project) that is investigated as part of the quality assessment

process. The aim of this modelling effort is twofold. First, it aims to formalize the

elements that have to be available in order to pursue a sound quality assessment

(i.e., a quality assessment that satisfies the information needs of each involved

stakeholder). Besides, it provides a proactive quality-related perspective on the

software project (i.e., a view of the elements that require specific attention in

order to lead to quality and a view on the elements that have to be refined in

case of unsatisfying assessment results).

Figure 5.5: Project package of the quality assessment metamodel

Figure 5.5 provides a detailed view of the project package. As shown in

the figure, the project package provides constructs aiming to model measurable

entity types. This implies that each construct from this package defines an entire

entity population. The more specific the information on an entity type is, the

88 Chapter 5. MoCQA models

smaller the entity population will be. For instance, if we define a measure for the

measurable entity type Java class each Java class present in the project will be

measured during the assessment step of the methodology. However, if we define

a measure for the measurable entity type Java class from package X, this would

reduce the number of instances taken into account during the assessment phase.

Finally, if the defined measurable entity type is Java class Y from package X,

only this specific class will be measured during the assessment step.

Additionally, we may define measurable entity types as collection of all enti-

ties of this type by adding the keyword “collection” in front of the name. This

keyword specifies that the measurement or estimation methods associated to the

entity type through base attributes will not be performed on each instance of the

entity type (which is the default semantics for an association between a measur-

able entity type and an attribute) but on the collection of all existing entities of

this type. This technique is provided in order to avoid unnecessary additional

constructs. For instance, a “Java class” may be associated with a “size” attribute

but the semantics of this association implies that for each Java class, the size

of this specific class will be evaluated (e.g., based on the number of methods,

attributes in the class). If one wants to rely on the number of Java classes for

one function or assessment model, the size attribute should be associated with

a “package X” artefact type or “source code” artefact type, since the number

of classes contained in a package or in the code characterises the package (or

the code) and not the class. In order to avoid the modelling of such containers

when they are not required, the collection keyword may be used. This techniques

remains coherent with the semantics of the entity types. Indeed, the strict inter-

pretation of such an element is “all collection of all entities X are relevant in our

quality assessment process”. As for the example of the “Java class Y from pack-

age X”, only one instance complies to the entity type declaration and therefore

produces the intended result.

As shown in Figure 5.5, the project package provides three types of constructs:

artefact types, derivation types and behaviour types. These concepts are

all subclasses of a concept named measurable entity type which bridges the

project package with the measurement package. The project package of the qual-

ity assessment metamodel therefore provides a generic typology of measurable en-

tities. This typology results from an additional conceptualisation step performed

on the project-level of the software quality ontology introduced in Chapter 3.

As shown in Figure 5.6, the entities may be divided into two categories:

deliverable-related and process-related. These two types of entities are related to

each other through transformational relationships (i.e., a process to transform one

or more deliverables into new deliverables). In the process package, deliverable-

related types of entity are encapsulated by the artefact type construct, while the

derivation type constructs represent process-related types of entities The differ-

5.2. Quality assessment metamodel 89

Figure 5.6: Project level of the software quality ontology

ence between deliverable/process and artefact/derivation will be explained in the

remainder of this section. Figure 5.6 also shows that some deliverables may pro-

vide features (e.g., the source code) that are only measurable through external

attributes. These features are encompassed in the behaviour type, since they

provide a given behaviour at runtime.

Therefore, the project package allows the use of artefact types that may be

associated with behaviour types they support and are interrelated through deriva-

tion types. Besides, the structure adopted by the project package remains com-

pliant with our definition of software project:

A collection of products (i.e., artefacts) linked together by transfor-

mational activities (i.e., derivations) and providing a collection of

runtime features (i.e., behaviours) in order to satisfy a set of user’s

requirements.

The project package is therefore essential to implement the notion of explicit

and integrated quality assessment modelling. Contrary to ISO/IEC standards,

the project package and its constructs propose a more general and structured

point of view than the usual software product viewpoint, which is the scope

adopted by the ISO/IEC quality model. The software product in ISO/IEC stan-

dards is defined as a set of computer programs, procedures, and possibly associ-

ated documentation and data [ISO/IEC, 1999]. The project perspective adopted

by the MoCQA models takes the same elements into account but provides a struc-

tured perspective on the software products. This structured perspective remains

compliant with the notion of software ecosystem since an entire software system

may be modelled as an artefact.

90 Chapter 5. MoCQA models

Artefact Types

Artefact types are the most straightforward project-related constructs allowed

in a MoCQA model. These constructs allow the description of a relevant popu-

lation of artefacts, which we define as follows:

Definition 5.3 (Artefact).

An identifiable item provided by the development team (in the large) or an external

contributor that supports the overall software development process (and may be

evaluated during the quality assessment process).

Note that although the term “artefact” is widely used in Software Engineer-

ing, it adopts a specific meaning in the context of this dissertation. The term

artefact is a synonym for the concept of elementary artefact, defined as a self

sufficient piece of information comprised in a global artefact (i.e., specification,

design or code) whose granularity is variable so that it is possible to define el-

ementary artefacts with more or less important scopes [Vanderose and Habra,

2008]. According to this definition, any resource that may be identified within a

given software project and is therefore prone to measurement may be modelled

in a MoCQA model through artefact type constructs. Artefacts may be regarded

as a super-type for the deliverable concept defined in the CMMI framework . Ac-

cording to the definition provided above, artefacts may sometimes be assimilated

to deliverables (e.g., a UML diagram, a Java package), they also encompass the

notion of resources (e.g., a database, a software versioning system) and are not re-

stricted to items developed specifically by the team (e.g., a software development

kit, a software library, an entire software system).

Table 5.1 details the attributes available to characterise an artefact type con-

struct. As pointed out before, an artefact type construct helps describe a collec-

tion of artefacts sharing the same properties (i.e., a class of artefacts) and worth

investigating in the context of the subsequent quality assessment. Each instance

of an artefact type included in a MoCQA model states that the software project

should contain at least one occurrence of artefact demonstrating the properties

defined by the instance of artefact type in order to allow the assessment and

satisfaction of one or more quality issues. For instance, an artefact type named

“use case” in a given MoCQA model implies that the quality assessment process

requires the collection of all use cases available in the software project.

Due to the fact that the MoCQA framework takes transformational processes

and the evolution of the software development into account, MoCQA models have

to allow the expression of this temporal aspect. As a matter of fact, beside its

intrinsic properties, an artefact may evolve according to two dimensions through-

out the software development life-cycle: the abstraction level and the maturity

level. The level of abstraction of an artefact type characterises the level of de-

5.2. Quality assessment metamodel 91

Attribute Description

Name Provides the primary characterisation of an arte-
fact type, which may be generic (e.g., sequence
diagram, class, observer pattern, etc.) or more
specific (e.g., sequence diagram SEQ001, method
getAccount()) in order to reduce the number of in-
stances in the defined entity population that will
actually be considered during the quality assess-
ment cycle.

Category Classifies instances of the artefact type according
to their role in the software development life-cycle
(e.g, requirement-related, design-related, code-
related, document-related, test-related, etc.).

Description Provides an additional characterisation of the
artefact type in order to complement the infor-
mation provided by the name (e.g., the sequence
diagram related to the use case X).

Language Provides information on the language used to ex-
press the instances of this artefact type (e.g.,
UML, C++, semi formal English language, etc.).

Maturity Level Provides a way to characterise the level of ma-
turity of the instances of this artefact type (e.g.,
“before refactoring”, “in production”, “version X”,
etc.).

Abstraction Level Provides a way to characterise the level of abstrac-
tion of the instances of this artefact type. (e.g.,
“high-level”, “class without attributes and meth-
ods”, etc.)

Table 5.1: Attributes characterising an artefact type construct

tail the artefact actually displays. For instance, a class diagram may contain

only classes of a specific architecture, whereas another class diagram may pro-

vide more concrete information, such as the attributes of these classes, the types

of the attributes, etc. The level of maturity provides information on both the

“age” of the artefact and its level of completion. For instance, one might want

to assess the source code with a given version number or at a certain stage of

completion (e.g., “in production”, “draft”). These 2 attributes of artefact types

also provide a way to distinguish artefacts that are used as input of a derivation

from the output artefacts (e.g., a Java class before and after refactoring).

Artefacts type constructs may also be associated to other constructs of the

quality assessment metamodel. Table 5.2 provides the list of authorised associa-

tions.

92 Chapter 5. MoCQA models

Attribute Description

source of Indicates that the instances of this artefact type are
used as input of one or more derivation types.

support of Indicates that the instances of this artefact type
contribute to provide one or more behaviour
types.

subdivided in Indicates that the instances of this artefact type
encompass one or more other artefact types.

characterised by Indicates that the instances of this artefact possess
one or more attributes of interest for the quality
assessment process.

Table 5.2: Relationships involving artefact types

Illustration

Figure 5.7: Two basic artefact types

Figure 5.7 illustrates the use of artefact types in a partial MoCQA model.

This example, as well as further examples in this dissertation, rely on the UML

object diagram notation as a concrete syntax for MoCQA models2. This no-

tation is compliant with the abstract syntax defined by the quality assessment

metamodel and therefore sufficient for illustrative purposes.

This example demonstrates a basic (and partial) MoCQA model stating that

two types of entities are relevant and will be considered in the following quality

assessment cycle: Java packages and class diagrams. As explained previously,

the constructs of the project component of a MoCQA model represent classes

of resources present in the software project. In this example, each existing class

diagram and Java package is considered as a separate measurable entity that will

be used as input in the investigation of a given quality issue.

Figure 5.8 elaborates on the first example in order to illustrate the “subdivided

in” relationships. This new MoCQA model expresses the fact that each class dia-

gram, each Java package and each Java class contained in each of these packages

is a relevant measurable entity for the current quality assessment cycle. Since the

2Note that this notation is a variation of the UML object diagram since the links are oriented,
in order to improve the legibility of the models

5.2. Quality assessment metamodel 93

Figure 5.8: An artefact type with children artefact types

name of the artefact type provides more control on the size of the entity popu-

lation, we may provide a more focused description of the measurable entities as

shown, in Figure 5.9.

Figure 5.9: Artefact types with a reduced entity population

In that case, the scope of relevant measurable entities remains the collection of

all class diagrams present in the software project but is restricted to the Java

package my.application.session and each Java class contained in this specific

package. In order to provide an even more focused scope, we may also provide a

more specific name for the associated artefact type.

As shown in Figure 5.10, the scope of relevant code-related measurable entities in

this last example is now restricted to the Java package my.application.session

and one of its constitutive classes, that is, the Java class login. Depending on

the way attributes are defined, the assessment of this project component could

result in only one measure, applied to this specific Java class.

94 Chapter 5. MoCQA models

Figure 5.10: Artefact types with a very focused entity population

Behaviour Types

Behaviour types are constructs provided by the quality assessment metamodel

to characterise types of runtime features that are evaluated during the quality

assessment process. Behaviours are defined as follows:

Definition 5.4 (Behaviour).

An observable property provided by the software project at runtime and supported

by executable artefacts in a given environment (and may be evaluated during the

quality assessment process).

According to the SWEBOK guide [IEEE Computer Society, 2004]:

At its most basic, a software requirement is a property which must

be exhibited in order to solve some problem in the real world. [...]

Hence, a software requirement is a property which must be exhibited

by software developed or adapted to solve a particular problem.

Behaviours are therefore the counterpart of the requirements for a given software

system. Ideally, for each requirement, the software system should demonstrate an

appropriate set of behaviours. Additionally, [IEEE Computer Society, 2004] ex-

plains that an essential property of all software requirements is that they must be

verifiable. As such, behaviours are relevant in the context of quality assessment.

In addition to their relation to requirements, behaviours share similarities

with the notion of feature (i.e., “prominent or distinctive user-visible aspects, or

characteristic of a software system [Kang et al., 1990]).

Table 5.3 details the attributes available to characterise a behaviour type

construct. As for artefact types, a behaviour type construct helps describe a

collection of behaviours sharing the same properties and worth investigating in

the context of the subsequent quality assessment. Similarly, the preciseness of the

name or description of the behaviour type influences the numbers of instances that

5.2. Quality assessment metamodel 95

Attribute Description

Name Provides the primary characterisation of a Behaviour
Type (e.g., display of user account information, crash
of the application, loading screen, etc.).

Category Classifies instances of the behaviour type according to
their role regarding the runtime software system (i.e., if
they are related to functional of non functional require-
ments/features).

Description Provides an additional characterisation of the behaviour
type in order to complement the information provided
by the name (e.g., “behaviour related to use case X”,
behaviour provided during a certain amount of time).

Table 5.3: Attributes characterising a behaviour type construct

have to be considered. For instance, a behaviour type named log-in states that

each occurrence of logging into the system is a measurable entity. A behaviour

type named screen freeze during log-in would reduce the number of events

that are considered, whereas a first log-in would describe a behaviour that

happens only once.

Note that behaviours are measurable since they are observable phenomena

but, contrary to artefacts, behaviours cannot be modified directly in order to

improve the level of satisfaction of a quality issue. Any corrective action has to

be taken on their supporting artefacts. In consequence, it is essential to provide

this information in the MoCQA models to allow a better exploitation of the

quality profile. Table 5.4 provides the list of authorised associations between

behaviour types and others constructs.

Attribute Description

support of Indicates one or more artefact types the be-
haviour type is supported by.

subdivided in Indicates that the instances of this behaviour
type may be refined in one or more specifics
behaviours (e.g., calculation of mathematical

results and calculation of average)

characterised by Indicates that the instances of this behaviour type
possess one or more attributes of interest for the
quality assessment process.

Table 5.4: Relationships involving behaviour types

96 Chapter 5. MoCQA models

Figure 5.11: Example of a basic behaviour type

Illustration

Figure 5.11 illustrates our previous MoCQA model, completed with the charac-

terisation of a behaviour type named [Collection] log-out. This behaviour

type is associated with the class ‘login’ artefact type, is categorised as func-

tional and is also informally linked to a specific user’s requirement. As it is, the

MoCQA model states that all logout action performed at runtime are consid-

ered relevant in the context of quality assessment process. However, the keyword

“collection” specifies that we are not interested in evaluating each behaviour in-

dividually but all at once. This will have an impact on the kind of attribute that

may be associated to this entity type.

Figure 5.12 illustrates another behaviour type, also related to the login class.

This behaviour type is named screen freeze at log out and additionally char-

acterised as an unexpected unavailability of the log-out user interface. This type

of behaviour is not a desirable one (showing that errors may be modelled as

well) and it is categorised as non-functional. It is also a subset of the previous

behaviour type and is associated to the latter accordingly. This addition to the

MoCQA model expresses that, in the context of our quality assessment process,

all logout actions are relevant and specific bugs linked to these behaviours are

considered as well. Contrary to the previous example, each occurrence of this

behaviour will be measured during the assessment step.

Note that, due to fact that project-related constructs are defined as types of

existing entities, some precautions must be observed when defining the relation-

ships between these constructs. Some association could produce unexpected or

misleading results. Figure 5.13 illustrates this case. This example of MoCQA

5.2. Quality assessment metamodel 97

Figure 5.12: Example of more specific behaviour types

Figure 5.13: Misleading relationship between 2 measurable entity types

model intends to state that the quality assessment process is concerned by the

collection of all possible interactions with the GUI and therefore associate the

behaviour type with the wide-scoped class artefact type. However, due to the

semantics of the constructs involved in this relation, the correct interpretation

is : for each Java class, the set of all GUI interactions supported by this class

are relevant in the context of quality assessment. This relation therefore pro-

vides multiples sets of behaviours but does not take into account the possible

GUI-related functionalities provided by external libraries that are not written in

Java. In that case, it would be better to associate the behaviour type with a

coarse-grained “source code” artefact.

Derivation types

Derivation types are constructs provided by the quality assessment metamodel

to characterise types of transformational activities occurring between artefacts.

They may be evaluated during the quality assessment process. Derivations are

defined as follows:

98 Chapter 5. MoCQA models

Definition 5.5 (Derivation).

A collection of more or less strictly defined principles describing a conversion re-

lationship between one or more source artefacts and one or more artefacts derived

from the first ones.

This concept shares similarities with the notion of model transformation.

However, the term derivation is preferred to transformation in order to re-

main more general and avoid to restrict the scope of the concept. Indeed, model

transformations, defined as the process of converting one model to another model

of the same system in the MDA Guide [Miller and Mukerji, 2003], are a specific

type of derivations. However, some derivations are not model transformation per

se (e.g., documentation of the code).

Derivations may also be regarded as a super-type for the process concept

defined in the CMMI framework. According to the definition provided above,

derivations may sometimes be assimilated to processes (e.g., the implementation

is the process/derivation that links UML packages to Java packages) but they

also encompass the notion of automated process (e.g., Javadoc generation).

Attribute Description

Name Provides the primary characterisation of a deriva-
tion type (e.g., implementation, refactoring, doc-
umentation, etc.).

Category Classifies instances of the derivation type accord-
ing to their role regarding the transformation
process they describe (i.e., endogenous/exogenous
and horizontal/vertical).

Description Provides an additional characterisation of the
derivation type in order to complement the infor-
mation provided by the name (e.g., derivations
executed by team X, by tool Y).

Language Provides information on the language used to ex-
press the instances of this derivation type, if it is
formalised (e.g., QVT, ATL, etc.).

Multiplicity Provides information on the number of input/out-
puts artefacts this derivation type uses (e.g., 1-to-
many, many-to-many, etc.).

Maturity Level Provides a way to characterise the level of matu-
rity of the instances of this derivation type, if it
is formalized (e.g., “version X”, etc.).

Automation Level Provides information on the tool-support for this
derivation type (i.e., manual, semi-automated,
fully automated).

Table 5.5: Attributes characterising a derivation type construct

5.2. Quality assessment metamodel 99

Table 5.5 details the attributes available to characterise a derivation type

construct. As for the other measurable entity types, a derivation type construct

helps describe a collection of derivations sharing the same properties and worth

investigating in the context of the subsequent quality assessment. However, in

the case of derivation types, the entity population is mainly reduced through the

artefact types it is associated to. For instance, a derivation type named imple-

mentation associated to an input artefact type named class diagram and an

output artefact type named Java class states that any implementation activity

is taken into account. Conversely, an input artefact type named class diagram

X would reduce the derivations considered to any implementation activity using

this specific class diagram. Modifying the output artefact type to Java class Y

would leave only one relevant implementation activity.

A derivation is categorised according to a bidimensional characterisation

(endogenous/exogenous, that is, relying on the same/a different metamodel, and

horizontal/vertical, that is, conserving the same level of detail/adding details)

inherited from the model transformation body of knowledge [Mens et al., 2005a].

A derivation is associated to a language that defines the model transformation

language that has been use to express it or may be ignored if the derivation has

not been formally defined.

Relationship Description

source of Indicates that the instances of this derivation type
use one or more artefact types as input.

targets Indicates that the instances of this derivation type
provide one or more artefact types as output.

characterised by Indicates that the instances of this derivation type
possess one or more attributes of interest for the
quality assessment process.

Table 5.6: Relationships involving derivation types

Due to their transformational nature, it may be useful to specify the num-

ber of input and output elements targeted by the derivation. Therefore, the

derivation type may be characterised by a multiplicity that specifies the nature

of the association with artefact types. Table 5.4 provides the list of authorised

associations between derivation types and others constructs.

Illustration

Continuing our previous example, Figure 5.14 illustrates the addition of a deriva-

tion type named implementation. This derivation type serves the purpose of

documenting the relationships between our two main artefact types of interest.

It is categorised as exogenous since the source metamodel (i.e., UML metamodel)

and the target metamodel (i.e., Java language metamodel) are different. It is also

100 Chapter 5. MoCQA models

Figure 5.14: Example of derivation type

categorised as vertical since the implementation is supposed to add details to the

architecture. The multiplicity is one-to-one since one class diagram is used to

implement a Java package.

Note that as a MoCQA model is completed with more constructs, the global

entity population is also reduced accordingly. In our case, the model may be

interpreted as follows: for each class diagram in the software project, the imple-

mentation of this diagram that results in the output of a Java package named

my.application.session is relevant to our quality assessment process. In con-

sequence, only one class diagram satisfies these constraints and will be considered.

Figure 5.15 shows the same example but in the case of a semi-automated trans-

formation.

Related concepts of software engineering

As explained in Chapter 4, explicit quality assessment modelling implies the

ability to express elements outside the scope of software quality. The remainder

of this section reviews some project-level concepts of software engineering and

how they translate in terms of MoCQA constructs. This list of concepts is not

exhaustive but illustrates how the constructs of the quality assessment metamodel

may be used to represent well-known concepts of Software Engineering.

5.2. Quality assessment metamodel 101

Figure 5.15: Example of automated derivation type

The notion of requirements may be expressed as the set of all the existing (non

overlapping) requirement-related artefacts within one software project.

The notion of design (as a product) translates as the set of all the existing (non

overlapping) design-related artefacts within one software project.

The source code may be expressed as the set of all the existing (non overlapping)

code-related artefacts within one software project.

The implementation becomes the set of all the existing (non overlapping) deriva-

tions between design-related artefacts and code-related artefacts within one

software project.

The design (as an activity) may be expressed as the set of all the existing (non

overlapping) derivations between requirement-related artefacts and design-related

artefacts within one software project.

Finally, the notion of refactoring may be expressed as an endogenous derivation

taking as input a code-related artefact and producing another whose semantics

has been maintained unchanged while predefined syntax-related quality indica-

tors have been improved.

102 Chapter 5. MoCQA models

Figure 5.16: Measurement package of the quality assessment metamodel

5.2.2 Measurement package

The measurement package provides constructs dedicated to the definition of

quantification methods (i.e., measurement or estimation methods) for the mea-

surable entity types described in the project component of a MoCQA model.

Figure 5.16 provides a detailed view of the measurement package. As shown in

the figure, the measurement package provides three main constructs: attributes

(base and derived), method and function. These elements are inherited from

the measurement level of the software quality ontology introduced in Chapter 3.

The main difference between the measurement level of the ontology and the

measurement package of the quality assessment metamodel is the strict interpre-

tation of measure. The Software Measurement body of knowledge stresses the

fact that quantification and measurement are not the same. Numbers may be

assigned to a property, based on opinion or other heuristic methods. Numbers

obtained that way do not possess metrologic properties and may provide erratic

results. However, in the MoCQA framework, estimation methods may prove use-

ful, especially at early stages of the development. Therefore, the measurement

5.2. Quality assessment metamodel 103

Figure 5.17: Measurement level of the software quality ontology

package provides a generic method construct that may be a measurement or an

estimation method, according to the needs of the quality assurance team at a

given moment of the quality assessment life-cycle. Yet, this construct has to be

associated with an attribute, a scale and possibly a unit (concepts that are related

to metrology) in order to structure the evaluation process and allow the evolu-

tion of the methods towards more accurate and reliable measurement methods

as the software development life-cycle unfolds. For instance, a quality assurance

team may want to use scoring cards in order to monitor the early stages of an

architecture. The fact that this team had to associate its estimation method to

a given attribute, a scale and a unit although it is not a measurement method,

could help the quality assurance team switch more easily to a competent and

validated measure as soon as it is applicable.

Another difference between the measurement level of the ontology and the

measurement package is the absence of external/internal attributes. This absence

is due to the way measurable entities are modelled. Indeed, the introduction of

behaviour types allows the designer to ignore this distinction since an attribute

linked to a behaviour type is by definition an external attribute, whereas an

attribute associated to other types of entities is by definition an internal attribute.

Base Attributes

Base attributes are constructs provided by the quality assessment metamodel

to characterise a property of a previously defined measurable entity type that

will be evaluated during the quality assessment process. Base attribute constructs

are a direct translation of the base attribute concept found in the measurement

level of the software quality ontology.

Table 5.7 details the attributes available to characterise a base attribute con-

104 Chapter 5. MoCQA models

Attribute Description

Name Provides the primary characterisation of a base at-
tribute that may originate from a referenced source (e.g.,
size, complexity, etc.) or be customised (e.g., occurrence,
existence, etc.).

Reference Provides information on the quality framework or mea-
surement framework the base attribute originates from
(e.g., ISO/IEC 9126, MOOD suite, etc.).

Table 5.7: Attributes characterising a base attribute construct

struct. In order to provide more information regarding the overall adequateness

of the assessment process modelled, an optional reference may be specified in

order to relate the base attribute to an identified framework or paper. In the

case of a customised base attribute (i.e., an attribute with no reference), the

name must reflect accurately the targeted property of the evaluated entity. As

explained before, the distinction between internal and external attributes (i.e,

attributes which can be measured purely in terms of the entity being measured

or with respect to how the entity relates to its environment, respectively) made

by several frameworks (including ISO/IEC 9126:2001) is not defined by the user

but based on the nature of the measurable entity.

The base attribute may be associated to a measurable entity type. In

comparison with the ontology, this association is different. As a matter of fact the

quality assessment model does not provide base measure constructs. This design

choice is induced by the iterative nature of our quality assessment methodology.

In order to allow the evolution of the base measures used in our analysis models,

the base attributes are used as a constant that allow to “plug” measurement or

estimation methods into the model. While the evaluation method may change,

the base attribute remains. Therefore, in the framework, a base measure may

be defined as the value obtained through an evaluation method defined for a

base attribute of a single entity. Note that due to the fact that entities are

defined as type in the project package, a base attribute may result in one or more

measurement/estimation values (i.e., one value for each instance of the entity type

present in the software project). Table 5.8 provides the list and the semantics of

authorised associations between base attributes and other constructs.

Illustration

Figure 5.18 illustrates how base attributes may be added to our example from

Section 5.2.1. In this example, three base attributes are defined, one for behaviour

type behav001, two for behav002. The basic idea of the MoCQA model at this

stage is to count the number of logout actions performed and the number of

5.2. Quality assessment metamodel 105

Relationship Description

characterised by Indicates the measurable entity type
this base attribute characterises. The
semantics of this association is: each in-
stance of the entity type possesses the
property defined by the base attribute.

defined for Indicates the method that intends to
evaluate this base attribute. The se-
mantics of this association is: for each
occurrence of this base attribute re-
quired during the quality assessment
process, the method is used to produce
a value assigned to the property.

input of (function) Indicates that the measurement/esti-
mation values of this base attribute
are used as input of a function in or-
der to measure/estimate the values of
a derived attribute. The semantics of
this association is: each value assigned
to this attribute for each instance of the
entity type is used as an input of the
function to produce a distinct value.

input of (assessment model) Indicates that the measurement/esti-
mation values of this base attribute
are used as input of assessment
model in order to provide a quality
indicator. The semantics of this asso-
ciation is: the set of all values assigned
to this attributes is used as an input
of the assessment model to produce a
unique value.

Table 5.8: Relationships involving base attributes

screen freezes experienced in order to derive a ratio that will be exploited as an

indicator. The notion of aggregated (or collection of) measurable entity types

shows its relevance once base attribute are added to the MoCQA model.

Behaviour type behav002 has been defined as a regular measurable entity

type. Therefore, any base attribute associated to behav002 will be evaluated

for each occurrence of this behaviour type. In order to respect the semantics

of the project package constructs (i.e., “for each instance of measurable entity

type, let’s evaluate a specific attribute”), we have to define a base attribute that

is applicable to each occurrence of the behaviour type. In our example, the

base attribute that allows us to count the total number of screen freeze and is

106 Chapter 5. MoCQA models

Figure 5.18: Example of base attributes

applicable to each separate occurrence of screen freeze is the occurrence base

attribute. This base attribute states that for each instance of screen freeze, we

want to evaluate its occurrence. Additionally, the base attribute duration is also

associated to the behaviour type since it may be useful to discriminate critical

freezes from regular and acceptable lag.

On the other hand, behaviour type behav001 has been defined as an aggre-

gated measurable entity type (i.e., a collection of all log out actions). As explained

earlier, it may be relevant to consider a collection of behaviour types. This mod-

elling convention permits the respect of the same semantics across artefacts and

behaviours. In the strict semantic interpretation of MoCQA models, behaviour

type behav001 therefore states that each instance of all possible logout actions is

taken into account. The base attribute amount (i.e., the amount of instances in

the collection) may therefore be applied.

Methods

Methods are constructs provided by the quality assessment metamodel to char-

acterise a measurement or estimation method defined to evaluate a specific base

5.2. Quality assessment metamodel 107

attribute. As explained before, methods are a generalization of the measure-

ment method concept present in the measurement level of the software quality

ontology. As such, they share the same level of abstraction (i.e., a logical se-

quence of operations, described generically) and must be operationalised through

measurement/estimation procedures in order to produce a value.

Attribute Description

ID Provides an identifier for the method, allowing to bind
it to a procedure defined afterwards.

Name Provides a name (if a name has been defined) to iden-
tify the method (e.g., McCabe’s Cyclomatic Number,
NLOC, etc.).

Description Provides the logical sequence of operations to apply
this measurement or estimation method.

Reference Provides information on the quality framework or mea-
surement framework the method originates from (e.g.,
ISO/IEC 9126, MOOD suite, etc.).

Type Provides information on the stance of the method re-
garding software measurement (i.e., measurement or es-
timation).

Status Provides information on the maturity of the method
(i.e., experimental, theoretically validated, empirically
validated or fully validated).

Scale Provides the scale associated to each value produced
by the method (i.e., nominal, ordinal, interval, ratio,
absolute).

Value Type Provides the type associated to each value produced by
the method (e.g., integer, real, string, etc.).

Value Range Provides an interval of values (of the same value type)
that represents the lower and upper bounds for each
value produced by the method.

Unit Provides the unit associated to each value produced by
the method (e.g., function points, line of codes, etc.).

Table 5.9: Attributes characterising a method construct

Relationship Description

defined for Indicates the base attribute this method intends to
evaluate. The semantics of this association is: for each
occurrence of the base attribute required during the
quality assessment process, this method is used to pro-
duce a value assigned to the property.

Table 5.10: Relationships involving methods

108 Chapter 5. MoCQA models

Table 5.9 details the attributes available to characterise a method construct.

The attributes may be divided in three categories. The first category of attributes

(i.e., ID, name, description, reference) addresses the identification of the method,

both internally to the measurement plan and regarding the software quality body

of knowledge. The second category of attributes (i.e., category, status) provides

information intended to increase the awareness of the quality assurance team re-

garding the robustness of their measurement plan. Finally, the last category of

attributes (i.e., scale, value type, value range and unit) helps specify the proper-

ties of the values produced by the measurement or estimation method.

Method constructs are exclusively associated to based attribute constructs as

shown in Table 5.10.

Illustration

As shown in Figure 5.19, each base attribute of our previous example is now

associated with a suitable measurement or estimation method. Base attribute

att001 is associated with a counting method (i.e., the measurement consists in

counting the number of log out actions performed during a time-frame still to

specify). For instance, this method may translate as a procedure that relies on

the log of the application to provide an actual number. As explained before, since

there is only one occurrence of the measurable entity type, only one value will be

produced by this method for this attribute.

Base attribute att002 is associated to an estimation method that consists

in reporting the occurrence of a screen freeze. For instance, this method may

be translated into a procedure that relies on the log of a help desk to point

towards the occurrences of a freeze. Base attribute att003 is also associated to a

measurement method that simply measure the duration of the screen freeze. This

method may eventually rely on the log of the application as well. In consequence,

each occurrence of screen freeze will be associated to a “flag” stating that it

occurred and a duration in seconds.

Derived Attributes

Derived attributes are constructs provided by the quality assessment meta-

model to characterise a property of a previously defined measurable entity

type that will be computed on the basis of the values of other base or derived

attributes. Derived attribute constructs are a direct translation of the derived

attribute concept found in the measurement level of the software quality ontology.

Table 5.11 details the attributes available to characterise a base attribute

construct. Basically, derived attribute constructs are similar to base attribute

constructs, except for the way they are evaluated. Table 5.12 provides the list

and the semantics of authorised associations between derived attributes and other

constructs.

5.2. Quality assessment metamodel 109

Figure 5.19: Example of measurement/estimation methods

Attribute Description

Name Provides the primary characterisation of a derived at-
tribute that may originate from a referenced source (e.g.,
size, complexity, etc.) or be customised (e.g., occurrence,
existence, etc.).

Reference Provides information on the quality framework or
measurement framework the base attribute originates
from.(e.g., ISO/IEC 9126, MOOD suite, etc.).

Table 5.11: Attributes characterising a derived attribute construct

Functions

Functions are constructs provided by the quality assessment metamodel to char-

acterise an algorithm or calculation defined to evaluate a specific derived at-

110 Chapter 5. MoCQA models

Relationship Description

characterised by Indicates the measurable entity type
this derived attribute characterises.
The semantics of this association is:
each instance of the entity type pos-
sesses the property defined by the de-
rived attribute.

input of (function) Indicates that the measurement/esti-
mation value of this derived at-
tribute is used as input of a function
in order to measure/estimate the values
of a derived attribute.

input of (assessment model) Indicates that all measurement/esti-
mation value of this derived at-
tribute is part of the input of the as-
sessment model in order to provide a
quality indicator.

Table 5.12: Relationships involving derived attributes

tribute. Function constructs are direct translations of the measurement function

concept found in the measurement level of the software quality ontology.

Table 5.13 details the attributes available to characterise a function construct.

Fundamentally, function constructs are similar to method constructs, except for

the nature of the description (functions are exclusively calculations and algo-

rithms) and the association that are authorised, shown in Table 5.14.

Illustration

As shown in Figure 5.20, a derived attribute criticality has been associated

to behaviour type behav002. Once again, it means that for each occurrence of

a screen freeze during the log out action, a value will be given to this attribute.

In order to compute the criticality of the freeze, a simple function is associated

to the derived attribute. This function consists in associating a value of 1 if the

screen freeze had a duration of more than 2 seconds and a value of 0 in other

cases. The criticality attribute will therefore be represented by an array of

0/1 values that may be used by an assessment model.

5.2.3 Assessment package

The assessment package provides constructs dedicated to the definition of a

structure of quality goals. It also manages the description of how their related

indicators rely on the constructs of the project and measurement components of

a MoCQA model.

5.2. Quality assessment metamodel 111

Attribute Description

ID Provides an identifier for the function, allowing to bind
it to a concrete algorithm defined afterwards.

Name Provides a name (if a name has been defined) to iden-
tify the function.

Description Provides the algorithm or calculation performed by the
function in general terms (same level of abstraction
than method).

Reference Provides information on the quality framework or mea-
surement framework the function originates from.(e.g.,
ISO/IEC 9126, MOOD suite, etc.).

Status Provides information on the maturity of the function
(i.e., experimental, theoretically validated, empirically
validated or fully validated).

Scale Provides the scale associated to each value produced
by the function (i.e., nominal, ordinal, interval, ratio,
absolute).

Value Type Provides the type associated to each value produced by
the function (e.g., integer, real, string, etc.).

Value Range Provides an interval of values (of the same value type)
that represents the lower and upper bounds for each
value produced by the function.

Unit Provides the unit associated to each value produced by
the function (e.g., function points, line of codes, etc.).

Table 5.13: Attributes characterising a function construct

Relationship Description

defined for Indicates the derived attribute this function intends
to evaluate.

input of Indicates the measurement/estimation value of which
attribute are used as input of this function in order
to measure/estimate the value of a derived attribute.

Table 5.14: Relationships involving functions

Figure 5.21 provides a detailed view of the assessment package. As shown

in the figure, the assessment package provides three constructs: quality issues,

assessment models, quality indicator and interpretation rule. These ele-

ments are adapted from the assessment level (Figure 5.22) of the software quality

ontology introduced in Chapter 3.

The main difference between the assessment-level of the ontology and the

assessment package of the quality assessment metamodel is that three concepts

of the former are integrated into one in the latter. As a matter of fact, the

112 Chapter 5. MoCQA models

Figure 5.20: Example of derived attributes and functions

quality issue construct incorporates the concepts of quality factor, information

need and reference to a quality model. The assessment model and interpretation

rule constructs are directly inherited from the analysis model and decision cri-

teria concepts (respectively). Finally, the quality indicator construct allows the

characterisation of an indicator (defined in the project level of the ontology).

5.2. Quality assessment metamodel 113

Figure 5.21: Assessment package of the quality assessment metamodel

Figure 5.22: Assessment-level of the software quality ontology

Quality Issues

Fundamentally, quality issues are constructs provided by the quality assessment

metamodel to characterise quality goals for the software project. In addition,

quality issues encapsulate several concepts present in the assessment level of the

software quality ontology. Concretely, quality issue constructs have a similar role

to corporate objectives and tactical/measurement goals of the GQM/MEDEA

approach even if they are expressed through quality factors (that may or may

not originate from a specified quality model). In addition, they encapsulate an

information need (as defined in ISO/IEC 15939) and are therefore associated to

114 Chapter 5. MoCQA models

specific stakeholders. They may be structured as a hierarchy and prioritized ac-

cording to organisational needs. Finally, since quality assessment models define

the quality-related aspects transversally to the entire software project, each qual-

ity issue construct has to be associated with a specific subset of the project for

which it is relevant.

Attribute Description

Name Provides the quality factor targeted by the quality is-
sue which may originate from a referenced source (e.g.,
maintainability, robustness, etc.) or be customised
(e.g., time-to-market, cost-effectivness, etc.).

Reference Provides information on the quality framework the
quality factor originates from (e.g., ISO/IEC 9126,
MOOD suite, etc.), if applicable.

Scope Provides information on the subset of the software
project in which this quality issue is relevant (i.e., ap-
plication, code, design, a specific package, etc.).

Stakeholder Provides information on the stakeholders this quality
issue is defined for (i.e., management, customer, team
X, etc.).

Priority Level Provides information on the criticality of this quality
issue according to the associated stakeholders.

Table 5.15: Attributes characterising a quality issue construct

Table 5.15 details the attributes available to characterise a quality issue con-

struct. As explained before, due to the fact that MoCQA models intends to be

operational, quality issues are basically quality goals. However, their primary

characterisation is accomplished by way of a quality factor. Therefore, the refer-

ence attribute allows the specification of the source from which the quality factor

originates. The scope attribute provides a way to define the specific part of the

software project which is aimed at by this goal. This attribute also helps define

the level of granularity of the goal, since the scope may be broad (e.g., the whole

application) or very specific (e.g., a specific package or a class). The more spe-

cific the scope is, the more the MoCQA model is brought closer to an information

product (as defined by ISO/IEC 15939). Indeed, if the MoCQA model defines a

single quality issue whose scope is the same as a unique measurable entity type

defined in the project component, the MoCQA model maps perfectly the Mea-

surement Information Model. The stakeholder attribute and the priority level

attribute manage the information need aspect and provide respectively a way to

define who is interested in this goal and how critical it is to the stakeholder. Note

that the priority level is voluntarily left free-form so that it can be used in any

context (see Chapter 12 for an example of prioritized quality issues).

Quality issue constructs may be organised as a hierarchy. This structure may

5.2. Quality assessment metamodel 115

be as simple as a given number of independent quality issues with no depth level

(i.e., a ’flat’ structure). In most cases, however, a precise hierarchy will be pro-

vided. The quality assessment metamodel offers two different ways to describe

this hierarchical relation: the aggregation relationship or the composition rela-

tionship. The first one describes a quality issue with two or more sub-factors

linked through an assessment model, which means that the children are used as

input of an assessment model that will produce one or more quality indicators for

the quality issue itself. The second one only describes a structure between the

quality issue and its children, hence defining the parent issue as a multidimen-

sional quality issue. Table 5.16 provides the list and the semantics of authorised

associations between quality issues and other constructs.

Relationship Description

defined for Indicates the assessment model that
intends to evaluate this quality issue.

input of (assessment model) Indicates that the indicators of this
quality issue are used as input of an
assessment model in order to provide
a quality indicator. Therefore indi-
cates that this quality issue is part of
an aggregation relationship.

subdivided in Indicates that this quality issue is de-
composed in one or more children qual-
ity issues. Therefore indicates that
this quality issue is part of a compo-
sition relationship.

Table 5.16: Relationships involving quality issues

Assessment Models

Assessment models are constructs provided by the quality assessment meta-

model to characterise an algorithm of calculation defined to produce one or more

quality indicators assessing the level of satisfaction of a quality issue, based on

attributes defined in the measurement component. Assessment models are a

translation of the analysis model concept found in the assessment level of the

software quality ontology.

Table 5.17 details the attributes available to characterise an assessment model

construct. As we may see, assessment models share similarities with functions

and therefore the two constructs have many attributes in common. The type

attribute, however, is specific to the assessment model construct. This attribute

is not to be confused with the type attribute of method constructs. The type

of an assessment model provides a way to express the intent of the model. For

116 Chapter 5. MoCQA models

Attribute Description

ID Provides an identifier for the assessment model, allowing
to bind it to a concrete algorithm defined afterwards.

Name Provides a name for the assessment model, if applicable.

Description Provides the algorithm or calculation performed by the
assessment model.

Reference Provides information on the quality framework or mea-
surement framework the method originates from (e.g.,
ISO/IEC 9126, MOOD suite, etc.), if applicable.

Type Provides information on the specific intent of the assess-
ment model (i.e., estimation, prediction, etc.).

Status Provides information on the maturity of the assessment
model (i.e., experimental, theoretically validated, empir-
ically validated or fully validated).

Table 5.17: Attributes characterising an assessment model construct

instance, one may use an attribute of a class diagram (e.g., size) to provide an

indicator for the maintainability of the diagram. In that case, the assessment

model would be a prediction model. Besides, the assessment model construct

does not provide a characterisation of an output value. This is due to the fact

that, contrary to a function, an assessment model may provide several different

output values (i.e., quality indicators).

The description of the assessment model defines the relationship between the

output quality indicator and the input attributes or quality issues (i.e., what is

the quantitative impact of each attribute or child issue in the computation of

the resulting quality indicator). These rules can take the form of an algebraic

formula or a algorithm made of ‘if-then’ statements.

Note that each input of an assessment model (attribute or issue) is in fact an

array of values. As for functions, the aim of an assessment model is to transform

input values into output values, through a calculation process. However, the as-

sessment model works on a different scale. Indeed, we have seen that an attribute

is evaluated for each instance of its related entity type. The assessment model

thus bridges the gap between the entity populations that have been measured and

the scope of its related quality issue. For instance, if the scope is broad (e.g., the

entire source code), the assessment model must provide rules that determine how

many instances of the defined attributes and entities (e.g., structural complexity

of a procedure) are to be taken into account (e.g., one of them, 60 percent or all

of them). This allows the creation of a quality assessment that relies on a probing

into the actual entities. It should be noted that assessment models are a crucial

part of quality assessment modelling. They represent the link that binds mere

measurement with actual meaningful quality assessment. Assessment models are

5.2. Quality assessment metamodel 117

also the pivotal mechanism for the tailoring and fine tuning of a quality model

within a given environment since they allow us to take environment factors in

consideration. Consequently, the definition and validation (or at least the docu-

mentation of the rationale behind the model) of any assessment model should be

cautiously taken care of.

Table 5.18 provides the list and the semantics of authorised associations be-

tween assessment models and other constructs.

Relationship Description

defined for Indicates the quality issue this assess-
ment model intends to assess.

input of (quality issue) Indicates that the indicators of the quality
issue are used as input of this assessment
model in order to provide a quality indi-
cator.

input of (attribute) Indicates that the values of the attribute
are used as input of this assessment model
in order to provide a quality indicator.

provides Indicates one or more quality indicators com-
puted through the assessment model.

Table 5.18: Relationships involving assessment models

Illustration

Figure 5.23 shows that one quality issue has been defined on top of our previous

example. This element provides the fundamental rationale behind the measure-

ment process described so far. The quality factor encompassed by the quality

issue is the reliability of the my.application.session package (which is spec-

ified as the scope of the quality issue). Additionally, the quality issue specifies

that this quality requirement has been expressed by the customer, which is the

stakeholder for the quality issue.

As explained before, the quality issue expresses both a goal and an information

need. As such, it requires an assessment model to link the quality issue with the

selected attributes and their values. Assessment model amod001 is defined for

the previous quality issue. It uses base attributes att001 and att004 to provide

the required assessment. The description of amod001 states that the value of the

output indicator will be computed on the basis of the ratio between the sum of the

values contained in the att004 array and the unique value associated to att001.

If this ratio amounts to less than 0.2, the quality indicator would be assigned

a ’OK’ value. In other cases, the value assigned is ’KO’. Additionally, we may

express the fact that this model is completely experimental and is therefore an

118 Chapter 5. MoCQA models

Figure 5.23: Example of quality issues and assessment models

5.2. Quality assessment metamodel 119

attempt to answer to the information need that may be refined in the remainder

of the quality assessment life-cycle.

Quality Indicators

Quality indicators are constructs provided by the quality assessment meta-

model to characterise a specific measure or estimation produced by an assessment

model in order to interpret the level of satisfaction of a quality issue. Quality

indicators are an abstraction of the indicator concept found in the project level

of the software quality ontology.

Attribute Description

Name Provides a name for the quality indicator, if applicable.

Reference Provides information on the quality framework or mea-
surement framework the quality indicator originates
from (e.g., ISO/IEC 9126, MOOD suite, etc.), if ap-
plicable.

Scale Provides the scale associated to the value produced by
the quality indicator (i.e., nominal, ordinal, interval,
ratio, absolute).

Value Type Provides the type associated to the value produced by
the quality indicator (e.g., integer, real, string, etc.).

Value Range Provides an interval of values (of the same value type)
that represents the lower and upper bounds for the
value produced by the quality indicator.

Unit Provides the unit associated to the value produced
by the quality indicator (e.g., function points, line of
codes, etc.), if applicable.

Table 5.19: Attributes characterising a quality indicator construct

Table 5.19 details the attributes available to characterise a quality indicator

construct. In addition to the attributes designed to identify a quality indicator,

the construct provides the same attributes designed to characterise a value as the

function or method constructs do. As a consequence, a quality indicator may

be numerical or not, is comprised into a predefined interval of relevant values

associated with a scale and can be aggregated from several measurement values

or even have the exact same value than one. The main difference between a

measurement value and a quality indicator is that whereas the value is neutral

and unattached to a meaning per se, the quality indicator is produced to be

interpreted as a meaningful information regarding the achievement of a quality

goal. As a matter of fact, a valid quality indicator has to be associated with

a collection of interpretation rules that help give a meaning to the indicator,

otherwise, the indicator is just useless. For instance, the functional size of a

120 Chapter 5. MoCQA models

given program is a measurement value. If we add simple rules of interpretation

to define whether a project is small enough for a team with limited resource to

cope with that is based on the functional size value, size becomes an indicator of

the a quality issue that we may call “Feasibility”. The quality indicator construct

is compliant with the concept of indicator defined in ISO/IEC 15939 as a measure

providing an estimate or evaluation of specified attributes derived from a model

with respect to defined information needs.

As shown in Table 5.20, quality indicators are associated with a series of

interpretation rules that allow the indicator to be more than just a neutral

value and separates the quality indicator from the measure.

Relationship Description

interpreted through Provides one or more interpretation rules for the
quality indicator.

provides Indicates the assessment model this quality
indicator is computed through.

Table 5.20: Relationships involving quality indicators constructs

Illustration

Figure 5.24 shows our previous example with a suitable quality indicator defined.

This quality indicator is given a name for easier further reference (RelInd #1).

It is logically assigned a binary value type (OK, KO) in order to be compatible

with amod001 and is associated with a nominal scale.

Interpretation Rule

Interpretation rules are constructs provided by the quality assessment meta-

model to attach a defined meaning to a range of values the quality indicator may

be comprised in. Interpretation rules are a translation of the decision criteria

concept found in the assessment level of the software quality ontology.

Table 5.21 details the attributes available to characterise a quality indicator

construct. Each interpretation rule is therefore a statement that helps bind the

value of the quality indicator to a meaning regarding the quality issue it is defined

for. Each interpretation rule may be regarded as a decision criterion as defined

the software measurement terminology (see Section 3.1). Table 5.22 provides the

authorised association between interpretation rules and other constructs, as well

as its semantics.

5.2. Quality assessment metamodel 121

Figure 5.24: Example of quality indicators

122 Chapter 5. MoCQA models

Figure 5.25: A complete (yet simple) example of MoCQA model

5.2. Quality assessment metamodel 123

Attribute Description

Range Provides an interval of values (e.g., [0,20], [2.5,3.5[)
or a specific value from a discrete set of values
(e.g., “A”, “low”, etc.) for which the interpretation
rule is applicable.

Description Provides information on how to interpret the asso-
ciated quality indicator for the associated quality
issue if its value is comprised in the range.

Recommendation Provides information on what actions should be
carried out regarding the software project or the
quality assessment process if the value of the asso-
ciated quality indicator is comprised in the range.

Table 5.21: Attributes characterising an interpretation rule construct

Relationship Description

interpreted through Indicates the quality indicator for which the
interpretation rule is relevant..

Table 5.22: Relationships involving interpretation rules

Illustration

Our example may be finalised thanks to interpretation rules as shown in Fig-

ure 5.25. Since the quality indicator RelInd #1 may be assigned one of two

values, we logically define 2 interpretation rules. The first is used when the qual-

ity indicator is assigned the ’OK’ value and associated this value with a green

flag. No recommendation is provided since the reliability objective is supposed

to be satisfied. The second interpretation rule is related to the ’KO’ value of the

quality indicator and to a red flag, showing that the reliability objective is not

completed. In that case, the recommendation of reviewing the code of the login

class is provided.

This final addition completes a fully documented MoCQA model for a small

example. It is worth mentioning that although this MoCQA model is struc-

turally (or syntactically) well-formed, it is far from efficient regarding the quality

assessment it models. For instance, the model displays a loss of definition and pre-

ciseness of the measure since it uses measurement methods providing “absolute”

scales to finally provide a quality indicator that is associated with a “nominal”

scale. This sort of flaw detection is further discussed in Chapter 8.

124 Chapter 5. MoCQA models

5.3 Designing the MoCQA model

As explained in Chapter 4, MoCQA models are fundamentally instances of the

quality assessment metamodel. The instantiation process is constrained, on the

one hand, by the quality requirements collected during the acquisition step. In

other words, the instantiation process is executed in order to model these quality

requirements and the way they are assessed.

On the other hand, the instantiation process in constrained by the method-

ological principles of the approach. Due to the fact that the MoCQA framework

implements a top-down goal-driven methodology, the instantiation process is not

a simple mapping between the quality assessment metamodel and the MoCQA

model. The instantiation process has to performed as an ordered set of opera-

tions. Besides, provided that MoCQA models may be regarded as extended qual-

ity models, the rules defined to design a customised quality model (in [Dromey,

1996]) also apply to the design of a MoCQA model.

The Software Quality body of knowledge mostly agrees on the fact that quality

goals should be defined first. This is obviously the case for the Goal/Question/-

Metric approach. This is also the case in the five steps of approach proposed

in [Dromey, 1996]:

1. Identify a set of high-level quality attributes for the product like

reliability or maintainability.

2. Identify the product components. Examples are modules, require-

ments or relations.

3. Identify and classify the most significant, tangible, quality-carrying

properties for each component. These are properties that result in

manifestation of the high-level quality attributes.

4. Propose a set of axioms for linking product properties to quality

attributes. This is not an easy task and the links cannot always be

empirically verified.

5. Evaluate the model, identify its weaknesses and refine it.

As explained before, MoCQA models are built upon 3 components (i.e.,

assessment-related, measurement-related, project-related). According to the pre-

vious considerations, the instantiation process should define the quality goals

first (and therefore, instantiate the assessment package to provide an assessment

component), then the measurable entities (and therefore, instantiate the project

package to provide a project-related component) and, finally, the measurement

and/or estimation methods (and therefore, instantiate the measurement package

to provide a measurement component).

5.3. Designing the MoCQA model 125

5.3.1 Components instantiation

Concretely, the instantiation step consists in:

1. defining a quality issue (and possibly) its underlying hierarchy

2. defining the type of artefacts, derivations and behaviours of interest

3. defining or selecting the measurement methods to be used in this assessment

or empirical study

4. iterating with a new quality issue until all available quality requirements

are modelled

At each step of this process, the work-in-progress MoCQA model must be

checked with regard to the abstract syntax defined by the quality assessment

metamodel. The nature of the verification process is detailed in Section 5.3.2.

Additional methodologies may be used to strengthen this process. For in-

stance, the quality assessment metamodel has been derived from the software

quality ontology. The ontology itself has been designed so that no incoherence

exists between its structure and the conceptual model of GQM/MEDEA. As such,

the quality assurance team may rely on the GQM/MEDA methodology in order

to ensure that the definition of the measurement process is defined properly while

formalising the process into a MoCQA model. As explained before, the fact that

quality issues are semantically compatible with the corporate objectives and the

tactical and measurement goals provides a way to bridge the gap between the

two methodologies.

[Kaner et al., 2004] provides a good starting point for an analysis grid that

would help the user select the right (suitable) measures for a given purpose while

not avoiding important characterisation about the measure (e.g., scale, unit, etc.).

Finally, note that the process of instantiation may be slightly altered in spe-

cific circumstances. For instance, defining the project component first, followed

by the measurement and assessment components, may be regarded as a more“op-

portunistic” and ad hoc planning. It means that the user checks what measurable

entities she may provide, tries to identify measures that could be applied and to

infer what quality assessment she can derive from the measures. Although this

method stirs away from pure goal-driven measurement, it is still not as unpro-

ductive as a real bottom-up measurement plan. Indeed, since MoCQA models

are conceptual models that help plan the quality assessment, the goals are still

defined before any actual measurement is performed, avoiding a waste of time

and effort.

5.3.2 Structural coherence

During this process, some precautions must be taken in order to guarantee the

overall robustness and integrity of the designed MoCQA model. The remain-

126 Chapter 5. MoCQA models

.

Construct Attributes

Quality issue
Name
Scope
Stakeholder

Assessment model issue
Id
Type
Description

Quality indicator
Scale
ValueType
ValueRange

Interpretation Rule
Range
Description

Base/derived attribute Name

Method

Id
Type
Description
Scale
ValueType
ValueRange

Function

Id
Description
Scale
ValueType
ValueRange

Artefact Type
Name
Category

Behaviour Type
Name
Description

Derivation Type
Name
Category
Multiplicity

Table 5.23: Mandatory attributes

der of this section addresses the structural coherence verification that has to be

performed to guarantee the syntactic validity of MoCQA models.

Attributes

Although they may be completed with a lot of additional information, MoCQA

models should at least provide a minimal amount of information in order to be

exploitable. Table 5.23 provides a list of attributes that should be instantiated in

any case. The attributes presented in the table are required in order to actually

provide a measurement plan that is consistent and to allow the validation of the

5.3. Designing the MoCQA model 127

MoCQA model during the exploitation step (see Chapter 8).

As we may see, quality issues require a name that encompasses the quality

goal or requirement. Since it may apply to various elements, the scope is required.

In order to guarantee that the quality issue is relevant, it should also provide an

associated stakeholder.

Assessment models, functions and methods share the requirement to provide

a description to make them applicable (since the description provide the core

information of these concepts). Additionally, they must be assigned an id that

must be unique since it will be referred to in the next steps of the methodology.

Assessment models and methods also have to be characterised by a type in or-

der to provide information on the overall rigorousness of the quality assessment

process.

Methods and functions also characterise measurement or estimation values.

As such, they are required to provide a scale, value type and value range, like

quality indicators. Note that the value range may be ignored if the value type is

an enumeration of values.

All measurable entity types have to provide a name which is their fundamental

characteristic. However, the additional information required varies slightly from

one to another. For derivation and artefact types, the category is more relevant (it

provides a way to ensure that the derivation is adequate regarding the associated

artefacts and a way to validate that the measured entities are coherent with the

scope, respectively). The name of behaviour types may not be expressive enough

by itself and therefore requires a description. The derivation type should also

define an adequate multiplicity in order to allow the correct identification of the

number of artefacts involved in the transformation.

Finally, interpretation rules have to provide a range and a description in order

to be usable. As seen in previous examples, the recommendation may be ignored.

Associations

Regarding the associations of the MoCQA model, the quality assessment meta-

model provides the main constraints that need to be validated. For instance, the

quality assessment metamodel states that an attribute may be associated to at

most one measurable entity type whilst a measurable entity type may have one

or more associated attributes.

However, some precautions must be taken in order to guarantee that the

MoCQA model remains acyclic. The “subdivided in” relationship allows this kind

of cycle. Cycles may therefore arise between, quality issues, behaviour types and

artefact types. Cycles are not relevant for any of those concepts and therefore, the

process should ensure that the target of a “subdivided in” relationship is neither

the source construct itself, nor one of its ancestors.

128 Chapter 5. MoCQA models

Derivation types and assessment models may also be used to create cycles in

the MoCQA model. Similarly, a cycle is not relevant in that context. The design

process should ensure that the target of any derivation type is not a (direct or

indirect) source construct for the derivation type. Assessment models have to

comply to the same constraints.

Chapter 6

Step 1: Acquisition

6.1 Overview

As explained in Chapter 4, the acquisition step focuses on the elicitation of rel-

evant contextual information. This information concerns the software develop-

ment environment in which the assessment process will occur. The information

collected during this step also constitutes the input required to perform the qual-

ity assessment modelling of step 2 of the assessment methodology. In other words,

the acquisition step ensures that the MoCQA model will actually be a customised

quality assessment model.

The information collected can be divided in two categories. First, it contains

elements of the environment that will not be explicitly modelled as part of the

MoCQA model (e.g., budget constraints, time constraints, etc.). This information

constitutes a reference for the quality assessment modelling process.

More importantly, the information collected at this stage is also comprised of

elements that will be included in the MoCQA model explicitly, that is, the actual

quality requirements.

6.1.1 Activities

Concretely, this step of the assessment methodology addresses the tasks described

in the remainder of this section.

Planning of the quality assessment life-cycle

This task consists in defining how the quality assessment cycle will be performed

with regard to the course of the software life-cycle. Since the MoCQA method-

ology may be used in a variety of contexts (e.g., in a development starting from

scratch as a continuous supporting process, as a punctual process dedicated to the

129

130 Chapter 6. Step 1: Acquisition

profiling of an ending project, as a support for the maintenance process, etc.), it

is important to define clearly how the quality assessment life-cycle will integrate

into the development process. In other words, this activity is performed to define

the objective of the introduction of the MoCQA framework.

Additionally, the type of software development life-cycle, together with or-

ganisational goals, mainly defines when quantitative results are needed, and the

frequency of the successive assessment steps.

Identification of the stakeholders

This task consists in identifying relevant stakeholders to include in the acquisition

process for the current quality assessment cycle. The rationale behind this task

results from the fact that the MoCQA methodology is designed to avoid useless

effort. As explained in [Westfall and Road, 2005], “ if a metric does not have a

customer, it should not be produced”. Since measurement and assessment are time

and effort consuming processes and before any value is collected or interpreted,

the quality assurance team should make sure that the measure or indicator sat-

isfies a need of at least one stakeholder.

However, due the iterative nature of the methodology, it would be counter-

productive to try to include all possible stakeholders at the same time. This

would result in long interviews and conflictual information. In order to avoid

any overhead, only the stakeholders that will be involved in the current quality

assessment cycle are selected. If new needs arise or new relevant stakeholders are

identified due to the results of the current quality assessment cycle, it is always

possible to come back to this step and refine the list of stakeholders consulted for

the process. Note that methods inherited from Requirement Engineering (such

as the guidelines described in [Sharp et al., 1999] may be applied to help identify

the correct stakeholders at a given stage of the process.

Beside the identification of stakeholders, classifying them according to their

types of needs may facilitate the quality requirement elicitation. [Westfall and

Road, 2005] identifies 6 categories of “metric customers” (i.e., stakeholders in the

MoCQA framework) that may be used as a guideline to perform the classification.

These categories are the following:

Functional Management: Interested in applying greater control to the soft-

ware development process, reducing risk and maximizing return on investment.

Project Management: Interested in being able to accurately predict and con-

trol project size, effort, resources, budgets and schedules. Interested in controlling

the projects they are in charge of and communicating facts to their management.

Software Engineers/Programmers: The people that actually do the software

development. Interested in making informed decisions about their work and work

6.1. Overview 131

products. These people are responsible for collecting a significant amount of the

data required for the measurement program.

Test Managers/Testers: The people responsible for performing the verification

and validation activities. Interested in finding as many new defects as possible in

the time allocated to testing and in obtaining confidence that the software works

as specified. These people are also responsible for collecting a significant amount

of the required data.

Specialists: Individuals performing specialised functions (e.g., Marketing, Soft-

ware Quality Assurance, Process Engineering, Software Configuration Manage-

ment, Audits and Assessments, Customer Technical Assistance). Interested in

quantitative information upon which they can base their decisions, finding and

recommendations.

Customers/Users: Interested in on-time delivery of high quality software prod-

ucts and in reducing the overall cost of ownership. Additionally, they may be

involved in the data collection by reporting defects or unexpected behaviour (i.e.,

through crash, bug or failure reports).

However, any type of classification may be applied if it fits the specific context

(see Chapter 15 for a practical example of customised classification of stakehold-

ers). For instance, the selected stakeholders target may be a specific team in

charge of a component that is central to the software project, or individuals with

specific concerns.

Environmental Constraints

This task consists in determining non-quality-specific properties of the environ-

ment. These properties will have an impact on the way MoCQA models are

designed, on the way the assessment is performed and on the way the quality

profile is interpreted.

Among the information that has to be collected through this activity, the clear

identification of what types of resources are available may be the most important.

Knowing what type of resources are available and the level of formalisation that

is used throughout the development life-cycle (e.g., “are the requirements for-

malised?”, “is their an important number of design-related resources produced?”,

etc.) will determine the type of measurable entities available and thus ensure

that the quality issues are effectively assessable.

Other information may be useful to collect at this stage. Budget-related con-

straints and time-related constraints may help prioritize the quality issues. In the

case of a maintenance process, information on the amount of time the maintained

application has been used may be helpful to provide assessment models that take

the age of the application into consideration.

132 Chapter 6. Step 1: Acquisition

In consequence, this step consists in the familiarisation with the environment

in order to streamline the rest of the process. As for the identification of stake-

holders, missing information is not irreversible and may be corrected in the next

quality assessment cycle, if needed.

Quality requirement elicitation

This task represents the core of the acquisition step. It consists in the collection of

quality requirements for each identified individual of group of stakeholders. These

quality requirements, associated to specific stakeholders, will constitute the basis

for the modelling of quality issues and subsequent elements of the MoCQA model.

Quality issues are also prioritized through this activity. Priority levels may

be compared among stakeholders in order to start shaping the common under-

standing of quality issues for the project, resulting in a first alignment of the

stakeholders’ specific issues.

6.1.2 Formalisation

Although it is crucial to the efficiency of the quality assessment process, the ac-

quisition step remains a rather informal step of the assessment methodology. The

decision to leave this step informal is mainly due to the fact that the framework

aims to remain flexible and adaptive. In order to adapt to the context in which

it is exploited, the assessment methodology has to cope with the existing “or-

ganisational culture”. The acquisition step involves several stakeholders of the

organisation and as such, has to adapt to the set of procedures that apply in this

environment. The output of this step could thus take the form of a report com-

plying to a given template or remain semi-formal, depending on the environment.

6.2 MoCQA model design in practice

Chapter 5 investigated MoCQA models design from the theoretical point of view,

that is, through their formal definition, abstract syntax, notation and so on. The

theoretical definition of MoCQA models is sufficient to allow the exploitation of

the framework as a support for the investigation of diverse theoretical research

questions (e.g., the design of empirical studies such as in [Mens et al., 2011], the

alignment of different norms and standards, the migration from one quality model

to another, etc.).

However, the design of MoCQA models raises practical issues that have to be

considered as early as the acquisition step. Indeed, MoCQA models are merely

a formalism to structure the elements that constitute the quality assessment

process, and make them available. The successful quality assessment of a software

6.2. MoCQA model design in practice 133

project depends on the content of the MoCQA model, and therefore, on the

relevance of the quality requirements elicited during the acquisition step.

This careful attention paid to the content of MoCQA models is especially

crucial in a professional environment. In this case, the acquisition step represent a

way to bridge the gap between the knowledge and expectations of the stakeholders

and the assessment methods and techniques available to the quality assurance

team. If the gap that separates these two points of view (i.e., what stakeholders

expect and what quality assurance can offer) is bridged correctly, the quality

assessment will be efficient.

The aim of the acquisition step is therefore to adapt the vocabulary and fo-

cus the process of designing MoCQA models. The framework relies on theoretical

principles that may not be common concepts for practitioners (e.g., metamodel

with abstract concepts). Therefore, the quality metamodel would require im-

portant and unproductive training prior to any interaction with the members

of the development team, even if these members do not use the framework by

themselves.

To solve these problems, the acquisition step represent an additional layer to

improve the the usability of the framework in specific contexts (and in particular

in an industrial context). That is why providing more effective ways to interact

with the development team is beneficial at this stage. Instead of forcing the

theoretical concepts the framework relies on into the context, the methodology

acquires the information needed to design MoCQA models in a more operational

way before using the metamodel as a filter for this information.

The following sections explore several acquisition methods that may be con-

sidered to provide this additional layer of support for the acquisition step.

6.2.1 Customising existing quality models

Translating a given quality model into a MoCQA model is the basic function

of the quality assessment metamodel. Therefore, the direct customisation of an

existing quality model is the most straightforward way to bridge the gap between

stakeholders and quality assurance teams, provided that the quality model is

well-known (i.e., the ISO/IEC quality model).

As explained before, [Wagner et al., 2009] shows that operationalisation of

quality models is a complex and non trivial process. In the context of the MoCQA

framework, however, this process may be regarded as an opportunity. As ex-

plained in Chapter 2, the problem with quality models is that they define a static

view of what quality is supposed to be for a given product. On the contrary,

the MoCQA framework is goal-driven and requires references in order to avoid

defining goals from scratch. Quality models provide a useful source of quality

factor hierarchies that can be translated into hierarchies of quality issues thanks

to the quality assessment metamodel.

134 Chapter 6. Step 1: Acquisition

As such, quality models may be regarded as catalogues of quality factors that

may be the centre of interest of quality goals to include in a MoCQA model as

quality issues. The advantage of using a MoCQA model to support this customi-

sation process is the fact that a systematic operationalisation template is applied

to the quality models. For each quality factor, the quality assurance team has

to investigate if the factor is relevant for at least one stakeholder in order to

translate the factor into a quality issue. In consequence, the customisation is not

performed in an arbitrary way but as a stakeholder-driven process. The process

may be beneficial for the stakeholders themselves. Since quality factors are gen-

erally organised in a hierarchy, the use of a quality model may draw the attention

of stakeholders on hidden sub-factors they may not have taken into account. For

instance, if a given stakeholder expresses the need for portability, she may not be

aware of the dependency to the co-existence factor defined in ISO/IEC quality

model.

The other advantage of this acquisition method is the possibility to reuse the

measurement methods defined in the quality model (if any are defined) and there-

fore facilitate the following steps of the MoCQA model design. If the measures

defined in the quality model are not considered relevant, the quality assurance

team may at least acquire a “template” for their following search for an ade-

quate measure (i.e., the attribute they should measure, the scale in which the

measurement values should be comprised, etc.).

Chapter 11 addresses the potential of several quality models to support a

quality-model-based acquisition step.

6.2.2 Developing analysis grids

In order to assist the acquisition of the information needed to design a MoCQA

model (on which the quality metamodel will be used as a filter), a viable solution

is the design of a series of analysis grids taking the form of questionnaires. These

grids may be used to analyse available project documentation and to interview

the identified stakeholders. The main challenge is to provide questions that are

cleverly designed in order to ease the design of the MoCQA models. The risk is to

define questions resulting in unstructured information that would be incompatible

with the constructs of the metamodel and therefore unusable. In order to achieve

this goal, three design rules for the questions have to be followed:

• Limit the number of open questions as much as possible;

• Avoid using specific concepts of the metamodel in the questions as much as

possible;

• Adapt the question to the role (and expectations) of the interviewed stake-

holders

6.2. MoCQA model design in practice 135

For instance, while instantiating the quality package of the quality meta-

model, we have to cope with the concept of quality issue. In the questionnaire

design, questions such as “what are the quality issues for each stakeholder in your

project?” should be avoided. Instead, it would be more efficient to go to a spe-

cific stakeholder and propose different alternatives (e.g., “is user satisfaction more

important to you than maintainability?”, “would you rather focus on the porta-

bility of your project than efficiency?”, etc.). This kind of questionnaires helps

the quality assurance team associate the needs of the stakeholders to their own

knowledge while providing a structure and a priority order for the quality issues.

Divergence in terminology may still arise with this process. The stakeholder

may be used to refer to a concept of software measurement with a different denom-

ination. Different techniques to refine the acquired information may be applied to

align the terminology used in the context with the terminology of the literature.

Typically, techniques designed to resolve semantic redundancies and ambiguities

(typically in the human-computer interfaces reverse engineering field [Ramdoyal

et al., 2010]) may be applied to our context. This way, if unexpected elements

of terminology arise during the interview, it can be resolved and aligned with

existing concepts of Software Quality. For instance, if the stakeholder expresses

the need for its system to be sustainable, semantic similarities may indicate that

the quality issue involved is in fact the maintainability. In the same way, a

stakeholder asking for a minimum amount of bugs may in fact be talking about

robustness.

Although the analysis grids may be an interesting option, their drawback lies

in the difficulty to establish a suitable questionnaire. Effort should be made to

produce a generic analysis grid that may be adapted to a specific context, in

order to avoid the overhead of designing a grid for each context.

6.2.3 Tool support

As we have seen, one of the main challenges of the acquisition and design steps

is to find the relevant knowledge to populate (while integrating the practical

knowledge and expectations stakeholders already possess) the MoCQA model.

Chapter 1 showed that a lot of analytical and declarative methods exist. The

choice of adequate elements to include in the MoCQA model may therefore be

complex.

One response to this problem is to provide a knowledge base to support the ac-

quisition of suitable measurement/estimation methods based on specifics queries

(e.g., “what measurement method could produce a value that is comprised in a

ratio scale so that it complies to the quality indicator we have to provide for this

quality issue?”).

Due to its ontological nature, the MoCQA metamodel can be used as a basis

for the creation of such a knowledge base. Chapter 9 describes an attempt (the

136 Chapter 6. Step 1: Acquisition

QuaTALOG project) to provide such tool support. Although any sort of quality-

related repository may be profitable to the acquisition and design steps, the use

of a knowledge base relying on the MoCQA quality metamodel as an ontology

should help focus the search for related quality concepts that are easy to integrate

in a MoCQA model.

6.2.4 Complementarity with scenario-based analysis

So far, the focus of this dissertation has been mainly limited to quantitative ap-

proaches (or metric-based approaches) to software quality assessment. However,

different approaches to software quality assessment have been proposed. Among

these methods which adopt a different take on quality assessment, scenario-based

software architecture analyses [Koziolek, 2011] are compatible with the MoCQA

approach.

While, metric-based approaches rely on software measurement and focus on

quantitative assessment of software architecture, scenario-based approaches to

software architecture quality assessment adopt more participative methodolo-

gies. Their efforts focus on the elicitation of precise and manageable quality

requirements thanks to scenarios designed in collaboration with the various stake-

holders. Besides, these methods rely on an explicit description of the architec-

ture [Bengtsson et al., 2002]. Many scenario-based evaluation methods have been

proposed [Clements et al., 2001].

Although they are promising, the scenario-based methods still lack validation

on their potential return on investment. More importantly, existing scenario-

based methods and metrics are not yet integrated together although their comple-

mentary takes on quality assessment could result in a more efficient and thorough

evaluation of software architecture [Koziolek, 2011].

The focus on eliciting quality-related requirements is typically adapted to the

acquisition step of our approach. Efforts carried out to conduct a scenario-based

analysis may be formalised as MoCQA models and therefore provide a bridge

between elicitation and measurement. This acquisition method is explored in

Chapter 12.

6.2.5 Complementarity with Requirements Engineering

The acquisition methods considered so far deal mainly with the integration of

knowledge from the literature in a meaningful way for the stakeholders. This

method is more concerned with the formalisation of existing and practical knowl-

edge from the environment.

As explained before, the constructivist perspective of the framework may be

regarded as the possibility to “implement” quality from a MoCQA model in the

same way code is implemented from design. Therefore, quality requirements may

6.2. MoCQA model design in practice 137

be acquired with comparable techniques to those used in Requirement Engineer-

ing.

As for a regular requirements elicitation process, quality assurance teams re-

lying on the MoCQA methodology have to take both the expectation and the

experience of the stakeholders into account. For instance, stakeholders may have

acquired some experience regarding how to achieve and monitor specific quality

goals in previous projects. Similarly, some members of the team may have de-

veloped good practices over time the other members may not be aware of. This

experience may be formalised and objectified through the MoCQA model. Re-

quirements elicitation frameworks such as the framework proposed by Software

Engineering Institute [Christel and Kang, 1992] are applicable to this step.

Among the complementary efforts that may be used to strengthen the acquisi-

tion step, research addressing the elicitation of non-functional requirements may

be particularly useful. [Miller, 2009] proposes over 2000 questions focusing on

the elicitation of non-functional requirements (i.e., quality requirements). These

questions may be used independently or in conjunction with the analysis grid

method described in Section 6.2.2.

Goal modelling is also a complementary method when it comes to the acqui-

sition of quality requirements to populate a MoCQA model. Goals are “declar-

ative statements of intent (to be achieved by the system under consideration)”

that “may refer to functional or non-functional properties” [van Lamsweerde and

Letier, 2004]. Goal models may be used to structure these goals and, notably,

identify conflicts [Yu and Mylopoulos, 1998]. Non functional goals from a goal

model (i.e., safety, fault tolerance or security) may therefore easily be translated

into quality issues and associated to evaluation methods designed to assess their

satisfaction.

Elicitation tools may also be used to complement the tool support. Among

them, ElicitO [Al Balushi et al., 2007] relies on a underlying ontology that is

compatible with the MoCQA quality assessment metamodel. Although this on-

tology is less detailed than the quality assessment metamodel, it provides the

basic structure (i.e., characteristic, sub-characteristic and measure) of a quality

model. Any quality requirement collected through this tool may be translated

into a hierarchy of quality issues.

Finally, the field of creativity-based requirement engineering offers interesting

opportunities for the acquisition step. [Mich et al., 2004] introduces the EPMCre-

ate process which intends to improve the effectiveness of traditional brainstorm-

ing. This process, based on a model of the pragmatics of communication, regards

each step of the elicitation process as suggesting a way for an analyst to look at

the problem from a different stakeholder’s viewpoint. The process allows for a

systematic exchange between stakeholders, where propositions from each stake-

holder are reviewed and possibly improved by other stakeholders. As we have

138 Chapter 6. Step 1: Acquisition

seen, the constructivist approach adopted by the framework induces the need to

construct a common agreement of what quality is for the project and how it can

be achieved. This exchange of problem elicitation and solution proposals may

be beneficial to the acquisition step. These kinds of techniques are especially

valuable during the design of interpretation rules, since these concepts require

more creativity than the definition of the quality issues. The proposal of actions

associated to a given indicator value is highly sensitive to the correct interpreta-

tion of the results and would therefore benefit from an improved brainstorming

method.

Chapter 7

Step 3: Measurement Plan

7.1 Overview

In Chapter 4, we defined the tailoring step of the assessment methodology as the

bridge between the conceptual and operational levels of a given quality assessment

cycle. As such, this step is concerned with providing the guidelines for the actual

measurement and quality assessment based on the conceptual definitions provided

in the MoCQA model. In other words, the tailoring step focuses on ensuring that

the MoCQA model will actually be an operational quality assessment model.

Defining a measurement plan is a common step of traditional quality assess-

ment frameworks. According to the definition from Chapter 3, the goal of the

measurement plan is to organise the steps of the measurement process. In terms

of MoCQA-related concepts, the measurement plan defines what measurement

or estimation values to collect, thanks to what measurement or estimation

procedures and from which measurable entities. It also defines how assess-

ment models are formalised. Additionally, the definition of which person will

perform which process should be addressed.

The introduction of MoCQA models in the quality assessment process pro-

vides a majority of this information but on a conceptual level (i.e., with a level of

detail and formalisation that is mainly dedicated to the communication between

individuals). This step is concerned with the concrete guidelines that allow the

execution of a quality assessment that “implements” the MoCQA model.

7.1.1 Activities

Concretely, this step of the assessment methodology addresses the tasks described

in the remainder of this section.

139

140 Chapter 7. Step 3: Measurement Plan

Adapting the MoCQA model

The main objective of MoCQA models is to be expressive and allow an easy

communication between stakeholders. As such, the quality assessment meta-

model provides constructs that help define easily complicated relationships be-

tween measurable entities. For instance, derivation types define a relationship

between artefacts and allow the evaluation of this relationship.

The drawback of this approach is that some elements may not be actually

measurable directly (e.g., if the derivation type is not formalised in a transfor-

mation language). However, MoCQA models, thanks to their explicitly defined

metamodel, may undergo transformations that preserve the semantics of its ele-

ments. In consequence, the first task of the tailoring step may be to transform the

MoCQA model so that it may be operationalised and applied through a concrete

measurement plan. This task is discussed in Section 7.2.

Operationalising the MoCQA model

This task is the core of the tailoring step. It mainly consists in transforming the

MoCQA model (which is designed to be conceptual and stakeholder-oriented)

into a model that is closer to an actual measurement plan. In consequence, this

step consists in providing the following information:

1. A practical way to identify resources that have to be measured

2. Measurement/estimation procedures associated to each measurement/esti-

mation method

3. Actual assessment models (i.e., algorithms or formulas) based on the de-

scription provided in the MoCQA model (which is similar to the method-

/procedure relationship)

The operationalisation of MoCQA models is investigated in Section 7.3.

Preparing the data collection

The last inherent task to the tailoring step is to provide an infrastructure to

collect and keep track of the measurement and estimation data. The introduction

of the MoCQA methodology induces some changes in the way data is stored. The

repository designed to store the measurement data and quality indicator values

has to co-evolve with the MoCQA model since the latter may introduce drastic

changes as the quality assessment life-cycle unfolds (e.g., introduction of new

measurement or estimation methods, deprecation of other methods, etc.). In

order to avoid the systematic redesign of the repository, the framework proposes

a generic conceptual schema for the design of repositories designed to support

the application of the MoCQA framework. This schema provides a description of

how data should be stored in order to take the evolution ot MoCQA models into

7.2. MoCQA model transformations 141

account while not redesigning the repository for each new version of the MoCQA

model. Section 7.4 addresses this task and the conceptual schema it is supported

by.

7.2 MoCQA model transformations

The level of expressiveness allowed by the quality assessment metamodel pro-

vides various syntactic options to express a given semantics. In other words,

there are different ways of modelling the same notion within MoCQA models.

As such, MoCQA models may undergo transformations that preserve the same

overall meaning. As explained before, the tailoring step may benefit from such

transformations in order to make the assessment step easier to perform.

During the course of this research, two types of transformations have been

identified as relevant in the context of the operationalisation process: the removal

of derivation types and the introduction of collections of measurable entity types.

The remainder of this section investigates these two types of model transforma-

tions. Both types of transformation are strictly endogenous and horizontal (i.e.,

akin to a refactoring activity) according to the taxonomy of model transforma-

tions defined in [Mens and Gorp, 2006].

Introduction of collections of measurable entity types

As explained in Chapter 5, measurable entity types may be defined as “a collec-

tion of all entities”. The rationale behind a “collection” entity type is to allow

the accurate definition of attributes when no parent exist for a given measurable

entity type. For instance, a “Java class” may be associated with a “size” attribute

but the semantics of this association implies that for each Java class, the size

of this specific class will be evaluated. If one wants to rely on the number of

Java classes for one function or assessment model, the size attribute should be

associated with a “package X” artefact type, since the number of classes con-

tained in a package characterises the package and not the class. If no parent

exists for the measurable entity (or in order to avoid the systematic use of an

“artificial” parent such as “source code”), the same evaluation may be modelled

as an assessment model computing the sum of all entities of this type through a

size attribute associated to a “collection of all entities of type X”. For instance,

in the previous example, the formalism allow the definition of a “[Collection]

Java class” artefact type which indicates that all Java classes are considered as

a single measurable entity. This entity type behaves like any other measurable

entity type. For instance, if the defined artefact type is the target of an “imple-

mentation” derivation type that is associated to a “UML class diagram X”, the

semantics of MoCQA models indicates that all Java classes implemented on the

basis of this specific class diagram X are considered as a single measurable entity.

142 Chapter 7. Step 3: Measurement Plan

Another way to model the same process is to define a “presence” attribute (i.e.,

value of 1 associated to each existing entity of the type) associated to a “Java

class” artefact type and compute the sum of the array of values in an assessment

model. Although the results would be the same, many automated measurement

procedures do not provide support for the evaluation of this occurrence attribute

and generally consider the entire population of entities.

Figure 7.1: Introduction of a collection of entity type

In consequence, it may be beneficial to the operationalisation process to sys-

tematically perform the transformation shown in Figure 7.1. On the one hand,

the semantics of the MoCQA model is preserved. On the other hand, the size at-

tribute associated to the collection is more easily translated in a (semi-)automated

procedure during the next task.

Removal of derivation types

Unless they are formalised in some way, derivations represent abstract relation-

ships between artefact types. As a result, it may be difficult to evaluated asso-

ciated attributes of derivation types. Conversely, artefacts are easier to locate,

identify and measure.

In any case, derivation types may be regarded as additional constraints defined

on the source and target artefact types, like the “subdivided in” association. For

instance, an “implementation” derivation type defined between a “class diagram

X” artefact type and a “Java class” artefact type states that the assessment will

consider each Java class that has been implemented on the basis of said class

diagram. As such, it is possible to remove a derivation type from the model and

preserve the semantics of the model by adding constraints to the description of

the involved artefacts.

As shown in Figure 7.2, we may remove a derivation type and embed the infor-

mation provided by the derivation in the source/target artefact themselves. For

7.3. Operationalisation challenges 143

Figure 7.2: Removal of a derivation type

instance, let’s consider the “documentation” derivations that occurred between

“Java class” artefacts and “Documentation sections” artefacts. The multiplicity

of this derivation type is set to “1-to-N” since a single class may require sev-

eral sections of documentation. One may be interested in counting the number

of occurrences of this derivation type (e.g., in order to compute the total num-

ber of classes that have been covered by the documentation process). Counting

derivation types may not be easy unless a log of the action performed is kept

throughout the development process. In that case, applying the transformation

described above may help understand what elements have to be counted exactly.

Applying the transformation, the derivation type is no longer present but the

target artefact type is now defined as the collection of all documentation section

associated to a same Java class. Based on this definition counting the number of

occurrences of such collections provide the same number as counting the number

of class that have been documented.

Although this type of transformations tends to make the MoCQA model itself

more difficult to read, it provides a more accurate definition of the involved

artefacts. It is therefore adapted in the context of the measurement plan but is not

recommended during the design step. An illustration of such operationalisation

is provided in Chapter 13.

7.3 Operationalisation challenges

As explained before, the operationalisation of MoCQA models consists in trans-

forming the model so that it retains the same information, augmented by elements

that help bring the model closer to an actual measurement plan. These elements

are related to three types of details :

1. Details provided to help identify the resources that have to be measured

144 Chapter 7. Step 3: Measurement Plan

2. Details on the measurement/estimation procedures associated to each mea-

surement/estimation methods

3. Details on the actual assessment models (algorithm/formula) based on the

description provided in the MoCQA model

In many regards, the operationalisation of a MoCQA model may be seen

as model transformation akin to the implementation. As in the case of an im-

plementation activity, the information of the design (MoCQA model) has to be

translated in a formalism that is more specific and has to provide a more detailed

version of the information (a truly operational customised quality assessment

model).

Regardless of the formalism used to provide the measurement plan, the oper-

ationalisation is therefore an exogenous and vertical model transformation since

the metamodels of the two models are distinct (i.e., the quality assessment meta-

model for the MoCQA model and metamodel that defines the formalism selected

to provide the measurement plan) and the level of detail is increased. Each com-

ponent of the MoCQA model calls for specific additional details.

Assessment component

During the operationalisation step, assessment models are the main focus regard-

ing the assessment component of MoCQA models. The objective of the opera-

tionalisation regarding assessment models is to provide a definition of the model

that is more structured and may be automatically computed. The definition

builds on the more generic description provided during the previous step.

This definition is therefore a script written in a specified language selected

by the quality assurance team so that it may be adapted to specific tools or

organisational procedures. The only constraint regarding the content of the script

is that the “id” of an input attribute must be used as variable names (i.e., typed

as array of values, according to the semantics of MoCQA models). The “id” of

the output derived attributes are also used as variable names.

Measurement component

As explained before, the core of the operationalisation task is to define a suitable

measurement procedure to“implement” the method. This task therefore concerns

the measurement component. During the development of the framework, we

identified the following 4 relevant types of possible evaluation procedures in the

context of the framework:

1. Measurement procedures performed manually (for instance, COSMIC-FFP)

2. Measurement procedures performed automatically through a specified tool

(for instance, Coupling using SDMetric1)

1http://www.sdmetrics.com/

7.3. Operationalisation challenges 145

3. Data mining in a repository

4. Manual inspection (done by a specified operator)

Manual procedures rely on the definition of measurement procedure (i.e. “A set

of operations, described specifically, used in the performance of particular mea-

surements according to a given context”) and are therefore an ordered series of

instructions provided to the individual in charge of the measurement. Automated

procedures only require the specification of a tool name and a metric provided

by this tool. Procedure relying on the data mining of a repository have to spec-

ify the name of the repository and a query to perform (in a defined language).

Finally, manual inspection procedures only need to provide the list of the re-

viewers assigned to this task. Finally, the operationalisation of the measurement

component also calls for a formalisation of the functions used to provide derived

attributes. Similarly to the definition of the assessment models, functions may

be operationalised through the declaration of a scripts written in a specified lan-

guage. The only constraint on the content of the script is that the “id” of input

and output attributes must be used as variable names.

Project component

Artefact types, derivation types and behaviour types are basically translation of

their MoCQA counterpart in the measurement plan. The details required at this

level may be provided through a set of metadata defined to ease the search of the

relevant artefacts (or derivations if they are formalised in a specified formalism)

in the set of actual resources of the project.

For instance, metadata formalising the search for a specific artefact type (or

derivation) based on a regular expression and additional keywords may be used

in the measurement plan. This metadata bridges the gap between the conceptual

level of the framework and a (possibly) automated measurement process.

Behaviours do not need to be located per se and therefore do not require an

operationalisation step (although the description has to be clear enough to allow

the observation of the described behaviours).

7.3.1 Formalisation of the operationalisation

The information pertaining to the operationalisation step (and the inherited in-

formation from the MoCQA model) has to be presented in a formalism that is

easy to store, manipulate and revise due to the iterativity of the MoCQA method-

ology. In order to support the operationalisation process, the framework provides

an XML-based language (XOCQAM) designed to express MoCQA models and

capture the additional information that relates to their operationalisation, as well

as facilitate their persistence. This formalism is further discussed in Chapter 9.

146 Chapter 7. Step 3: Measurement Plan

7.4 Preparing data collection

The collection of measurement and assessment data in the context of the MoCQA

methodology has to cope with two specific challenges. First, the types of measures

are predefined but specified by the MoCQA model itself. On the other hand,

MoCQA models evolve. Therefore, the interpretation of a given measure collected

at a given time has to refer to the MoCQA model it is based on.

In order to avoid the systematic redesign of the measurement and assessment

data repository, we have to define a more generic conceptual schema for the data

collection. The process is general and may be implemented according to the

organisational requirements (e.g., through a database management system, a set

of XML files or even a simple excel document), as long as the repository complies

to the conceptual model. The remainder of this section addresses this conceptual

schema.

7.4.1 Data Model

Figure 7.3: The MoCQA data model

7.4. Preparing data collection 147

The data model introduced in Figure 7.3 shows that the data collection has

to provide a strong relationship with the MoCQA model/XOCQAM document

that supports the current quality assessment cycle. Therefore, the data model is

designed to keep track of two things. First, it obviously allows the persistence

of the actual measurement and assessment values. However, it also contain in-

formation on selected elements of the MoCQA model, as well as on the model

itself.

Regarding the measurement values, we may store their information as al-

phanumeric data, as long as the repository allows the traceability with the ele-

ments of the MoCQA model that defines the actual type of the values. Therefore,

the conceptual schema includes information on methods, functions and quality

indicators since these constructs characterise the measurement and assessment

values in the MoCQA model.

In order to avoid duplicating the information that exists in the MoCQA model,

the only piece of information required in the repository is the “id” attribute of

these elements. However, this id attribute is not sufficient to clearly identify

the content of these elements since they are bound to evolve through time. In

consequence, the repository also has to collect information on the MoCQA model

itself. This information simply consists in a version number that allows the

identification of the correct content the quality assurance team has to refer to

during the interpretation. Methods, functions and quality indicators are thus

identified by their own “id”, coupled with the version number of the MoCQA

model.

Additionally, a given method or function of a given version of the MoCQA

model may be applied several times. The measurement/estimation values col-

lected are also as numerous as the number of entities in the given entity pop-

ulation defined by the measurable entity type. Therefore, what makes a value

identifiable in the context of the MoCQA methodology is the time and date at

which the value has been collected, coupled with the precise entity it has been

collected on (identified with a unique entity tag) and the reference method or

function the values has been produced with.

This conceptual schema of data persistence guarantees that the values are

always linked to a specific version of the MoCQA model, as well as with the actual

resources of the software project. This allows an efficient use of the repository,

in conjunction with the MoCQA model that provides a meaning to these values.

Chapter 8

Step 5: Exploitation

Model-checking, Quality Profile and Decision-making

8.1 Overview

As explained in Chapter 4, the exploitation step is mainly a decision-making

step. It concludes a quality assessment cycle and allows the preparation of the

next cycle. The previous steps of the methodology contribute to the elicitation of

quality requirements for the identified stakeholders, the elaboration of a plan to

assess their satisfaction and the actual collection of measurement and assessment-

related data. The exploitation step brings all these elements together in order

to provide information to the stakeholders. This information is the basis of a

decision-making process focused on two distinct aspects: the actions required

regarding the software development process and the actions required regarding

the continuation of the quality assessment process.

8.1.1 Activities

Concretely, this step of the assessment methodology addresses the 2 tasks de-

scribed in the remainder of this section.

Quality profiling

Quality profiling consists in mapping the actual data collected during the as-

sessment step with the information contained in the MoCQA model. The latter

provides information designed to interpret adequately the measurement values

collected on multiple elements of the software project.

149

150 Chapter 8. Step 5: Exploitation

Quality assessment refinement

This task consists in reviewing the MoCQA model designed in the second step of

the methodology. This reviewing process may be performed before the measure-

ment plan is actually tailored and applied (since step 3 and 4 may be ignored).

In the other case, the reviewing process may be performed following inadequate

or controversial results from the profiling activity. In any case, this activity al-

lows the quality assurance team to discover and correct mistakes in the quality

assessment process, or to add new quality issues if the quality profiling of the

project reveals new information needs expressed by the stakeholders.

8.2 Quality Profiling

The fourth step (assessment) of the methodology described in Chapter 4 focuses

on the actual measurement-related and quality data (i.e. measurement results)

collection in order to produce a quality profile of the software project. This step

(exploitation) relies on the quality profile that has been produced. Within the

framework, the quality profile adopts a specific meaning and may be defined as

follows:

Definition 8.1 (Quality profile).

The collection of all identified measurable entities contained in the project, their

associated measurement or estimation values, as well as the values of the various

quality indicators, their concrete interpretations and the underlying definitions of

the MoCQA model.

The quality profile is exploitable in several ways. First and foremost, the

quality profile includes actual values of the quality indicators and their meaning.

The values are direct answers to the quality issues (i.e., the information needs of

specific stakeholders). The most basic function of the quality profile is therefore

to assess the current level of satisfaction of the quality objectives.

Secondly, since the quality profile includes the entire set of actual resources

of the project associated with a measurement or estimation value, the quality

profile may be used to analyse the causes of unsatisfactory assessment results

and pinpoint adequately the elements that contributed to the poor results.

Finally, thanks to the underlying MoCQA model, even an incomplete quality

profile (i.e., with no actual measurement data but with already identified measur-

able entities) may be used to guide the design and development of the software

project and anticipate the way it will be assessed.

8.2. Quality Profiling 151

8.2.1 Interpreting quality indicators

For each quality indicator defined in the MoCQA model, a value complying to the

indicator definition (i.e., scale, value type, value range) should be available, fol-

lowing the assessment step. Interpreting the quality indicator obviously requires

the consultation of the adequate interpretation rule (i.e., the rule for which the

actual value of the indicator falls into the defined range). This rule provides a

way to attach a meaning to the quality indicator value. However, interpreting

the indicators also requires the consultation of the attached quality issue. The

quality issue provides information on what question the quality indicator seeks

to answer, for which elements of the software project it is relevant and towards

which stakeholders the answer should be directed.

The MoCQA model that supports the quality profile therefore helps the qual-

ity assurance team provide the right information to the right stakeholder. In

their XOCQAM form, they also allow basic queries to increase the efficiency of

the process (e.g., sorting out elements by scope or measurable entity types) and

to offer different viewpoints on the quality profile.

Once the value of the quality indicator is associated with the suitable scope,

stakeholder and interpretation rule, the quality assurance team may provide a

targeted answer to the information need (i.e., the description of the interpretation

rule) and investigate whether the action recommended by the rule is relevant. If

the description or recommendation from the interpretation rule does not seem to

comply to the stakeholder’s expectations, new information needs may be added

and may lead to a new assessment cycle. If the recommended action is selected

and involves other stakeholders (typically members of the development team),

these stakeholders should be consulted in order to assess the relevance of the

recommended action. This course of action may lead to a root-cause analysis

supported by the quality profile.

8.2.2 Supporting root-cause analysis

As explained in Chapter 4, the notion of explicit and integrated quality assessment

modelling is expected to support the communication between stakeholders. Past

the first interpretation of quality indicators, the information comprised in the

quality profile may be used to support a diagnostic process similar to root-cause

analysis.

Root-cause analysis is “a process designed for use in investigating and cat-

egorizing the root causes of events with safety, health, environmental, quality,

reliability and production impacts” [Rooney et al., 2004]. Root-cause analysis is

applied in various fields outside Software Engineering. In Software Engineer-

ing, the events targeted by the technique are mainly defects. The specificity of

root-cause analysis is that it is designed to help identify why some defects arise

152 Chapter 8. Step 5: Exploitation

in addition to their mere detection. The rationale behind the method is that

it is crucial to understand why a specific defect is detected in order to provide

corrective actions that prevent future defects.

The quality profile obtained through the MoCQA methodology provides the

fundamental information to support a lightweight or more thorough root-cause

defect analysis. The key element of the quality profile that provides this support

is the identification/tagging procedure performed during the assessment step. In-

deed, MoCQA models explicitly bind the actual resources (e.g., the source code,

a given diagram, a test case, etc.) to the associated quality issues. As shown

in Chapter 7, the methodology integrates the preservation of this information

(i.e., each measure taken). Therefore, it becomes easier to spot the artefacts

that require improvement through the analysis of the values themselves and the

support of the description of the assessment models they are used by. For in-

stance, let’s consider a quality issue that targets the complexity of the code and

the associated assessment model that is defined as the average of the com-

plexity (attribute) of every Java class (i.e., artefact type = Java class

evaluated thanks to McCabe’s cyclomatic number (method). If the quality in-

dicator provides a value of 60 (which is pretty bad according to the definition

of McCabe’s cyclomatic number), we can track any identified/tagged Java class

associated with a complexity of more than 60 and conclude that some of these

specific classes may require a complete refactoring.

8.2.3 Exploiting MoCQA models during software evolution

MoCQA models may be exploited more in the context of the maintenance and

evolution phase of the software development. The remainder of this section il-

lustrates how MoCQA models may be used to support a selected number of

software evolution challenges (from [Mens et al., 2005b]) and describes example

applications of the framework that contribute to tackle these specific challenges.

Chapter 13 describes a case study investigating how the framework actually per-

forms when used to support the maintenance and evolution of software.

Preserving and improving software quality

According to [Parnas, 1994] and [Lehman et al., 1997], software systems that are

not carefully inspected from a quality point of view, see their quality gradually

decrease as the systems evolve. This need to constantly re-evaluate the quality

aspects of an evolving system is a key aspect of the MoCQA framework. The

MoCQA model is a map of which quality issues are monitored, as well as the

extent to which they are satisfied. Therefore, the MoCQA model is a direct

roadmap for evolution. We can see what quality issues still require improvement

or even if a desired quality characteristic has been tracked or not. As explained

8.2. Quality Profiling 153

Figure 8.1: A simplified MoCQA model applied to co-evolution

above, the fact that each measurement/estimation value is preserved and associ-

ated with a specific resource (e.g., file, class , diagram, etc.) is also a valuable

mechanism to obtain an accurate picture of what actions are to be carried out to

improve the overall quality.

Supporting co-evolution

In any medium or large software project, many artefacts with different levels of

abstraction are involved in the process (e.g., UML diagrams, code, etc.). The

challenge of co-evolution is to reflect the modification of a given artefact to any

related artefact in order to guarantee the consistence of the project. Thanks

to the explicit and integrated quality assessment modelling, the integrity of co-

evolution may be modelled as a quality issue, ensuring that the development

team will focus on this aspect. As shown in Figure 8.1, the modelling of such a

quality issue relies on the fact that it is associated to two types of stakeholders

instead of one (i.e., programmers and UML designers). A basic assessment model

for the quality issue would be to constantly compare the version (defined as an

154 Chapter 8. Step 5: Exploitation

estimation method for the “age” attribute) of related artefacts. However, more

accurate assessment model could be defined on the basis of more specific metrics

(e.g., number of classes, number of attributes in the class, etc.).

Support for multi-language

The challenge of managing a real software development includes the requirement

to support more than one language at a time. The framework provides support

for multi-language environment. In fact, this support is ensured by the MoCQA

model that lies on a high level of abstraction. At this level of abstraction, language

is just a characteristic of a measurable entity. It provides the maintenance team

with a better understanding on how multi-language the project is and which

stakeholder is associated with what language. As a consequence, this allows

distinguishing explicitly what is comparable (e.g., measures defined on entities of

same language, or one family of languages explicitly identified like object-oriented

languages) from what is not comparable (measures defined on entities having no

common super class).

Integrating change in the software life-cycle

A typical way to integrate changes in the software life-cycle is to rely on incremen-

tal and iterative development processes. Each iteration or increment is a shorter-

lived cycle that helps maintain a good level of flexibility towards changes. The

MoCQA framework is designed to help maintain a consistent quality assessment

throughout successive iterations. First, MoCQA models ensure the traceability

of quality, especially in an iterative life-cycle, allowing the monitoring of the evo-

lution of quality (i.e., the continuous monitoring of quality) as well as the quality

of evolution (i.e., how well evolution-related tasks are performed). Besides, the

assessment methodology described in Chapter 4 supports the evolution of the

quality assessment strategy itself.

Increasing managerial awareness

Thanks to the hierarchy of quality issues associated with specific stakeholders, a

MoCQA model is a suitable mechanism to increase the managerial awareness of

evolution needs. A MoCQA model explicitly links the quality issues with actual

artefacts, derivations and behaviours, providing the managers with many expla-

nations and precise information about the origins of the flaws. This information

may allow a better planning (i.e., prioritisation) of the maintenance and evolution

activities, directly linking the information with the impact on the quality issues

that managers (as stakeholders) are interested in.

8.3. Reviewing MoCQA models 155

8.2.4 Exploiting MoCQA models at early stages of the development

MoCQA models may be exploited before the quality profile is actually completed.

In that case, they fully achieve their goals as a guiding method. MoCQA models

are available for any stakeholders including the development team and precisely

describe the quality requirements for the project, as well as the way the quality

team intends to assess their satisfaction. As such, once the measurable entities are

identified, the development team is able to evaluate the impact of their actions

on the overall quality of the software project. For instance, let’s consider a

quality issue that targets the maintainability of design and is assessed through

the size (attribute) of the class diagrams (artefact type). The planned method

is to evaluate the number of classes in the diagram and confront it to a given

threshold (a method that is close to the predictive model found in [Bocco et al.,

2005]). Having this information at their disposal, designers may try to reduce the

number of classes when design choices allow for this reduction. If the threshold

defined for the maximum size of the diagrams is unsustainable regarding the

architecture they have to model, the designers may push the information back

to the quality assurance team that may in turn review the expectations of the

stakeholders and make them more realistic. Similarly, the development team

may detect conflicting quality issues (i.e., requiring two opposite actions on the

measurable entities) associated to the resources they are working on. In that case,

they may detect and report possible failure of the quality assessment process,

before it is actually performed. The priority level of the conflicting quality issues

may then be used to determine which one should be considered first. An example

of such an application of MoCQA models is described in Chapter 12.

8.3 Reviewing MoCQA models

MoCQA models may be reviewed during the exploitation step. This reviewing

process may occur even prior to any evaluation. The tailoring and assessment

steps may therefore be ignored if the quality assessment modelling is not yet

completed and the aim of the current quality assessment cycle is to assess the

MoCQA model itself (as explained in Section 4.3.2). This reviewing process

consists in checking the integrity of their content and checking some properties

of the models.

8.3.1 Content integrity

Chapter 5 provides the rules required to ensure to structural coherence of MoCQA

models. However, those rules do not suffice to ensure that the content of the

MoCQA model is consistent with the quality assessment it aims to model. Some

additional coherence verification (addressing more semantic concerns) must be

156 Chapter 8. Step 5: Exploitation

performed in order to ensure that the quality assessment process modelled is

sound and robust. Concretely, many entities of a MoCQA model are associated

with other entities of the model. These associated entities have to be defined in

a coherent way (i.e., the information encapsulated by this set of entities must

not be conflictual). The verifications performed on the MoCQA model consist

in checking that these associated elements are correctly defined themselves and

in conjunction with the other elements that are part of the association. The

remainder of this section describes the verifications that have to be performed

before the MoCQA model is applied. Note that these verifications do not guaran-

tee that the assessment process is correct (i.e., that the measurement performed

actually relies on accurate and suitable measurement and assumptions) but that

the MoCQA model is exploitable once the assessment step is performed. The

correctness of the content depends entirely of the acquisition step (where quality

requirements are elicited) and the design step (where measurement are selected

or designed, possibly through more rigorous methodologies).

Scope and categories consistency

The category of measurable entities used to provide input values to a assessment

model should always be related to the scope of the quality issue (e.g., code-related

entities for the “source code” scope). This relation does not need to be direct. For

instance, one may attempt to assess the maintainability of the code, based on the

size of the design. In that case, the measurable entity types may be design-related

but the project component should provide information on the derivation types

that link the design-related entities to the “code” scope to capture the rationale

of the assessment process. Additionally, the assessment model type should be

defined as “predictive” in order to alert the stakeholders that the assessment

values may not be fully reliable.

Coherence of values

Methods, functions and quality indicators indicate what to expect from the mea-

surement and assessment values. They define the type these values comply to.

As such, the MoCQA model may be inspected in order to detect any incoherence

between the values and the operations performed on the basis of these values.

The value type, value range and scale provide information to ensure that the

function and assessment model do not perform:

• inadmissible transformations on individual values (which are provided by [Zuse,

1997])

• inadmissible compositions of multiple values (which are explored in [Fal-

cone, 2010])

8.3. Reviewing MoCQA models 157

For instance, a function relying on two base attributes which are assigned val-

ues comprised in an ordinal scale may not perform any arithmetic operation based

on these values. Similarly, an assessment relying on a integer value comprised in

a nominal scale may not perform any arithmetic operation on this value.

Coverage of interpretation rules

In order to be exploitable, the MoCQA model must not allow ambiguity on

the interpretations associated to any quality indicator. The most basic method

to ensure that no misinterpretation remains is to define a sufficient number of

interpretation rules for each quality indicator.

Due to the nature of quality indicators, two types of situations may occur:

1. The quality indicator represents a finite set of values

2. The quality indicator represents a continuous series of values

The first case is identifiable thanks to the value type of the indicator. If the

value type is defined as an enumeration, the MoCQA model should provide as

many interpretation rules as the number of elements in the enumeration.

In the second case, the value range of the quality indicator may be used. In

that case, the collection of all “range” attributes of the associated interpretation

rules should:

1. Never overlap

2. Provide a total range that equals the quality indicator value range

As explained before, this verification does not guarantee that the interpreta-

tions themselves are correct (a validation that should be derived from the source

material integrated to the MoCQA model, as well as the agreement of stakehold-

ers) but that no value of the quality indicator is left void of meaning.

Robustness of the project component

The robustness of the project component may be defined as its capability to

support an efficient root-cause analysis of the software project. Ensuring the

robustness of the project component of MoCQA models consists in verifying that

the definition of measurable entity types provide enough information to keep track

of the possible sources of a detected flaw. The quality assessment metamodel

provides several mechanisms adding constraints to measurable entity types (such,

as the “subdivided in” associations, the source and target of the derivations types,

etc.) to make their definition and identification more accurate. This information

may and should be used to improve the traceability of defects. To an extent,

the structural coherence of MoCQA models (checked during the design step)

contributes to this robustness. For instance, since we know that a behaviour may

not be corrected directly but requires some refactoring of the supporting code,

158 Chapter 8. Step 5: Exploitation

the quality assessment metamodel makes it mandatory to associate an artefact

type to a behaviour type so that the development team is aware of the source of

possible poor results.

However, the structure of MoCQA models do not guarantee that this trace-

ability information is relevant or exploitable. Continuing on our example, the

MoCQA model could provide an artefact type named “code” and associate it to

the evaluated behaviour. In that case, the project component may not be consid-

ered robust since any root-cause analysis based on its definition would be directed

to the obvious source code to correct any spotted defect. This information is not

precise enough to help the quality assurance team perform the investigation.

In order to be robust, a MoCQA model should provide enough information to

trace back a defect or a poor assessment result to its source, defining enough leads

towards the probable cause of the defect. For instance, associating our behaviour

type to the Java class my.application.session provides a clearer prospect of

what could have gone wrong. Providing additional details such the fact that this

precise Java class is the result of a derivation with source artefact types “class

diagram X” and “sequence diagram Y” reinforces the robustness of the project

component.

8.3.2 MoCQA-related indicators

MoCQA models are designed to be intrinsic artefacts of the software development

process, like UML diagrams, software code, etc. As such, they qualify as mea-

surable entities and may be assessed through measures, estimations and quality

indicators. The remainder of this section defines and investigates several indica-

tors that apply to MoCQA models and have been identified as relevant during the

course of this research. These indicators may be derived from a MoCQA model

in order to provide a better awareness of the overall performance of the planned

quality assessment process.

Maximal definition of quality issue (MDef)

It may be interesting to be aware of the maximum accuracy the assessment per-

formed could have reached, had the functions and assessment models been defined

differently. MDef provides a quantitative estimation of the maximum sharpness

a quality indicator could have provided and may be defined as,

MDef = min s1, s2, ..., sn

where s1, s2, ..., sn are the scales associated to each base attribute used by the

assessment model of the evaluated quality indicator, converted as integer (i.e.,

nominal = 0 and absolute = 5).

8.3. Reviewing MoCQA models 159

Manipulations performed on the values may at best preserve the weakest scale

among the input values, or weaken the overall scale. The weakest scale among

the base attributes thus defines the strongest scale possible for a function or

assessment model that relies on the values assigned to these base attributes.

MDef itself is associated to an ordinal scale, since it allows the ranking among

its values but does not qualify as an interval scale.

Loss of definition for a quality indicator (LDef)

Based on the previous indicator, we may derive another property of MoCQA

models that helps consider the relevance of the functions and assessment models

we defined. The LDef indicator provides an estimate of the extent to which base

measures have been weakened through the various transformations and compo-

sitions they underwent during the computation of a specific quality indicator. It

may be defined as,

LDef = MDef − sqi

where sqi is the scale of the evaluated quality indicator, converted as an

integer. Provided that the content integrity has been correctly executed, the

scale of a quality indicator should never be stronger than the scale of its inputs.

Therefore, LDef produces a value comprised between 0 and 5 and indicates the

measurement levels lost during the assessment process.

LDef itself is associated to an ordinal scale, since it allows the ranking among

its values but does not qualify as an interval scale.

Criticality of entity types (NIssue)

The criticality of a type of measurable entity may be estimated by the NIssue

indicator, which is defined as,

NIssue = N

where N is the number of quality issues that ultimately rely on the evaluated

entity type. This indicator is associated to a ratio scale since it possesses a

true zero point. This information may be used to direct the attention of the

development team on a component that is crucial to the overall quality of the

software project.

Range of quality issues (NEntitiy)

The range of a quality issue may be estimated by the NEntity indicator, which

is defined as,

160 Chapter 8. Step 5: Exploitation

NEntity = N

where N is the number of measurable entity types that are used to satisfy

the information need of the quality issue. This indicator is associated to a ratio

scale since it possesses a true zero point. This information may help stakeholders

realise how important and transversal a quality issue is.

Reliability of quality indicators (CI)

The reliability of quality indicators may be estimated through a very simple yet

useful Confidence Index (CI) defined as,

CI = min st1, st2, ..., stn

where st1, st2, ..., stn are the status of every method, function or assessment

model used to produce the indicator, converted as integer (i.e., experimental =

0, theoretically validated = 1, experimentally validated = 2, fully validated = 3).

Relying on the concept that a chain (of operations in our case) is as strong as its

weakest link, the CI indicators is defined by the least validated method, function

or assessment model used to produce the quality indicator. CI is associated with

an ordinal scale.

Product/Process orientation (Prod/Proc)

These two indicators may reveal the global purpose of the quality assessment

process. The first indicator is defined as,

Prod =
(NArt + NBehav)

NEntityTypes

where NArt and NBehav are respectively the number of artefact types and

behaviour types actually measured in the process (for which an attribute is de-

fined) and NEntityTypes the total number of measurable entity types actually

measured.

The second indicator is defined as,

Proc =
NDeriv

NEntityTypes

where NDeriv is the number of derivation types actually measured in the

process (for which an attribute is defined) and NEntityTypes the total number

of measurable entity types actually measured.

8.3. Reviewing MoCQA models 161

Figure 8.2: Example MoCQA model

162 Chapter 8. Step 5: Exploitation

8.3.3 Illustration

In order to illustrate the reviewing process of MoCQA models, let’s consider the

complete example designed in Chapter 5 and shown in Figure 8.2.

Regarding the content integrity, we have to verify the coherence of the scope

and categories first. In our example, this aspect of the MoCQA model satisfies

the integrity requirements. Indeed, although the main quality issue is associ-

ated to the my.application.session scope while the measurement is actually

performed on the basis of behaviour types, the model provides the information re-

quired to trace back the measured entities to the scope of the quality issue. The

rationale behind this assessment is therefore available to the stakeholders and

indicates that the reliability is perceived as an external characteristics of pack-

age my.application.session (according to the classification of the ISO/IEC

quality model).

Regarding the coherence of value types and the operations performed by func-

tion and assessment models, we find no violation of type or scale during the com-

position of the values. The values associated to base attributes are comprised in

scales that are flexible (i.e., ratio and absolute) and the operations performed are

mainly comparison between binary states. Therefore, the coherence of the values

and their composition is verified.

Interpretation rules have been defined for each possible value of the quality

indicator. The coverage is thus satisfying.

Regarding the robustness of the project component, although it models ad-

equately the relationship between the scope of the main quality issue and the

measured entities, it lacks details to support an efficient root-cause analysis. In-

deed, the association between the assessed package and elements of design is

specified but the design-related artefact type is not very useful in this context.

Since the assessment performed focuses on an external characteristic, the oc-

currence of defect may be related to either environmental factors (e.g., a weak

connection or slow hardware) or the implementation of behavioural elements. As

such, the specification of an existing class diagram that was used to implement

the assessed package is not as relevant. In case of poor measurement results, the

improvement efforts will likely focus on the way the behaviour is implemented.

The MoCQA model as it is does not offer traceability information regarding this

concern. The documentation of which sequence or activity diagrams were used to

implement the my.application.session package would have reinforce the ro-

bustness of the project component. With this information, the development team

could have been able to check the quality of these elements of design, allowing

them to determine if the conception of the system may explain the poor results.

Finally, we may apply some of the designed MoCQA indicators to the exam-

ple. Definition-related indicators are the most relevant indicators to apply to the

example since the MoCQA model is not complex and does not display a wealth of

8.3. Reviewing MoCQA models 163

quality issues. MDef provides a value of 4 while LDef provides a value of 2, which

means that two measurement levels were lost, bringing back the final indicator

to almost the weakest scale possible.

In consequence, improving the example MoCQA model would consist in pro-

viding more information regarding the behavioural diagrams used to implement

the assessed package. Regarding the loss of definition of the quality assessment

process, it may be explained by the fact that the assessment model uses the ratio

computed on the basis of att004 and att001 to produce a binary indicator (OK,

KO) while it could be used directly as a percentage of defect. This would provide

a more accurate and fine-grained estimations of the reliability of the assessed

package.

Chapter 9

Tool support

As we have seen in the previous chapters, the MoCQA methodology impacts

the way quality assessment is performed. First, the approach introduces new

artefacts (i.e., MoCQA models and formalised measurement plans) that have

to be produced and maintained in an efficient way. Besides, the emphasis on

the collaboration and communication between stakeholders implies that these

artefacts have to be easily accessible and shared among the stakeholders. These

aspects tend to increase the time and effort dedicated to quality assessment.

However, the fact that the methodology is a full-fledged model-driven approach

based on an explicit metamodel provides the opportunity to improve its usability

(and therefore reduce the overhead regarding time and effort) through various

types of tools.

This chapter provides an overview of the tool support that may be supplied

in order to ensure the usability and effectiveness of the MoCQA framework. Sec-

tion 9.1 enumerates the specific challenges raised by the methodology. Section 9.2

discusses how to take advantage of the existing tool support dedicated to model-

driven development in the context of the MoCQA approach. Finally, Section 9.3

explores how a dedicated tool support could help approach the specific challenges

of quality assessment modelling and describes tools that have been developed dur-

ing the course of this research in order to improve the usability of the MoCQA

framework.

9.1 Tool-related challenges of model-driven quality as-

sessment

As explained in [Kent, 2002], “tooling is essential to maximise the benefits of

having models, and to minimise the effort required to maintain them”. Beside

165

166 Chapter 9. Tool support

the basic model editing functionalities, the support expected by such tooling

ranges from the possibility to ensure the well-formedness of the models to the

possibility to work easily in a collaborative environment. Adequate tools may

also improve the visualisation of complex models, ease their transformation into

other types of models and enhance the overall exploitation of the information

conveyed by the models. Model-driven quality assessment shares the same basic

challenges as any model-driven approach and therefore requires the same type

of tool support. However, model-driven quality assessment as envisioned in the

MoCQA framework also raises some specific issues that may be dealt with through

more specific tooling.

The main issue raised by the methodology, and specifically by MoCQA mod-

els, concerns the overall scalability of the approach. As we have seen in previous

chapters, efficient quality assessment modelling requires more information than

a traditional information product. This issue is caused, on the one hand, by the

fact that MoCQA models intend to address the entire software project instead of

a single entity. On the other hand, MoCQA models allow (or sometimes require)

an important level of detail in order to specify crucial elements of the quality as-

sessment process. As a consequence, MoCQA models may quickly become large

and crowded with information. Mechanisms have to be provided in order to cope

with this increased level of detail.

Another issue raised by the methodology lies in one of its core principles.

The MoCQA framework intends to switch the focus of quantitative assessment

from control mechanism to guiding mechanism. As such, the development team

should be kept aware of the quality assessment performed on the resources they

are acting on. In order to be supported, this principle requires the development

team to have access to the MoCQA model that has to be centralised and easily

available for consultation.

Finally, the integrative nature to the approach regarding quality models and

existing measurement methods requires an easy and streamlined access to ref-

erence material. This calls for systematic ways to access this software quality

knowledge in order to ease the integration of quality assessment methods from

multiple sources.

9.2 Model-driven tools and MoCQA framework

Due to their explicit quality assessment metamodel, MoCQA models may be han-

dled by any modelling environment with model-driven capabilities. Provided that

a modelling tool allows the use of a metamodel as an abstract syntax, MoCQA

models may be edited using this tool.

Due to its alignment with the Meta-Object Facility (MOF) architecture, the

vast majority of tools supporting UML may be used to this end and produce

9.2. Model-driven tools and MoCQA framework 167

object diagrams that are compliant with the concepts of the quality assessment

metamodel. This aspect of the methodology ensures its flexibility since the quality

assurance team members may rely on the tools they already know (and use in

their current workflow) in order to edit MoCQA models.

In order to improve the support of MoCQA models, the use of UML profiles

may also provide a first step towards a domain-specific language, as explained

in [Abouzahra et al., 2005]. Relying on stereotypes and tagged values, UML

profiles allow the customisation of the UML formalism in order to provide a

tailored concrete syntax for the approach. Several UML modelling tools used

in the industry allow a thorough support of UML profiles (e.g., MagicDraw1,

Enterprise Architect2, etc.).

Additionally, the fact that the MoCQA methodology is a full-fledged model-

driven approach makes it possible to rely on model-driven specific techniques (and

tools) that may be beneficial in the context of the quality assessment methodol-

ogy.

9.2.1 Exploitation of model constraints

Defining constraints on models allows the definition of specific rules that the

model has to comply to in order to be valid. The Object Constraint Lan-

guage (OCL) [OMG, 2010] is a textual specification language that allows the

definition of constraints on any model complying to the MOF architecture. The

application of OCL constraints in the context of the MoCQA methodology is

beneficial on several levels.

As part of a UML profile, OCL invariants (i.e., boolean OCL expressions)

may be used to guarantee the validity of the designed MoCQA model regarding

the structural and semantic validation described in Chapter 5 and 8, respectively.

UML modelling tools with UML profile support generally offer OCL-related func-

tionalities and may therefore be used in the context of the MoCQA methodology.

Since OCL allows the definition of constraints on both the well-formedness

and the content of a specific MoCQA model, it also provides an opportunity to

define a set of rules that apply to a specific software project. For instance, OCL

constraints may be used to ensure that methods or functions linked to a given

quality issue have to be associated with a specific scale or value type. Additional

requirements may also be integrated in the MoCQA model through constraints.

For instance, a constraint could be defined in order to guarantee that all child

quality issues have the same referenced quality model as their parent quality

issue.

Finally, OCL allows the definition of query expressions that may be useful in

order to retrieve complex information from MoCQA models.

1http://www.nomagic.com/products/magicdraw/
2http://www.sparxsystems.com/products/index.html

168 Chapter 9. Tool support

9.2.2 Exploitation of model transformation languages

As explained in [Sendall and Kozaczynski, 2003], model transformations are the

cornerstone of model-driven engineering. In consequence, several model trans-

formation languages have been defined to formalise and automate these trans-

formations (e.g., ATL [Jouault et al., 2006], QVT [Kurtev, 2008], etc.). As a

model-driven approach, the MoCQA framework may rely on model transforma-

tion languages and their tool support in order to streamline the operationalisation

step (see Chapter 7).

9.2.3 Co-evolution of models and collaborative modelling

Co-evolution is an intrinsic challenge of Software Evolution [Mens et al., 2005b]

that is especially relevant in the context of model-driven development where the

co-evolution between models and the code is essential. Contrary to model-driven

development, the MoCQA framework alleviates this issue through its methodol-

ogy. Indeed, the co-evolution between a MoCQA model and its concrete mea-

surement plan is guaranteed by the successive steps within a quality assessment

cycle. Similarly, the co-evolution between a MoCQA model and the data model

used to store the measurement results is guaranteed by the specific data model

described in Chapter 7.

However, the challenge of co-evolution resurfaces in the context of a dis-

tributed use of MoCQA models. In order to allow a better efficiency of the

methodology, it may be beneficial to let quality assurance team members work

on separate parts of the software project or quality issues. Among other bene-

fits, this would ensure that the number of stakeholders a quality assurance team

member has to include in the process is manageable. The most obvious solution

to support this approach is to use several MoCQA models. However, this ap-

proach raises some issues. In the context of the MoCQA approach, working on

different quality issues does not automatically implies working on separate parts

of the project (and conversely). These hypothetical separate models would there-

fore probably possess common subsets of elements. In this case, the co-evolution

between the models would become a complex issue.

In order to address this issue, collaborative modelling (i.e., several separate

individuals actively contributing to the creation of a single model [Rittgen, 2009])

may prove useful. This approach would guarantee that a single central MoCQA

model is maintained for the entire software project (and for any one to consult).

Collaborative modelling would in the meantime allow separate teams or individ-

uals to work on more focused concerns, without the risk of incoherence. Several

efforts have been carried out to address the challenges of collaborative editing

(e.g., [Rittgen, 2008] or [Koshima et al., 2011]) and should be investigated in the

context of the MoCQA framework.

9.3. Dedicated and integrated tool support 169

9.3 Dedicated and integrated tool support

Although existing model-driven tools provide the quality assurance team with

suitable support for applying the MoCQA methodology, they remain general-

purpose and do not offer solutions that are tailored to the specific challenges raised

by the methodology. In order to address these specific challenges, a dedicated set

of tools is still required. During the course of this research, several tool-related

efforts have been carried out in order to improve the efficiency of specific tasks

of the methodology. As such, they provide the core components for a future

dedicated and integrated tool support that would fully leverage the potential of

the framework.

9.3.1 XML-based Operational Customised Quality Assessment Model

As explained in Chapter 7, the operationalisation of a MoCQA model is an ex-

ogenous and vertical model transformation, regardless of the formalism used to

express the measurement plan. XOCQAM is a formalism that has been defined to

allow this model transformation. XOCQAM is an XML-based language defined

by its own metamodel (i.e., an XML schema). The goal of using an XML-based

formalism is twofold. First, the format is sufficiently structured to provide a

model that may easily be manipulated (e.g., edition, modification, importation/-

exportation, filtering, etc.) and stored. Besides, as a well-known mark-up lan-

guage, the XML formalism provides a good textual notation that complements

the graphical notation used by the quality assurance team to express MoCQA

models.

Additionally, XML-based languages are efficiently supported by several ed-

itors (e.g., validation of XPATH constraints, auto-completion based on XML

schemas, etc.). XOCQAM therefore provides an additional layer to support a

domain-specific language and improves the expressiveness and usability of MoCQA

models, as well as their reusability.

A typical XOCQAM document is divided in three components (i.e., project,

measurement and assessment) in the same way the MoCQA models are defined.

Whereas the project component includes the same constructs as the project pack-

age of the quality assessment metamodel, the measurement component of XOC-

QAM only allows attributes constructs and the assessment component only in-

cludes quality issues. This is due to the fact that XOCQAM takes advantage of

the hierarchical nature of XML in order to keep XOCQAM documents clean.

An XOCQAM element possesses the same attributes as its MoCQA coun-

terpart and integrates the information on mandatory attributes. In order to

facilitate the identification of elements, each XOCQAM element is assigned an

“id” that serves the purpose of primary key.

170 Chapter 9. Tool support

Two distinct mechanisms to support the modelling of associations between

MoCQA constructs are provided:

• Reference to associated elements

• Inclusion of child elements

The reference mechanism consists in adding child elements that possess only

a “ref” attribute within the parent element. This “ref” attribute acts as a foreign

key. The inclusion mechanism consists in adding the referenced element directly

in the parent element.

XOCQAM elements at the centre of the operationalisation process (i.e., as-

sessment models, functions, methods and measurable entity types) also possess

attributes provided to record the additional information required for the opera-

tionalisation (see Section 7.3).

Although XOCQAM embeds several structural constraints validation (i.e.,

mandatory attributes, validation of the cardinality of the source of an element),

it does not check constraints on associations in both ways. For instance, the

XOCQAM schema ensures that an assessment model produces at least one quality

indicator but no constraint is defined to verify that one specific quality indicator

is associated to at most one assessment model. This design choice intents to limit

the verbosity of the textual notation. It does not constitute a major hindrance

since the use of XOCQAM normally follows the structural validation of the design

step.

9.3.2 MoCQA Utilities on the Go (MUG)

Objectives

MUG is a graphical MoCQA modelling tool that intends to support the elicitation

of quality requirements and their translation into MoCQA models. It intends to

help ensure the scalability of the MoCQA approach and to provide an improved

usability through specific navigation mechanisms. As such, it aims to be portable,

focused on user-friendly and easy navigation within large MoCQA models.

Overview

Written in ActionScript 3.03 and relying on the open-source Adobe Flex frame-

work4, MUG provides a graphical environment to design MoCQA models. The

choice of ActionScript as programming language is due to its high portability,

especially for web-based applications and mobile devices (the latter being espe-

cially promising in the context of the elicitation of the quality requirements and

offering additional flexibility to the process).

3http://www.adobe.com/devnet/actionscript.html
4http://www.adobe.com/be fr/products/flex.html

9.3. Dedicated and integrated tool support 171

Figure 9.1: MUG user interface

As shown in Figure 9.1, MUG relies on an experimental graphical notation

(based on the recommendations of [Moody, 2009])that intends to improve the

usability of MoCQA models in a concrete context, that is, a more operational

notation. In order to improve the legibility of large MoCQA models, the MUG

graphical notation limits the displayed information to a subset of essential con-

cepts and attributes. It therefore focuses on a broader (instead of a detailed)

view of MoCQA models.

In order to provide the detailed view, the complete information contained in

the model is available through different widgets built in the MUG tool. Imple-

menting the heuristic stating that GUI designers should “include in the displays

only information needed by the user at a given time” [Gerhardt-Powals, 1996], the

complete information on attributes is accessible as an “infotip” or via dedicated

forms to edit the attributes.

MUG provides several functionalities designed to increase its usability. Among

others, it provides a cross-attributes search engine, a hinting system based on a

internal repository of standard quality frameworks, the ability to navigate links

dynamically and the ability to create multiple associations at once.

It relies on both a dedicated XML-based file format and also offers the ability

to export file in XOCQAM format (although the edition of the specific metadata).

It also provides the ability to import MoCQA models into a parent model in

order to improve the reusability of the approach. Additionally, the MUG tool

implements structural and some level of semantic validation of MoCQA models.

172 Chapter 9. Tool support

Finally, MUG is designed primarily as a web application but may be ported

easily on any device (e.g., desktop computer running any OS, tablet devices, etc.)

due to its underlying Flash technology.

9.3.3 OCQAM editor

Objectives

The OCQAM editor is an Eclipse plug-in providing a hierarchical MoCQA mod-

elling tool. It intends to support the consultation of quality-assessment-related

information by the development team during the course of the development. As

such, it aims to improve the integration between the quality assessment life-cycle

and the development/maintenance life-cycles.

Overview

Relying on the Eclipse Modeling Framework (EMF)5, the OCQAM editor pro-

vides a hierarchical textual MoCQA model editor. As part of the Eclipse IDE6,

the editor allows developers to consult a MoCQA model designed for the current

project conveniently and at any time.

Thanks to the editor, developers may quickly consult the quality issues and

measures planned for a specific artefact they are working on. The editor allows

OCL queries to be performed on the MoCQA model in order to consult informa-

tion in a more refined way.

The file format used to store the models is a variant of XOCQAM, adapted

to the requirements of EMF-based models. The interaction between MUG and

the OCQAM editor is thus guaranteed.

9.3.4 QuaTALOG

Objectives

The knowledge required to deploy the MoCQA framework includes not only en-

vironmental information but also some background (or general) information on

quality assessment and measurement methods available and/or imposed to the

analyst. Given all the information collected through various stakeholders, the

aim of the MoCQA methodology is to determine valid and adequate methods

to assess and monitor the goals (with respect to the available resources for a

given project) and integrate them into a MoCQA model. However, the task is

hindered by the fact that information collected from stakeholders may not be

structured. The analyst may also not have a comprehensive knowledge of the

different available quality models and their differences and commonalities.

5http://www.eclipse.org/modeling/emf/
6http://www.eclipse.org/

9.3. Dedicated and integrated tool support 173

Besides, the analyst may be confronted to additional constraints and chal-

lenges while designing a MoCQA model. For instance, an existing quality model

could suggest the use of a given set of metrics designed to evaluate the source code

(e.g., suggested metrics for maintainability in ISO/IEC 9126) whilst the analyst

has to face the evaluation of the same quality characteristic (i.e., maintainability)

for the design, therefore requiring an alternative measurement method targeting

the same quality characteristic.

Another challenge for the analyst who designs a MoCQA model would be the

requirement to adapt a given quality assessment/improvement method during a

certification process. In this case, the analyst would benefit from an easy way

to compare the measurement methods of the current quality assessment process

with the ones specified in the norms, in order to check if upgrades are required

or if the current methods already comply to the standard. The same applies in

case of a change from a set of given standards A to a second set B.

Introduced in [Vanderose and Habra, 2011] the QuaTALOG tool aims to

provide functionalities to maintain an up-to-date, structured and extensive cata-

logue of available quality assessments methods (e.g., quality models, measurement

methods, etc.). The other goal of the tool is to provide a user-friendly access to

this knowledge.

Overview

Relying on the open-source Apache Struts2 framework7, QuaTALOG provides

the following functionalities:

1. A repository of data that is structured to be easily integrated into a MoCQA

model;

2. A user interface to edit and consult the content of the online database;

3. A keyword-based and concept-based search engine;

4. A support for the distant interrogation of the database by third-party tools

and most notably MoCQA model editors.

As shown in Figure 9.2, QuaTALOG takes the form of a web-based knowledge

base with a standard (and thus intuitive) interface that also provides standard

browsing web services. The knowledge base allows the quick navigation between

(even remotely) related concepts. It offers a way to check out the options available

to the user (i.e., the MoCQA analyst or any quality assurance manager) for his

specific needs. The level of validity of a specific assessment model (i.e., number of

existing empirical validations, number of theoretical validations) is also specified

in order to provide additional guarantees (or an increased cautiousness) to the

analyst. The tool has been specifically optimised to support the analyst during

the design of a MoCQA model. It has also been designed to be available to

7http://struts.apache.org/2.x/

http://struts.apache.org/2.x/

174 Chapter 9. Tool support

Figure 9.2: QuaTALOG user interface

anyone willing to consult and compare quality assessment methods, or willing to

contribute to the catalogue.

Architecture

From an architectural point of view, the key aspect of QuaTALOG resides in the

way the conceptual schema of the repository has been designed. Many architec-

tures would have been valid to create a catalogue of quality assessment techniques.

However, the compatibility with the quality assessment metamodel is essential.

Therefore, the repository conceptual schema has been designed essentially as a

series of transformations based on the quality metamodel. Those transformations

were not always horizontal (i.e., conserving the same level of detail [Mens and

Gorp, 2006]).

The process of transformation from metamodel to repository requires to adapt

several elements. First, attributes from the metamodel have to be refined. For

instance, the reference attribute of the quality issue concept had to be modified

to support the storage of BibteX-formatted references).

Also, the cardinalities of some associations in the metamodel are designed to

limit and structure MoCQA models (e.g., in a MoCQA model, a quality issue

has at most one parent representing a more general goal while in the database,

we want to record all possible parents of a given quality issue in order to provide

the user with relevant alternatives). Finally, usual notions have to be aligned

with MoCQA concepts. For instance, the notion of quality model does not ap-

pear explicitly in the quality assessment metamodel but had to be added in the

QuaTALOG database schema. The Software Quality ontology was used as a sup-

port for these additions. Besides, the difference between quality characteristics

9.3. Dedicated and integrated tool support 175

and quality issues had to be taken into account when linking the notion of quality

model to the quality issue (i.e., a quality issue is a quality characteristic with a

scope and stakeholder while traditional quality models set the scope of all quality

characteristics at once).

This process of transformation ensures that the data is stored in a structured

way in order to be compared, aligned and integrated in a MoCQA model. Based

on previous case studies [Vanderose et al., 2010], the availability of such a tool

could decrease the time of design for a MoCQA model by up to 40-60%, provided

that the catalogue is correctly populated. Indeed, feedback from the previous case

studies always points out that more than 50% of the MoCQA model design time

was devoted to finding adequate techniques. However, in these cases, the analysts

were students with little or no experience in software quality and an experienced

analyst should find adequate methods faster, although not systematically look

for better alternatives to the methods she knows.

9.3.5 Towards and integrated tool support

So far, the tooling developed to support the framework is comprised of distinct

tools focusing on specific aspects of the MoCQA methodology. The improvement

and integration of these tools would directly benefit the approach and provide a

more thorough support for the framework.

Interactions between tools

In order to provide a better coverage of the methodology, the existing tools should

be integrated in a tighter workflow. Since the Eclipse-based OCQAM editor and

the MUG tool already exchange compatible data, this effort should focus on the

integration of the QuaTALOG platform. By refining the existing support for

web services provided by QuaTALOG and allowing the MoCQA model editors

to consult and integrate knowledge retrieved through these web services, the

workflow would gain in efficiency.

The MoCQA Toolkit

As explained in [Kelly, 2004], two options are available to provide a tailored tool

support for a Domain-Specific Modelling (DSM) approach: metaCASE tools and

DSM coding frameworks.

MetaCASE tools (e.g., MetaEdit+8) are dedicated to the generation of CASE

tools on the basis of a provided metamodel. DSM coding frameworks (e.g. the

Eclipse Modeling Framework used in conjunction with the GMF tooling project9),

on the other hand, require more intensive software development in order to obtain

8http://www.metacase.com/MetaEdit.html
9http://eclipse.org/gmf-tooling/

176 Chapter 9. Tool support

the final tool. Unsurprisingly, metaCASE tools provide results faster and easier.

Additionally, using powerful metaCASE tools such as MetaDONE [Englebert and

Heymans, 2007] provide much flexibility in order to acquire a fine-tuned support.

However, the ongoing and future development of the MoCQA specific tool-

ing not only requires DSM support but should be integrated more closely with

the software development environment. In that context, relying on the Eclipse

environment appears as a more suitable option. First, the Eclipse environment

is primarily an Integrated Development Environment. The integration of the

MoCQA-specific tool support into this environment is thus a suitable way to

guarantee the closer integration between the quality assessment life-cycle and the

development life-cycle. Besides, the Eclipse environment provides many projects

focusing on model-driven support10. Relying on the Eclipse environment is thus

a way to easily take advantage of the techniques described above (i.e., OCL,

automated model transformations, etc.).

As such, the current OCQAM editor should be used as the central component

for a complete MoCQA Toolkit. The following components would help cover all

the essential aspects of the MoCQA methodology in an integrated way.

A quality dashboard component would use the active MoCQA model loaded

thanks to the OCQAM editor. Its goal would be to present a view of the various

quality indicators associated with the quality issues. It would use the interpreta-

tion rules of the MoCQA model to provide a comprehensive view of the issues.

Among other functionalities, the MoCQA quality dashboard would allow filter-

ing the information by stakeholders, scope, artefacts, etc. The quality dashboard

would also be reconfigured in real time if the active MoCQA model is edited in

the OCQAM editor.

A project outliner component would help identify the actual resources that are

prone to be assessed. The aim of such a component is to ensure the awareness

of the developer about the existence of a quality assessment strategy (i.e., to

be aware that the piece of code she is editing is in fact measured to guarantee

a given quality goal). It mainly relies on the project-related component of the

MoCQA model. Each entity type defined in this component would provide a tag

(implemented by an Eclipse marker) to the project outliner. These tags would

be used primarily to point out the specific resources that have to be measured.

They would also be used to bind the actual resources with the active MoCQA

model, allowing a view on the quality dashboard focused on this specific resource,

from within the project explorer of Eclipse.

Finally, in order to prepare the automation of the process, a measurement

manager component should be developed. This tool would constitute a con-

figuration panel that helps bind the measurement/estimation methods described

10http://www.eclipse.org/modeling/mdt/

9.3. Dedicated and integrated tool support 177

in the MoCQA model with actual measurement procedures provided by exter-

nal tools. It would also define all the relevant data for the management of the

measurement plan (e.g., associating a measurement procedure with a defined tag,

defining the frequency of the measurement, etc.).

Part III

Validation of the approach

179

Chapter 10

Validation process

Part II described a theoretical approach that is designed to help integrate quality

assessment into the development life-cycle in a more effective way. The MoCQA

framework implements this approach and provides a practical assessment method-

ology designed to leverage the expected benefits of the theoretical approach. This

chapter describes the evaluation process we applied in order to ensure that the

framework is usable and demonstrates some of the desired benefits elicited in

Chapter 4.

10.1 Research questions

In order to evaluate the potential of the MoCQA framework, we first identified a

series of research questions to guide our effort. Each of these questions may be

associated with one of the two main topics identified below.

The first topic of our validation process pertains to the usability of the frame-

work. Provided that the framework under review relies on a quality assessment

methodology that introduces specific notions and activities, the first research

question to investigate its ability to be used in practice. The question mainly ad-

dresses the fact that it is possible to apply the quality assessment methodology,

step by step, without any major hindrance or overwhelming increase in time and

effort for the development or quality assurance team.

The usability of the framework also relates to the overall acceptance of the

framework by the stakeholders. In other words, we have to check that no major

reluctance regarding the participative nature of the approach arises during the

deployment.

Finally, the first question also covers the fact that all stakeholders understand

the methodology and that MoCQA models are adequate to communicate the

181

182 Chapter 10. Validation process

information between the involved parties.

These concerns may be formalised as the following research questions:

[RQ1] Is the MoCQA framework usable?

[RQ1a] Is the model-driven quality assessment methodology defined by the frame-

work applicable in practice without negative impacts on the rest of the develop-

ment process?

[RQ1b] Is the MoCQA framework accepted and adopted by all involved stake-

holders?

[RQ1c] Are MoCQA models apt to model the necessary quality assessment infor-

mation and support the communication of this information between stakeholders?

The second main topic of the validation process relates to the effectiveness

of the framework. Indeed, the implicit claim of the MoCQA framework is that

its application helps rectify some of the shortcomings pertaining to Software

Quality as a field. More specifically, the claim is that the core theoretical notions

introduced in the framework are expected to provide some benefits to the user

of the framework and the overall development team, as explained in Chapter 4.

The second main research question is therefore to determine if the framework

effectively leverage the expected benefits.

The fundamental advantageous aspect of the framework is the fact that MoCQA

models and the methodology used to exploit them helps adapt to a specific con-

text and model accurately the quality requirements for a given project.

The second expected advantage of the framework is that it allows a targeted

assessment. Targeted assessment means that each evaluation effort is carried

out to fulfil a specific information need, therefore avoiding an unproductive mea-

surement plan. The iterative and incremental nature of the methodology ensures

that new quality requirements can be treated in the next quality assessment cycle,

which prevent the risk of forgetting any important quality goal.

The iterative methodology also allows the refinement of quality indicators

and their evaluation methods as the development progresses. This constitutes

the third expected benefit: the framework should allow a better integration of

quality assessment, from the earliest stages of the development.

Another advantage of the model-driven quality assessment is its supposed

ability to improve the self-awareness of the process. The self-awareness denotes

the ability to rely on the MoCQA models to detect and rectify the quality assess-

ment process. In turn, this self-awareness of quality assessment helps converge

towards the elicited quality goals.

Finally, the use of explicit and integrated quality assessment modelling is

supposed to provide a better support for the analysis of the current quality level

and the identification of corrective actions on the project.

10.2. Challenges 183

Those concerns result in the following research questions:

[RQ2] Is the MoCQA framework effective?

[RQ2a] Does explicit and integrated quality assessment modelling succeed in

accurately modelling the specific quality requirements for a given context?

[RQ2b] Does the quality assessment methodology helps provide a targeted as-

sessment that meets the specific quality requirements?

[RQ2c] Does the iterative use of MoCQA models help plan and adjust the qual-

ity assessment process throughout the software life-cycle, from early stages to

maintenance and evolution?

[RQ2d] Do MoCQA models help detect the flaws in the quality assessment pro-

cess that is performed?

[RQ2e] Do MoCQA models help identify the corrective action that have to be

performed in order to improve the level of satisfaction of the quality goals?

10.2 Challenges

The nature of the research work presented in this dissertation raises some issues

regarding the validation process. The introduction of a new type of methodology

can only gain acceptance throughout time and repeated opportunities to apply

it. Additionally, the validation of a quality assessment methodology raises even

more challenges: Software quality is such a transversal topic that a complete

validation of the approach would require a huge amount of time and effort that

extends the scope of this dissertation. Similarly, although the need for empirical

evidence in software engineering researches is stressed by many authors [Juristo

and Moreno, 2001 Wohlin et al., 2000], the acquisition of statistically significant

empirical data represents a complex challenge in our context.

In order to illustrate the extent of the effort required to obtain a satisfac-

tory level of validation, let’s consider an ideal validation protocol to answer the

research questions identified in the previous section.

This ideal validation protocol would have to be applied in an industrial con-

text. In order to provide an efficient way to evaluate the impact of the MoCQA

framework, the context should allow two separate software development life-cycles

to be performed on the same set of requirements. The first development life-cycle

(DLC1) would apply traditional quality assessment techniques. The other devel-

opment life-cycle (DLC2) would integrate the MoCQA framework. Additionally,

the lifespan of the validation process should encompass the entire development

184 Chapter 10. Validation process

life-cycle, from the early stage of requirements engineering to the maintenance

and evolution processes.

From that point on, the ideal validation protocol would consist in showing

that the MoCQA framework allowed stakeholders from DLC2 to:

1. monitor and guide the development process from the earliest stage of de-

velopment;

2. define a context-specific model that meets the expectation of the stakehold-

ers;

3. communicate between stakeholders (from developers to managers);

4. detect the flaws or misuse of measures during the quality assessment process;

5. guide the maintenance and evolution process for their project.

The validation should demonstrate that these achievements were met without

any unacceptable overhead, any increase in cost or any delay, in comparison

to DLC1. Finally, the validation protocol should demonstrate that the overall

satisfaction of the stakeholders of DLC2 is higher.

Although finding such a suitable context is unrealistic, this ideal validation

protocol provide us with valuable insights on how to perform a manageable eval-

uation of our approach. When looked at transversally, the validation described

above reveals two separate needs:

• Show that the framework is sustainable in a professional context

• Show that the framework provides better results

Therefore, we can divide the overall process into more manageable case stud-

ies, some of them focusing solely on the results obtained with the framework,

others focusing on the application on the field. Our validation approach thus fo-

cuses on providing hints that the MoCQA framework is adequate by fragmenting

the validation into several case studies.

In order to achieve this validation process, the research questions presented in

the previous section have been broken down into several criteria that the approach

should meet in order to satisfy the validity requirements. Each of these criteria

encompasses some properties the approach should demonstrate in order to satisfy

to specific aspects of the research questions.

Those criteria have been selected in order to allow some level of modularity

towards our idealised process. The validation process therefore becomes context-

independent. While some criteria cannot be assessed without a practical appli-

cation, some other may be addressed through isolated theoretical case studies.

The identified criteria are the following: expressiveness, integrability, adapt-

ability, exploitability and applicability. The remainder of this section details each

of them (i.e., what properties the criterion covers, how it contributes to answer-

ing our research questions and how it allows us to keep our validation process

manageable).

10.2. Challenges 185

Expressiveness

Scope: Expressiveness covers the ability to express and integrate various quality

models (or parts of them) as a hierarchy of quality issues into a MoCQA model.

It also addresses the ability to describe measurement methods and link them to

the quality issues hierarchy. Finally, it also includes the ability to express the

right context through the project package of the quality assessment metamodel

as well as the ability to express easily and accurately the measurable entities.

Target: This criterion contributes to answering RQ1c, RQ2a and RQ2b.

Comments: In order to assess the criterion, we may evaluate the integration

of various quality models by comparing the quality assessment metamodel to

explicited quality metamodels. The measurement package does not require much

validation since it already builds on [ISO/IEC, 2007a]. The project package can

be assessed thanks to targeted studies of customised measures and how much the

constructs of the quality assessment metamodel help express them in a adequate

way.

Integrability

Scope: Integrability covers the ability of the framework to be used in conjunction

with other quality approaches and to fit the specific development or maintenance

process defined in the environment.

Target: This criterion contributes to answering RQ1a, RQ1b and RQ2c.

Comments: This criterion allows us to provide some hints at the usefulness of

the approach in early stages of the development from a theoretical point of view

without requiring an empirical study. Case studies on the field can therefore focus

on any stage of the development.

Adaptability

Scope: The adaptability of the framework represents its ability to provide a

quality assessment that is tailored to a specific project (i.e., relying solely on

the available resources, defining quality issues that are useful for their target

stakeholders and evaluation methods that fit the expectations).

Target: This criterion contributes to answering RQ1c, RQ2a and RQ2b.

Comments: This criterion can be assessed through any category of case study.

Exploitability

Scope: Exploitability covers the ability of MoCQA models to provide quality

profiles that are fit as a basis of the decision-making regarding the development

life-cycle. It also covers the fact that the quality profile (and therefore, MoCQA

models) can be used successfully to communicate among stakeholders. Finally,

186 Chapter 10. Validation process

exploitability encompasses the ability of MoCQA models to support the detection

of flaws in the quality assessment process.

Target: This criterion contributes to answering RQ1b, RQ1c, RQ2d and RQ2e.

Comments: Separating the exploitability from the pure applicability of the ap-

proach allows us to perform theoretical case studies that focus on the earlier stage

and show the potential of the framework without requiring an actual empirical

study.

Applicability

Scope: The applicability of the framework specifically relates to the environment

and the stakeholders. It encompasses the ability to be applied in a concrete

context. It covers the effort and time the application of the quality assessment

methodology requires and its ability to generate acceptance among the various

stakeholders

Target: This criterion contributes to answering RQ1a, RQ1b, RQ2c and RQ2e.

Comments: Although the previous criteria all relate to some level of applica-

bility, actual case studies using the MoCQA framework in an actual professional

environment are required in order to validate the approach globally. However,

the entire software life-cycle is difficult to assess. In order to validate the global

usability, a new project (and therefore a close collaboration) is required. Defining

an applicability criterion helps us focus on a subset of the development life-cycle

(e.g., the maintenance phase) and assess how the actual stakeholders react to

the framework in a professional context for this subset. Coupled with theoretical

studies assessing the integrability and exploitability, a practical study on the ap-

plicability provides enough hints regarding the global usability of the framework.

Another point covered by the criterion is the sustainability. Many of the 9 princi-

ples listed in Chapter 4 are already known for their benefits but also increase the

effort and time needed to apply them. The key aspect to asses the applicability

is therefore to check if the overhead induced by the application of these principles

is balanced by the dedicated support provided by the framework.

The following chapters describe case studies designed to assess the criteria

identified above:

• Chapter 11 investigates the expressiveness and integrability of the approach

from a theoretical point of view.

• Chapter 12 provides a theoretical case study that explores integrability and

exploitability at an early stage of development.

• Chapter 13 collects case studies, both theoretical and empirical, that focus

on exploitability, adaptability and expressiveness.

10.2. Challenges 187

• Chapter 14 describes a practical case study performed in a professional en-

vironment that illustrates the adaptability and applicability of the MoCQA

framework.

• Chapter 15 reports a one-year long practical case study performed in a

professional environment and mainly addressing the applicability of the

MoCQA framework. Additionally, the case study also investigates expres-

siveness, adaptability, and exploitability.

Chapter 11

Operationalisation of quality

models

This chapter describes a theoretical case study that illustrates the integrability

and the expressiveness of the MoCQA framework. The case study exemplifies

the first acquisition method (i.e., operationalisation of quality models) described

in Chapter 6.

11.1 Objectives

The aim of this case study is twofold. First, it intends to illustrate the fact that

the quality assessment metamodel is suitable to express different quality models

and integrate them into a MoCQA model. Secondly, it exemplifies how quality

models may be used to support the acquisition step and explore the feasibility of

this acquisition method.

The case study focuses on two representative quality models. The first is the

ISO/IEC quality model. This quality model is representative of a generic quality

model, and also summarises most of the concepts of previous quality models (i.e.,

McCall’s, Boehm’s, etc.). The second quality model studied in this chapter is

a specialised quality model focused on the availability of documentation in an

open-source context. It is representative of ad hoc and specialised quality models

constructed from scratch.

For both models, the study consists in a short overview of the compatibility

between the MoCQA quality assessment metamodel and an explicitly derived

quality metamodel (i.e., an illustration that all concepts of the quality model

studied may be included in a MoCQA model). This overview is followed by an

attempt to perform a generic acquisition step (i.e., an instantiation of the qual-

ity assessment metamodel without any hypothesis on the scope of stakeholders

189

190 Chapter 11. Operationalisation of quality models

involved in the process) based on the studied quality model. In other words,

this instantiation attempts to recreate an entire instance of the quality model

studied in terms of MoCQA concepts and investigates its potential to support

the acquisition step.

Note that, although it is not covered in this study, an example of actual use

of McCall’s model within a MoCQA model can be found in Chapters 13.

11.2 ISO/IEC 9621 quality model

11.2.1 Overview

As explained in Chapter 1, the ISO/IEC 9126 quality model (referred to as

ISOQM in the remainder of this section), is a quality model that addresses all

the aspects of the software product. It is decomposed in six quality character-

istics that are further refined in sub-characteristics and add characterisation of

the in use quality structured in four characteristics. For each sub-characteristic,

measurable attributes are defined, as well as metrics dedicated to their evaluation.

Figure 11.1: ISOQM explicited
metamodel

Figure 11.2: Related quality assess-
ment metamodel concepts

As shown in Figure 11.1, expressing an explicit metamodel for the ISOQM is

straightforward. The main concepts of the quality metamodel are characteristics

that may be refined in sub-characteristics associated to attributes, themselves

linked to metrics. The concepts illustrated in Figure 11.2 are concepts from

the MoCQA quality assessment metamodel that may be aligned with the con-

cepts of the ISOQM. As we may see, quality issues may be used to represent

characteristics and sub-characteristics. Attributes have the same function in the

two metamodels (although the quality assessment metamodel distinguishes base

from derived attributes). Finally, the method concept of the quality assessment

metamodel encompasses the notion of metrics, with a more generic scope. The

11.2. ISO/IEC 9621 quality model 191

comparison of the two metamodels shows that the ISOQM metamodel requires a

subset of the concepts of the MoCQA quality assessment metamodel. Indeed, the

MoCQA quality assessment metamodel provides the additional quality indicator

and interpretation rule concepts that are not explicitly required in the ISOQM

metamodel. In consequence, the quality assessment metamodel is theoretically

suitable to produce an ISOQM instance.

11.2.2 Instantiation

The most straightforward process to represent the ISOQM in a MoCQA model

would be to define 6 quality issues for each external and internal characteris-

tics, plus 4 others for each in use quality characteristic. However, we have to

duplicate the first 6 quality issues in order to differentiate external and internal

characteristics. The minimal number of quality issues is thus 16. Defining the

scope of those quality issues is also not trivial without actual requirements from

the stakeholders. If we define the scope as ‘the software product’, the resulting

MoCQA model will not provide a really meaningful assessment due to the ex-

tent of this scope. If we decide that a smaller scope has to be defined (design,

code, etc.), this will induce a duplication of the quality issues. There is no hint

about any computation involving the subcharacteristics and, consequently, all the

characteristic-inspired quality issues will be composed (not aggregated). Regard-

ing the assessment models, no indication about how to link the various metrics

assessing the attributes and the subcharacteristics except a ‘participate to’ kind

of relationship is provided. Therefore, no quality indicators will be part of our

MoCQA model.

The instantiation of the project component raises even more questions. The

definition of software product used in ISOQM is very large and would require the

definition of many artefacts in order for the MoCQA model to be relevant.

Finally, the instantiation of the measurement component also reveals a need

for more specific goals. As a matter of fact, the metrics described in [ISO/IEC,

2001b;c;d] are described in very generic terms and need a certain amount of

specialisation (they are more like templates for metrics). For instance, the metric

response time defined as an efficiency metric has for defined purpose “what is the

estimated time to complete a specified task?”. This metric could be applied to

many different in use behaviours and taking all these possibilities into account

would increase the number of measurable entities.

The instantiation is thus not impossible practically but requires an actual

environment in order to answer some questions and provide the necessary con-

straints to create a ISOQM-based MoCQA model.

192 Chapter 11. Operationalisation of quality models

11.2.3 Results

The previous section shows that it is possible to generate a MoCQA model that

translates the ISOQM, provided that some constraints are verified. The conclu-

sion that may be drawn from this attempt is that a complete instantiation of

the ISOQM would lead to a huge MoCQA model. One of the defining aspects of

MoCQA models is the increased level of detail required in the definition of the

measurable entities. The instantiation of a MoCQA counterpart of the ISOQM

would require a systematic description of all the aspects of the ‘software product’

(all elements involved in design, requirements, documentation, code, etc.) and

would lead to the duplication of quality issues of varying scopes (design, code,

etc.). Indeed, the software product as defined in ISOQM (see Chapter 3) rep-

resents a collection of many types of behaviours and artefacts in the context of

MoCQA.

The observation is also valid for the metrics associated to the ISOQM. They

are defined in a very general way that would require a lot of duplication (time of

response (base attribute) of each in use behaviour).

The question of how to reduce the size of this instantiation leads to two al-

ternatives. The first one consists in suppressing some branches and focusing on

the operationalisation of a single branch while keeping the ‘software product’ ap-

proach (e.g., functionality (quality issue) of the software product (scope)). The

second requires the specialisation of measurable entities (e.g., the complete struc-

ture of internal quality characteristics (quality issues) for the requirement-related

artefacts (scope)). In any case, these observations tend to reinforce the status

of ISOQM as a general quality model that calls for its systematic tailoring to

specific domains (as explained in Chapter 2) or at least an essential step of oper-

ationalisation to assess a ‘software product’ (as hinted in [Ortega et al., 2003]).

However, this attempt also reveals that the MoCQA framework is at least a

good support for this operationalisation. As explained in Chapter 6, the quality

assessment metamodel provides the structure needed to extract the hierarchical

organisation of the quality characteristics and define properly the part of the

software product that is targeted, as well as the stakeholders with an interest in

this quality issue. Regarding the measurement methods, the quality assessment

metamodel provides support for the specialisation of ISOQM generic metrics or

the replacement of these measures by more adequate metrics. As a matter of fact,

the effort made to instantiate a MoCQA version of the ISOQM makes parts of it

usable (almost as a off-the-shelf components) in any other MoCQA model. The

only additional process required is the more precise definition of the measurable

entities and of the scope of the quality issues in order to apply a ‘branch’ of

ISOQM to a given environment.

The customisation of ISO/IEC quality model (as well as all quality models

cited in Chapter 1 that have been derived from it) is therefore a valid option for

11.3. QualOSS documentation availability model 193

the support of the acquisition step of the MoCQA methodology.

11.3 QualOSS documentation availability model

11.3.1 Overview

The QualOSS documentation availability model (referred to as QDAM in the re-

mainder of this section), introduced in [Matulevicius et al., 2009], intends to pro-

vide some support for the assessment of the documentation quality, defined as its

ability to satisfy stated or implied needs of users in ISO/IEC 14598:1999 [ISO/IEC,

1999].

Instead of focusing on a quality assessment based on the content of docu-

mentation and determining its accuracy, the quality model proposes several char-

acteristics related to the form and determining completeness and availability of

different structural parts. The QDAM thus develops a systematic assessment

model that measures documentation availability according to its organisation,

structural completeness and information completeness.

Figure 11.3: QualOSS robustness and evolvability quality model

This quality model is a part of the larger effort performed within the QualOSS

project1. The focus of the QualOSS project has been to develop a quality model

1Quality of Open Source Software, project funded by European Commission under the FP6-

194 Chapter 11. Operationalisation of quality models

(Figure 11.3) designed to assess robustness and evolvability of open source soft-

ware projects. This open source context explains the relevance of a documen-

tation quality model. Indeed, in that context, stakeholders are numerous and

play various roles in the project. These roles are associated to different types of

knowledge and interests regarding project (e.g., users are both potential develop-

ers and/or maintainers). The documentation is therefore a crucial aspect of the

development process of open source projects.

Figure 11.4: QualOSS documentation availability model

As shown in Figure 11.4, the QDAM provides the set of characteristics and

subcharacteristics (respectively 1 and 2) that is expected from a quality model.

Additionally, it provides the methodological guidelines to provide an indicator

for these characteristics.

Figure 11.5: QDAM explicited
metamodel

Figure 11.6: Quality assessment
metamodel concepts

Figure 11.5 shows an explicited metamodel of the QDAM. The QDAM meta-

model provides the same structure of characteristics and sub-characteristics as

the ISOQM does. However, indicators are linked to the sub-characteristics, by

way of formulas. Each indicator is associated to thresholds designed to pro-

vide an meaning to the value. Each formula relies on several base attributes to

compute the related indicators. Each base attribute is evaluated by a metric. Fig-

ure 11.6 shows that concepts of the QDAM and the MoCQA quality assessment

2005-IST 5 Framework, Contract number N33547.

11.3. QualOSS documentation availability model 195

metamodel may be aligned. Indicators and formulas may be expressed through

quality indicators and assessment models, respectively, while (sub)characteristics

may be translated in quality issues. As in the case of the ISOQM metamodel,

the QDAM metamodel constitutes a subset of the MoCQA quality assessment

metamodel. In consequence, the quality assessment metamodel is theoretically

suitable to produce an QDAM instance.

11.3.2 Metamodel Instantiation

According to the structure of the QDAM, the main quality issue of the MoCQA

model is ‘availability’ and its scope may be defined as the ‘documentation’. It

is a composed quality issue, which means that the model will never produce a

single quality indicator providing an assessment of the quality concept named

availability. Instead, the evaluation of availability will rely on a tuple of child

quality issues. The first of these quality issues is named ‘information availability’

and has the same scope has ‘availability’. In the meantime, Figure 11.4 does not

explicitly show the actual number of quality issues required. The quality charac-

teristic ‘documentation type availability’ requires to scan the types of documents

and will result in a different quality issue for each of them. Figure 11.7 shows

that 12 types of product are considered. The MoCQA model therefore requires

Figure 11.7: QDAM targeted artefacts

196 Chapter 11. Operationalisation of quality models

12 quality issues named ‘document type availability’ with a different scope for

each of them (which will be the type of document listed in Figure 11.7). The

resulting MoCQA model will in fact display 13 quality issues.

The QDAM defines two indicators (in the general sense),

DTA =
DF

DN

and

DIA =

∑DN
i=1 (dori + dcoi)

2DN

that will translate into assessment models for our quality issues. The issue

‘information availability’ will have DIA as an assessment model. The 12 ‘docu-

mentation type availability’ issues will be associated with a DTA. The resulting

quality indicators will be associated with a ratio scale. A way to interpret the

indicators is already provided by the QDAM. It states that the indicators (and

thus the quality indicators of our MoCQA model) are a percentage and provides

thresholds and an associated meaningful characterisation. These elements will

translate directly into interpretation rules.

The project-related component is very straightforward due to the effort of

clarification provided by the QDAM in terms of measurable entites. We have to

define 12 resources that are all artefacts, all documentation-related and expressed

in non formal written (likely English) language. The maturity level and level of

abstraction are not relevant in this context.

Then, three different base attributes have to be taken into account: document

organisation (dor), document completeness (dco) and an implicit base attribute

that we will call ‘presence’ (pres). The first two will be associated with estimation

methods (checklist and count of the answers) that will produce measurement

values within a ratio scale and will be used in the DIA assessment model. The

last one will be associated with a simple measurement method (i.e., the entity

produces a Y or 1 if available.) that is associated with an ordinal scale (the only

possible values are ‘present’ or ‘absent’). Each DTA assessment model uses this

attribute by counting the number of Y or 1 (DF, document found) with regard

to the whole number of considered documents (DN).

11.3.3 Results

The previous section shows that it is possible to generate an instance of the quality

assessment metamodel (i.e., a MoCQA model) that reflects all the aspects of the

QDAM. This process of instantiation leads to several observations.

First, the QDAM as it is presents many aspects of a MoCQA model since

it provides a clear definition of the targeted resources (or measurable entities)

and a complete measurement method for each of them on top of a structured set

11.4. Discussion 197

of characteristics and subcharacteristics. These (sub)characteristics may be con-

verted almost directly in quality issues since they possess a clear scope and have

just to find a suitable stakeholder in an actual context. The MoCQA counterpart

of the QDAM only provides a more systematic classification of all the concepts

involved as well as some further detail found in [Matulevicius et al., 2009] or

simply by deduction.

Consequently, when the acquisition step relies on the customisation of the

QDAM, it provides a structurally sound and coherent MoCQA model, which

means that all the essential concepts, methods and relationships are provided by

the QDAM and the MoCQA counterpart just provides an additional layer of in-

formation. The limitation of this method is that we cannot infer any information

about the overall relevance of the QDAM in term of quality assessment. The in-

stantiation process only concerns structural properties and does not address any

semantic concern. However, the overall framework provides a valuable support

for the inclusion of the QDAM in a quality assessment life-cycle.

Finally, it is interesting to notice that once this conversion step done, the ex-

amined quality model (or any part of it) can be used directly in any other MoCQA

model. For instance, it would be easy to insert the information availability qual-

ity issue defined in the QDAM in a quality model focusing on maintenance with

no risk of corrupting its relevance since all important aspects are clearly defined

during the instantiation process.

11.4 Discussion

Regarding the expressiveness criterion of our validation protocol, the quality mod-

els studied were successfully translated into MoCQA models. The process did not

encounter any structural problem. The main limitation of the process is the fact

that without proper hypotheses on the stakeholders’ requirements, quality mod-

els with a larger scope result in large MoCQA models. However, the occurrence

of this issue is unlikely in a real context since stakeholders are supposed to be

part of the process and help define which quality issue is required or not.

Regarding the integrability criterion of our validation protocol, the case study

shows that the customisation of existing quality models is a viable method to

support the acquisition step. As explained before, the MoCQA framework relies

on quality models as structured catalogues of possible quality issues. The design

of a MoCQA model in collaboration with the stakeholders has the stakeholders

consider various options and the way they apply to their context (i.e., the need

to define a scope for the quality issue). Although the process remains non trivial,

the support of the quality assessment metamodel and the information needed to

instantiate it allow for a better understanding of the quality model that is being

used. The process is performed in a structured way, with a clear goal in mind.

198 Chapter 11. Operationalisation of quality models

This process is arguably more beneficial than a standard customisation process,

since it forces the quality assurance team to adopt an operational perspective

while customising the model.

Additionally, this process allows for the creation of a catalogue of reusable

and independent elements that may be included in subsequent MoCQA models.

11.5 Threat to validity

A threat to validity regarding this case study is the fact that only 2 quality

models were studied. Therefore, the study does not demonstrate that quality

models may systematically be used as easily as an input for MoCQA models.

However, the 2 quality models chosen have been selected as representative of the

two main categories of hierarchical quality models. Additionally, the ISO/IEC

quality model already includes many features of previous quality models. As

such, the case study provides enough illustration that any quality model defined

as a hierarchical structure of quality factors may potentially be translated into a

MoCQA model.

A second limitation of the study is that the instantiation process has not

been performed with actual stakeholders. The study therefore cannot prove or

disprove that the process of acquisition would actually help the stakeholder elicit

their needs more precisely in an actual context.

Chapter 12

Quality of software architecture

This chapter describes a theoretical case study that illustrates the integrability

and the exploitability of the MoCQA framework at an early stage of development.

The case study exemplifies the fourth acquisition method (i.e., using a comple-

mentary quality approach) described in Chapter 6 and focuses on the quality of

software architecture.

12.1 Context

As explained in Chapter 6, using the MoCQA framework in conjunction with

non-analytical quality assessment methods is one of the solutions to strengthen

the acquisition step of its quality assessment methodology. Scenario-based quality

assessment methods are especially promising approaches regarding the comple-

mentarity with the MoCQA framework in the context of software architecture.

Similarly to scenario-based approaches, the MoCQA framework allows an

explicit description of the software architecture and integrates the notion of im-

plication of the various stakeholders, making the two approaches compatible.

Besides, a limitation of scenario-based methods is the fact that they are not yet

integrated with metric-based approaches [Koziolek, 2011]. Such methods could

therefore benefits from their integration into the framework.

Concretely, the case study described in this chapter investigates the comple-

mentarity between the MoCQA framework and the Architecture trade-off anal-

ysis method (described in Section 12.3). The case study then elaborates on a

case study addressing ATAM (i.e., the BCS case study [Kazman et al., 2000])

to demonstrate the complementary between the two approaches, as well as the

advantages provided by their joint use.

199

200 Chapter 12. Quality of software architecture

12.2 Objectives

This case study pursues two main goals. First, it intends to illustrate the inte-

grability of our approach. In order to provide a good illustration of the criterion,

the case study aims to show that the acquisition step of the MoCQA framework

is applicable in conjunction with the selected non-quantitative quality assessment

method (i.e., ATAM). It also intends to show that the integration of the two types

of approaches helps limit the shortcomings of each of them. More generally, the

case study aims at demonstrating how the MoCQA framework may help bridge

the gap between metric-based and scenario-based approaches.

Additionally, the case study intends to illustrate the exploitability of the

framework during the design phase of the development life-cycle. In order to

do so, it seeks to show that the use of MoCQA helps improve software architec-

ture quality, when used in conjunction with ATAM.

12.3 Architecture trade-off analysis method

The architecture trade-off analysis method (ATAM) is a scenario-based approach

designed to reveal the level of satisfaction of an architecture towards particular

quality goals such as performance or modifiability. It also helps emphasise how

those quality goals interact with each other (trade-off). The final goal of an archi-

tecture evaluation using ATAM is to understand the consequences of architectural

decisions with respect to the quality attribute requirements of the system [Kazman

et al., 2000].

The ATAM is performed in 9 successive steps [Kazman et al., 2000]:

1. Present the ATAM. The method is described to the assembled stakehold-

ers (typically customer representatives, the architect or architecture team,

user representatives, maintainers, administrators, managers, testers, inte-

grators, etc.).

2. Present business drivers. The project manager introduces what business

goals are motivating the development effort and hence what will be the

primary architectural drivers (e.g., high availability or time to market or

high security).

3. Present architecture. The architect will describe the proposed architec-

ture, focusing on how it addresses the business drivers.

4. Identify architectural approaches. Approaches to the architecture are iden-

tified by the architect, but are not analysed.

5. Generate quality attribute utility tree. The quality factors that comprise

system “utility” (performance, availability, security, modifiability, etc.) are

elicited, specified down to the level of scenarios, annotated with stimuli and

responses, and prioritised.

12.4. Architecture analysis method with MoCQA 201

6. Analyse architectural approaches. Based upon the high-priority factors

identified in Step 5, the architectural approaches that address those factors

are elicited and analysed (for example, an architectural approach aimed at

meeting performance goals will be subjected to a performance analysis).

During this step architectural risks, sensitivity points, and trade-off points

are identified.

7. Brainstorm and prioritise scenarios. Based upon the exemplar scenarios

generated in the utility tree step, a larger set of scenarios is elicited from

the entire group of stakeholders. This set of scenarios is prioritised via a

voting process involving the entire stakeholder group.

8. Analyse architectural approaches. This step reiterates step 6, but here

the highly ranked scenarios from Step 7 are considered to be test cases for

the analysis of the architectural approaches determined thus far. These

test case scenarios may uncover additional architectural approaches, risks,

sensitivity points, and trade-off points which are then documented.

9. Present results. Based upon the information collected in the ATAM (styles,

scenarios, attribute-specific questions, the utility tree, risks, sensitivity points,

tradeoffs) the ATAM team presents the findings to the assembled stakehold-

ers and potentially writes a report detailing this information along with any

proposed mitigation strategies.

12.4 Architecture analysis method with MoCQA

In order to illustrate how the MoCQA framework might take advantage of the

integration between scenario-based analysis and metric-based assessment of soft-

ware architecture, we applied our framework to an example of use of the ATAM.

During the case study, the specific goal has been to integrate measures that

complement the scenario based ATAM evaluation. Precisely, this integration aims

to:

• Provide an objective and quantitative assessment of the quality goals at an

early stage of the development

• Ensure the traceability of quality aspects during the development

• Track the impact of architectural design decisions on quality

• Support the decisions regarding the design and/or the evolution of software

architecture

The case study used for this illustration is the BCS case study [Kazman et al.,

2000]. This evaluation addresses a system called BCS (Battlefield Control Sys-

tem) designed to be used by army battalions to control the movement, strategy,

and operations of troops in real time on the battlefield. This system is used to

202 Chapter 12. Quality of software architecture

illustrate a complete example of the ATAM. Throughout the BCS study, each

step of the ATAM is applied and commented.

12.4.1 Utility trees and MoCQA models

The first opportunity to integrate the ATAM into the MoCQA framework lies in

the fifth step of the ATAM and, more specifically, for one of its products: the

utility tree. The ATAM uses two mechanisms to elicit and prioritise scenarios:

utility trees and structured brainstorming. The two mechanisms complement

each other: while the brainstorming is used to consult the larger community and

let its members provide input about the architecture, the utility tree provides

a top-down approach designed to translate the business drivers of a system in

concrete quality attributes scenarios [Kazman et al., 2000]. The outcomes of the

two activities are compared in order to guarantee that all relevant scenarios have

been considered.

Utility trees are of particular interest because they adopt a hierarchical ap-

proach, allowing the refinement of rough quality goals into more specific and

concrete goals. The leaf nodes must be specific and concrete enough to allow

their prioritisation relative to each other. The ATAM proposes to prioritise the

concrete goals according to two aspects: On the one hand, the importance of the

goal and, on the other hand, the risk posed by this goal (i.e. how the architecture

team perceives the difficulty to achieve this goal). A rank (High, Medium of

Low) is assigned for each of these two aspects. Figure 12.1 shows the utility tree

designed for the BCS study.

Figure 12.1: BCS utility tree

The ATAM utility tree presents the same structure as a usual hierarchical

quality model. It is therefore straightforward to express this tree into a MoCQA

model that preserves its semantics. Translating one branch of the utility tree

12.4. Architecture analysis method with MoCQA 203

(performance branch) into a MoCQA model (see Figure 12.2), we observe that it

can be completely expressed and that this can be made by means of constructs

from the MoCQA metamodel quality package only. The translation relies on only

a part of the constructs available in the MoCQA metamodel, and thus represents a

part of the effort necessary to support a full metric-based and quality-model-based

approach. The MoCQA model shows that, in order to support a metric-based

approach, other inputs are needed for the assessment models.

Figure 12.2: BCS utility tree expressed with MoCQA constructs

Hereafter, following MoCQA methodology, we start by proposing a first mea-

sure designed to evaluate the level of satisfaction for one of this quality goal. In

order to do so, we can turn once again to the BCS case study that provides more

information than those provided by the utility tree alone. The BCS case study

reports that after a simple analysis (therefore not requiring any measurement),

it was already clear that the performance quality was mostly influenced by its

second sub-factor (inter-node message transfer). The measurable attribute re-

garding the performance (only referred to as att in the assessment model so far)

should therefore be the “response time”. In the followings, we therefore focus on

the quality issue qi001b of the MoCQA model illustrated in Figure 12.2. This

first proposal is then assessed towards the 4 goals defined in the beginning of this

section before it is refined according to the assessment results.

12.4.2 First proposal of quantitative assessment

Architecture description

The BCS study mentions that the architectural documentation covers different

views of the system (view of the subsystems components, sequence charts for

the exchange of messages between components, etc.) as well as the highest level

hardware structure which is provided in Figure 12.3. This information can easily

204 Chapter 12. Quality of software architecture

be expressed into a MoCQA model, each soldier or commander being an instance

of the artefact type “node” supporting a behaviour type named “message transfer”.

Figure 12.3: Hardware (deployment) view of the BCS

Measure definition

Now that the specifics of the scenario-based approach have been mapped into a

MoCQA model, the main goal is to find relevant measures that could be used in

order to show that the quality issues are satisfied. The MoCQA model, and more

specifically the effort provided to model its project-related elements, constrains

the choice of both an applicable and a relevant measure.

In the BCS study, considering assessment model amod002 (Figure 12.2) and

the fact that our current view on the architecture is a series of ‘node’ artefacts

(Figure 12.3) associated with ‘message transfer’ behaviours, the most straightfor-

ward way to provide a quantitative evaluation of the satisfaction of the quality

issue would be to assess directly, (i.e., by observing it), the response time for each

‘message transfer’ behaviour, as shown in Figure 12.4.

Observations

This measure is obviously an a posteriori control method that cannot be applied

during earlier stages of the development since the software system must be fully

implemented in order to be able the obtain the desired measurement values.

However, it is a first step towards complementarity between scenario-based and

metric-based approaches since it takes advantage of the effort made for the first

one in order to provide a relevant context for the second one. Besides, it provides

12.4. Architecture analysis method with MoCQA 205

Figure 12.4: Evaluation based on behaviour types

a metric-based testing protocol destined to ensure that the quality goals (elicited

through the scenario-based approach) have been achieved.

This first proposal does not appear to be fully satisfying. Our objectives

are not to just acknowledge a lack of quality but to help the development team

rely on the evaluation to support decisions leading to architectural quality. The

measures designed to complement the utility tree should therefore avoid relying

on behaviour types since these concepts are used to represent features of the

software system at runtime.

12.4.3 Second proposal of quantitative assessment

In order to provide a more useful quantitative assessment, a first refinement aims

to avoid relying on the behaviour be001.

Architecture description

We need to acquire more information from the BCS study and refine the way

we describe the architecture in the MoCQA model. Although the BCS study

does not provide such a precise information, we can extrapolate on the software

architecture of each node of the BCS and consider that there is at least one class

dedicated to the communication between nodes (i.e., formatting the message to

send, pushing the message on the physical medium, etc.). Let’s add to this

206 Chapter 12. Quality of software architecture

Figure 12.5: Evaluation based on code-related artefact types

description the assumption that a single method of this class has been designed

to actually push the message towards the communication device.

Measure definition

As shown in Figure 12.5, this refinement of the description of the relevant part of

the software project in the MoCQA model provides us with the opportunity to

design a new candidate measure. This measure takes advantage of the ‘msgMan-

ager’ class and its ‘pushMsg’ method. The BCS study specifies that the sole factor

influencing the response time during inter-node message transfer is the transfer

12.4. Architecture analysis method with MoCQA 207

speed of the communication device that handles the transfer. Since this speed is

known, it is possible to compute a threshold that represent the length in bits of

the largest message that can be transferred in 1 second. Based on this threshold,

we can define a measure of the response time based on the ‘throughput’ attribute

of the ‘pushMsg’ method. This attribute may be evaluated thanks to the length

(in bits) of the ‘Msg’ string that is pushed towards the communication device.

By confronting this throughput with the predefined threshold, we can evaluate

the response time (now a derived attribute).

Observations

This second attempt brings us closer to our objectives. The quality assessment

process no longer relies on the observation of runtime behaviours. It could be

used to provide support before implementing and testing the full software system

since it helps locate the part of the architecture (i.e., the source code) where

decisions have to be taken in order to avoid poor assessment results.

However this new measure is still not completely satisfying. The main flaw of

the measure is that, in order to be fully efficient, it would still require testing (at

least unit testing). As a matter of fact, the introduction of the threshold guar-

antees that we do not need to actually send messages to measure our attribute.

Still, heavy unit testing would be inevitable to get a perfect evaluation. In-

deed, the throughput attribute is expected to be different for each message sent

and therefore, cannot be estimated as-is on the basis of code measurement alone.

Regarding the decision support aspect, this second measure remains an im-

provement: it is possible for the development team to take architectural decision

based on the definition of this measure. For instance, we could guarantee an

acceptable throughput attribute by examining all the classes interacting with

‘msgManager’ and check that the messages they provide do not exceed the maxi-

mum length acceptable, according to the threshold. Another (and better) solution

would be to impose constraints on the code responsible for messages formatting

to ensure that any message provided to ‘pushMsg’ has a desirable length, even

though this could require the message to be sent in multiple transmissions.

12.4.4 Third proposal of quantitative assessment

In order to provide a better support for decision purposes, we have to provide

a measure that would be applicable earlier in the design process and would not

require any testing in order to be computed. Once again, providing a better

characterisation of our project-related constructs in the MoCQA model is the

key to this refinement.

208 Chapter 12. Quality of software architecture

Architecture description

The BCS study mentions the existence of chart diagrams for the message transfers

as well as diagrams focusing on the structure of the code (i.e., class diagrams or

equivalent). These artefacts are the earliest architecture-related artefacts avail-

able. We can take advantage of the derivation type of our model to explicit

how those artefacts relate to our quality assessment problem. We know from

the previous attempt that the ‘msgManager’ class is the crucial part of the code

regarding our quality issue. In order to justify the reason for measuring other

artefacts, we have to trace their relationship with ‘msgManager’. This relation-

ship is a derivation named “implementation”, meaning that in order to produce

the ‘msgManager’ class, both the class diagram and the sequence chart have been

used by the developers as a base to build upon.

Measure definition

As shown in Figure 12.6, this new refinement allows the redesign of our candidate

measure. The derived attribute att001 is still present but now relies on two base

attributes. The first base attribute is the throughput of the sequence chart that

we measure thanks to the length of the largest message present in the sequence

chart. The second base attribute is the throughput of the ‘Msg’ attribute of the

class diagram, that we evaluate by simple inspection of the upper boundary of

the type definition. In this context, the function that links the attributes has to

take into account both attributes to produce an estimation of the response time

: it confronts the greater of the two values to the threshold.

Note that, in the MoCQA model, that assessment model am002 is now a

prediction model since it relies on internal attributes to provide a quality indicator

for an external attribute. It does not actually measure the actual response time

but provides a prediction of the worst response time possible, given the input

values.

Observations

At this stage, the MoCQA model complements the ATAM utility tree in an effi-

cient way. It allows the support of efficient decisions regarding the architecture

(e.g., revising the sequence chart in order to limit its throughput so that the

throughput of ‘pushMsg’ is correct and result in a good response time). Besides,

all these decisions may be taken at an early stage of development. Provided

that the implementation is executed correctly, these decisions will results in ade-

quate quality aspects regarding the expectations of the stakeholders for the final

product.

12.4. Architecture analysis method with MoCQA 209

Figure 12.6: Evaluation based on design-related artefact types

210 Chapter 12. Quality of software architecture

12.5 Results

As illustrated in Section 12.4, it is possible to support the ATAM with metric-

based methods thanks to the MoCQA framework. This section illustrates the

benefits revealed by the case study regarding this integration in the context of

software architecture quality.

12.5.1 Support for utility tree processing

As explained in Chapter 9, the XOCQAM language provides a better support

for MoCQA models to be easily queried and analysed. Regarding utility trees,

once integrated in a XOCQAM document, the possibility to query the model

becomes a key advantage for the subsequent analysis. For instance, the ability to

easily filter quality issues and their dependent elements (attributes, measurable

entities, etc.) by priority level allows us to easily guide the measurement process

as it occurs. Similarly, the ability to easily (and automatically) detect potential

conflict between quality issues (e.g., two quality issues depending on the same

attribute but associated to two quality indicators that require opposite values for

this attribute) represent an efficient mechanism to anticipate poor results of any

trade-off.

12.5.2 Support for quality traceability

Section 12.4 also shows that the approach provides a good insight regarding

traceability of quality aspects along the development. In our case study, the use

of measures #2 (Section 12.4.3) and #3 (Section 12.4.4) provides a good example

of such insights. For instance, during an hypothetical maintenance of the system

illustrated in Section 12.4, if the performance of the system were to be perceived

as unsatisfactory, measures #2 and #3 would help identify which part of the

architecture has to be refactored.

Indeed, if measure #2 and #3 display poor results, one can deduce that ei-

ther the class diagram or the sequence chart should be revised in addition to the

‘msgManager’ class. On the other hand, good results with measure #2 coupled

with poor results with measure #3 would indicate that the refactoring process

should focus solely on the class and point out that the implementation is the step

where quality aspects were lost. If both measures display satisfying results, the

problem may be linked to the physical medium itself. This allows a better under-

standing of how quality aspects evolves through the various level of abstractions

constituting the architecture and through time. Therefore this approach provides

a complementary viewpoint to the rationale recording principle [Budgen, 2003]

and could therefore be used in conjunction with existing frameworks focusing on

this aspect (as in [Gilson and Englebert, 2011]) to provide a total traceability of

architectural rationale, design decisions and quality aspects.

12.5. Results 211

12.5.3 Support for architecture refactoring decisions

The integration of the metric-based and scenario-based approaches present a good

potential regarding the motivation of subsequent decisions regarding model refac-

toring. The scenario-based approach provides a precise definition of the quality

goals while the metric-based approach provides information on how those goals

will be monitored. The MoCQA model provides an integrated mechanism to keep

track of all this information. In our case study, the MoCQA model shows useful

in order to make sound decisions (e.g., measure #3 hints at the necessity to ad-

dress the size of messages in the sequence chart and the class diagram in order to

constraint the implemented code). As explained in Chapter 8, the measures used

in the context of a MoCQA model do not always need to provide actual measure-

ment results in order to prove useful: the awareness of their existence and the

way they are computed may suffice to lead to good architectural decisions.

12.5.4 Support for architecture design decisions

As explained in Chapter 7, the third step of the MoCQA methodology (tailoring

of the measurement plan) is necessary in order to actually use the MoCQA model.

This step requires the identification of measured entities and the definition of con-

crete measurement procedures to support the conceptual measurement methods.

This process can be automated to a certain level: if the name of the artefact

type is simple, tagging all occurrences of this type among all the resources of

the project as measurable entities can be done automatically with an adequate

tool-support (e.g., Java class, Java class name X). In the case of more compli-

cated properties (e.g., Java classes supporting behaviour X), a manual inspection

of the code remains necessary in order to tag the adequate resources. However,

the pay-off for this task is worth it. In conjunction with the MoCQA model,

team members have the opportunity to be constantly aware of the quality issues

as they refactor or implement a tagged resource. They can therefore estimate

the potential impact of their decisions and actions on the overall quality of the

software system. In the case of software architecture quality, this property proves

even more useful. In our case study, the ability to know the maximum length of

the transferred messages as the coding occurs is a crucial element contributing

to the overall quality of the software project.

12.5.5 Flexibility of the approach

The iterative approach of the MoCQA framework provides a way to be flexible

regarding quality assessment. For instance, measure #3 requires an effort to

plan the properties of the code during the design (i.e., decide that the code

will contain a class named ‘msgManager’ and a method named ‘pushMsg’). If

a different architectural choice appears during the implementation phase, the

212 Chapter 12. Quality of software architecture

MoCQA model will be revised in order to adapt to the architecture change during

the next quality cycle, ensuring that the traceability of the quality aspects is still

possible.

12.6 Discussion

In this chapter, we investigated the potential of the Model-Centric Quality Assess-

ment framework to support an efficient quality assessment of software architecture

through the integration of a scenario-based evaluation method and metric-based

assessment.

Our case study using the architecture trade-off analysis method (ATAM)

shows a satisfying potential to achieve this goal. It therefore demonstrates the

integrability of the MoCQA framework in an context where the ATAM is used.

Regarding the exploitability of the framework, and especially at early stages

of the development, the case study provides several positive elements. Provided

that the measures are defined on the basis of a relevant structured description of

the architecture and that an adequate tool-support is provided, MoCQA models

offer a good support for:

• Providing an objective and quantitative assessment of the quality goals at

an early stage of the development.

• Ensuring the traceability of quality aspects during the development.

• Tracking the impact of architectural design decisions on quality.

• Supporting the decisions regarding the design and/or evolution of the soft-

ware architecture.

Therefore, the results tends to show that the MoCQA framework is exploitable

in this context.

12.7 Threat to validity

Although the results should be considered relevant regarding the two criteria it

aims to assess (i.e., integrability and exploitability), several limitations of the

case study itself have to be taken into account in their interpretation.

First, our case study limits its scope to the ATAM approach. Although they

share the same core principles, other scenario-based methods to quality assess-

ment (such as the ALMA method [Bengtsson et al., 2002]) should be investigated

in order to generalise the results of the case study.

Another issue is the theoretical nature of the case study itself. First and

foremost, the use of the BCS case study as a basis for this case study implies a lack

of information on some important elements of the actual architecture. Although

the assumptions made regarding the structure of the code sounds reasonable, their

12.7. Threat to validity 213

speculative nature remains. Going past the simple positive reinforcement and

actually proving the exploitability of the framework at early stage still necessitates

practical studies in actual contexts

The final issue is the scalability of the approach. On more complex cases, the

approach could be more demanding regarding the effort to produce a MoCQA

model with the right level of detail. This aspect will be improved through better

tool support. As hinted by the case study, the more the tool support will be

refined, the better we will be able to take advantage of the MoCQA framework

during software development.

Chapter 13

Empirical studies

This chapter compiles three empirical studies performed in an academic context

during the course of this research. These case studies illustrate the adaptability,

the exploitability and the expressiveness of the MoCQA framework. Therefore,

they also exemplify concepts described in Chapter 5, 7 and 8.

13.1 Preliminary study

13.1.1 Context and objectives

This small exploratory study (reported in [Vanderose et al., 2010]) was designed

as a series of usability and acceptance tests for the quality assessment metamodel.

In the context of a software quality assignment, each student was asked to pro-

vide a series of MoCQA models designed to solve theoretical assessment-related

problems. The students were therefore inexperienced developers with little to

no knowledge about quality assurance. No actual assessment was performed on

the basis of these MoCQA models. However, each test (i.e., each quality-related

problem proposed to the students) was designed to represent a different category

of problems, calling for the use of specific constructs of the quality assessment

model. The goal of each test case was to assess the ability of students to provide

a syntactically and semantically correct MoCQA model that fitted the specific

context of the hypothetical quality-related problems. Regarding our validation

process, the criteria illustrated by this study is thus the expressiveness of the

framework.

215

216 Chapter 13. Empirical studies

13.1.2 Description

Before the tests were performed, the students were given the quality assessment

metamodel and basic explanations on the semantics of the constructs. For each

test, 8 groups of 2 students were confronted to a set of ten non trivial assessment-

related problems for a given medium-sized software project (e.g., quality of the

implementation of the design, level of completion of the project, robustness of

non functional aspects of the project, etc.). The aim was to design a MoCQA

model to structure and streamline each of those assessment-related problems.

Using the quality assessment metamodel, the groups were thus asked to propose

a hierarchy of quality issues as well as measurement or estimation methods to

monitor them and to characterise the measurable entities. The relevance of their

MoCQA model was assessed through expert advice (i.e., the advice of the teacher

and teaching assistant).

13.1.3 Results

At the end of the assignment, all the designed MoCQA models were assessed

by the teacher and teaching assistants. For each MoCQA model, the evaluators

checked that:

1. The semantics of each construct of the metamodel was respected in the

instantiated model;

2. The MoCQA models were structurally valid (i.e., that no infringement re-

garding the associations between constructs was detected);

3. No violation of the content integrity (Chapter 8) was detected.

The relevance of the quality assessment process that had been modelled was

not taken into account in the validation process.

Regarding these aspects, the designed MoCQA models of the 8 groups were

considered correct by the evaluators. Indeed, for each test case, students were

able to provide a syntactically and semantically valid set of MoCQA models.

Due to the small available data set, no quantitative data was collected during

this case study since the statistical relevance would have been insufficient. How-

ever, the students were informally interviewed at the end of the study. The aim

of the interview was to report the problems they encountered during the design

step. 6 groups out of 8 reported that the main hindrance was to select adequate

evaluation methods to integrate into the MoCQA model.

13.1.4 Discussion and threat to validity

This study should be regarded as a preliminary testing of the quality assess-

ment metamodel. The fact that the students were inexperienced regarding soft-

ware quality but were able to provide coherent (although not always relevant)

13.2. Preliminary study: Quality of OSS 217

MoCQA models tends to show the expressiveness of the framework. Indeed, the

set of constructs provided by the quality assessment metamodel were sufficient

and semantically well-defined enough to allow the subjects to start applying the

approach.

Although a controlled experiment is still required in order to demonstrate

such statements, the results of the interviews performed during this case study

tend to show that the framework help newcomers understand quality and software

measurement concepts more easily due to the fact that they experiment visually

with these concepts while achieving their MoCQA model.

Besides, the fact that a majority of students experienced difficulties regarding

the selection of assessment and evaluation methods tends to show the relevance

of tools such as QuaTALOG.

A threat to validity of this study is the small number of subjects that par-

ticipated in the study as well as the lack of formalisation of the data collection.

However, as an early testing protocol, this study should be considered positive

regarding the expressiveness of the framework.

13.2 Preliminary study: Quality of OSS

13.2.1 Context and objectives

Another exploratory study was conducted with students in the context of the

same software quality course. For this study, 9 groups of (2-3) students were

asked to assess and compare 2 open-source and 1 commercial productivity suites

using the MoCQA framework. As for the previous study, the students were

inexperienced developers with little to no knowledge about quality assurance. A

complete quality assessment cycle was performed by each group. The goal of the

study was to check that students would be able to perform the quality assessment

cycle, from the elicitation of the quality requirements (on two hypothetical cases)

and towards a sound comparison leading to a decision regarding the proposed

case. Another objective was to determine if the 9 groups would come to similar

(or at least non contradictory) conclusions. Regarding our validation process, the

criteria illustrated by this study are the expressiveness, the adaptability and the

exploitability.

13.2.2 Description

Before the study was performed, the students were given access to a MoCQA

deployment guide. Two hypothetical organisational contexts (complete with hy-

potheses on the budget constraints, number of employees, etc.) were defined.

For each context, groups were assigned the task to provide MoCQA models to

assess the fittest productivity suite among three options (i.e., MS Word, Open

218 Chapter 13. Empirical studies

Office, Libre Office), according to the hypothetical context-related requirements.

The acquisition step was performed with one teaching assistant acting as the

representative of the organisation described. Once the quality assessment cycles

performed, groups were invited to present and discuss their results in front of

each other. Additionally, the relevance of their models and interpretations were

validated through expert advice (i.e., advice from the teachers).

13.2.3 Results

During the course of the study, each group was able to deploy the framework and

produce MoCQA models (one for each productivity suite) that were considered

syntactically and semantically valid, according to the same validation process as

the previous case study. However, the relevance was taken into account this time.

The models were judged adapted to the quality-requirements by the 4 experts.

The hypothetical context in which the assessment took place was designed

by the teachers so that only one of the assessed productivity suites should be

regarded as the fittest solution (i.e., Open Office). During the course of the

study, the teaching assistant acting as stakeholder was in charge of providing

this information by answering the questions of the students. At the end of the

assessment process, 7 out of 9 groups provided the decision expected by the

evaluators on the basis of their MoCQA model.

No additional quantitative data was collected during this case study.

13.2.4 Discussion and threat to validity

This study should also be regarded as an early testing of the MoCQA framework,

focused on the exploitability, expressiveness and adaptability.

Similarly to the previous study, the fact that the groups were able to provide

syntactically and semantically valid MoCQA models tends to show the expressive-

ness of the framework. The fact that the MoCQA models were judged relevant

for the context tends to show its adaptability.

The fact that 7 groups provided the expected assessment reinforces the con-

fidence regarding the exploitability. Although 2 groups drew controverted con-

clusions, the reason was identified as the inclusion of irrelevant external factors

(such as personal opinions of the students, hypotheses regarding the future of one

of the productivity suites, etc.) and not related to the assessment of the software

products themselves.

This study shares the same threats to validity as the previous one (i.e., a small

number of subjects and a lack of formalisation of the data collection). However, as

an early testing protocol, this study should also be considered positive regarding

the expressiveness, adaptability and exploitability of the framework.

13.3. Support for software maintenance and evolution 219

13.3 Support for software maintenance and evolution

This section describes an empirical study performed on student projects. The

study investigates the potential of the MoCQA framework to be used as a support

of the maintenance and evolution of software. As such, it provides an illustration

of the exploitability, the adaptability and the expressiveness of the framework.

The empirical study follows the guidelines on how to conduct an empirical study

proposed in [Wohlin et al., 2000] and also illustrates how the steps defined by

these guidelines match the steps of the MoCQA methodology. The remainder of

this section is an extended version of [Vanderose et al., 2012].

13.3.1 Planning of the study

Concretely, the study we performed was designed to show that the way measured

entities are defined (and therefore identified during the measurement process)

influences the accuracy of the quality assessment performed with these measures.

Secondly, the study intended to show that ill-defined entities prevent measures

to achieve their potential as support for the maintenance of software projects.

The planning of the study has been defined as follows:

1. Selection of candidate software projects to evaluate

2. Design of a MoCQA model/of customised measures

3. Identification and classification of the measurable entities

4. Application of the measurement procedures

5. Analysis and evaluation of the results

The above process was repeated twice. First, we defined two customised

measures (that we translated into a simple MoCQA model for comparability)

and we assessed their potential to guide the maintenance process. Then, we

repeated the study with an improved (refined) version of the MoCQA model

in which the connections between software artefacts were explicitly taken into

account. We then observed how the refinements impacted the usefulness of the

measures regarding the maintenance process.

The quality characteristic that we focused on is completeness. Although

the notion of completeness appears intuitively relevant as far as quality is con-

cerned, this characteristic does not appear explicitly in ISO/IEC 9126 quality

model [ISO/IEC, 2001a]. As shown in Chapter 1, the completeness characteristic

originates from McCall’s model [Mccall et al., 1977].

The choice to focus on completeness instead of one of the characteristics orig-

inating from the ISO/IEC 9126 standard is due to the context of the study. The

evaluation of student projects implicitly relies on the correction and completeness

attributes. McCall’s model is therefore adapted to the quality assessment in an

academic context.

220 Chapter 13. Empirical studies

This step corresponds to the quality requirements elicitation activities of the

acquisition step of the MoCQA methodology.

13.3.2 Design of the study

Selection of projects

The selection of projects for the experimental study was based on 3 criteria:

1. each project should have the same set of functionalities

2. required documentation should be available

3. an existing quantitative evaluation should be available

These criteria lead to the selection of 6 medium-sized student projects. These

project had been developed in the context of a software engineering assignment,

by teams of 4 to 5 students having little practical experience. However, the stu-

dents had already acquired the skills needed at the theoretical level (i.e., database

engineering, UML modelling, Java programming, etc.).

The course itself attempts to simulate a plausible real-world complete software

life-cycle, from requirements engineering to the maintenance phase. In this con-

text, the teacher and 3 teaching assistants act as manager and senior consultants

with 2 other teaching assistants acting as clients. The latter are independent

from the software engineering course (i.e., coming from a different research cen-

tre). During the assignment, the students are given three months to implement

a complete stock exchange application. In this context, the resulting projects are

expected to present major flaws.

The availability of an existing quantitative evaluation is therefore guaranteed

since the 6 projects are evaluated in the context of the usual course evaluation.

However, this evaluation does not rely on software measurement. Instead, the

evaluation is conducted on the basis of expert inspection (the teacher and 3

teaching assistants) and client satisfaction (2 teaching assistants). Additionally,

the projects are evaluated through a testing phase based on a specific test plan

developed by the teaching team and unknown to the students. The outcome of

this testing phase is also used as a basis for a subsequent maintenance phase of

the projects. Guidelines to conduct the maintenance phase are provided by the

teaching team after analysis of the results.

In this study, we used the evaluation and guidelines issued from the course

evaluation as a control mechanism to ensure that the results provided by the mea-

surement methods were effectively coherent with the evaluation of the projects.

During this step, we gathered knowledge on the environmental factors of the

investigated context, therefore completing the acquisition step of the MoCQA

methodology.

13.3. Support for software maintenance and evolution 221

Design of MoCQA models

In order to create a hierarchy of quality goals of our completeness MoCQA models,

we translated the relevant factors of McCall’s quality model to provide a hierarchy

of quality issues. However in order to fit our specific quality-related needs, we

had to refine the completeness quality issue.

Figure 13.1: Completeness quality factor decomposition

As Figure 13.1 shows, the global completeness quality issue has been refined

in two sub-issues: completeness of the requirements and completeness of the

test plan. In the context of an instantiation of the full McCall’s quality model,

the completeness quality issue would therefore be a sub-issue of the correctness

quality issues. We disregarded other potentially important completeness factors,

such as code completeness and design completeness. The main reason for ignoring

these factors was to keep the exploratory study manageable.

Note that McCall’s completeness is not applicable to the context in the way

it was originally defined. First, our main goal is to provide objective measures

for the assessment of the projects whereas McCall’s defined metrics are often

dismissed as being too subjective [Ortega et al., 2003].

Secondly, McCall’s model has been designed from a strict software product

point of view, that is, focused exclusively on the source code. In contrast, the

student projects in our study are complex model-driven projects that require the

inspection of other aspects (i.e., requirements, test plan, etc.)

Therefore, the MoCQA framework was used to redefine a customised model

using McCall’s hierarchy of quality factors/criteria with more objective measures

specifically defined for the context.

During our study we successively assessed two different completeness MoCQA

models and their associated measures: we started with a simple, coarse-grained

222 Chapter 13. Empirical studies

version, followed by a refined, more complete, and more fine-grained version that

designed to provide more exploitable results.

First version of completeness MoCQA model

For the first MoCQA model of our study, we actually designed two customised

measures before we translated them as MoCQA constructs. As such, we did not

follow the standard procedure described in Chapter 5. We therefore did not ben-

efit from the description of the project-related component of the MoCQA model

during the design of the measures. The two measures were designed logically but

do not rely on the specific constructs of the quality assessment metamodel. Once

the measures were defined, we translated them into MoCQA constructs and docu-

mented the project-related component afterwards. The resulting MoCQA model

is described below.

The project-related definitions of our first MocQA model are shown in Fig-

ure 13.2. They focus on 5 types of artefacts. Two main measurable entities are

defined: “requirements” and “test plan”. Those measurable entities are defined

in the MoCQA model as requirement-related and test-related artefact types, re-

spectively. Those two artefact types are large and thus possess a coarse level of

granularity. The three other defined measurable entities display a higher level of

detail: “use cases”, “use case scenarios” and “test cases”. These artefact types are

measured as collection of entities, as explained in Chapter 5.

The measurement-related definitions translate the customised measures

we designed prior to the MoCQA model. These measures had to remain simple

in order to verify that an increased level of accuracy (in the refined model) would

be due to more accurate descriptions of the entities. We chose to define simple

ratios inspired by SQuaRE’s internal quality measurement methods [ISO/IEC,

2011]. All the measurement methods defined are thus mere counting methods

(for the base attributes) associated with one measurement function that provides

a ratio of these two values. In Figure 13.2 and 13.3, the measurement methods

are hidden in order to keep the figures more legible.

As explained in Chapter 5, the definition of the measures in the MoCQA

model assumes that the measurement methods will be applied to each existing

measurable entity type conforming to the definition within the software project

environment. The measures defined for the “requirements” and “test case” are

applied to only one instance of each artefact since those types of artefacts have

unique instances.

As shown in Figure 13.2, the first measure we defined addresses the com-

pleteness of “requirements”. This measure, comp-req-1, is translated as a derived

attribute evaluated through the number of “use cases” (UC) and the number of

13.3. Support for software maintenance and evolution 223

Figure 13.2: Basic MoCQA model (measurement and project components)

“use case scenarios” (UCS):

comp-req-1 =
#UCS

#UC

This measure has a very simple measurement method and a very simple definition

of entities. No link between the use cases and the scenarios is defined.

We also defined a measure that focuses on the completeness of the “test plan”.

This measure, comp-test-1, is a derived measure based on the number of “use case

scenarios” and the number of “test cases”. The rationale behind this evaluation

is to check that enough test cases have been defined to cover all functionalities.

The function comp-test-1 is defined as:

comp-test-1 =
#TC

#UCS

This measure also has a very simple measurement method and a very simple

definition of entities. As with comp-req-1, no evidence of any link between a

given use case scenario and a given test case is provided in the definition of the

entities.

Second version of completeness MoCQA model

Figure 13.3 illustrates a refined version of the completeness MoCQA model. This

model was designed according to the standard procedure (i.e., the design of the

224 Chapter 13. Empirical studies

Figure 13.3: Refined MoCQA model (measurement and project components)

project-related component prior to the measurement-related component). Com-

pared to the previous version, it adds two new measurable entities that are defined

as derivation types.

The first derivation type is named “Use Case Scenarios (UCS) generation”. It

has a 1-to-many multiplicity since to each use case correspond many scenarios

with alternate cases. The derivation type is exogenous and vertical, since the

goal of the derivation is to provide a lower level of abstraction for each use case

(according to the taxonomy proposed in [Mens and Gorp, 2006]). The level of

automation is identified as manual since no automation of any kind has been

used in the projects.

The second derivation type is named“Test Case (TC) generation”. It captures

the fact that to each use case scenario corresponds at least one (but usually

more than one) test case to cover the functionality. The characterisation of the

derivation type is similar to the previous one, only with different sources and

targets.

Based on this improved completeness MoCQA model, we provided an im-

proved version of the completeness measures comp-req-1 and comp-test-1. This

time, the definition of the measures benefit from the modelling effort consented

regarding the measurable entities. In contrast with the previous ones, these two

measures have been refined using the specific constructs of the MoCQA model

13.3. Support for software maintenance and evolution 225

(derivation types) that helped define more precisely what we really intend to

measure.

Measure comp-req-2 is an improvement over measure comp-req-1 designed to

assess the completeness of “requirements”. It is defined as a derived attribute

evaluated through the number of “use case scenario generations” (UCSgen) and

the number of “use cases” (UC):

comp-req-2 =
#UCSgen

#UC

This measure still has a simple measurement method but the entities measured

have been described in more detail than for comp-req-1. Nevertheless, it remains a

naive vision of the problem compared to more sophisticated completeness models

such as [Firesmith, 2005].

Measure comp-test-2 is an improvement over measure comp-test-1 to assess

the completeness of the “test plan”. It is defined as a derived attribute based on

the number of “test case generations” (TCgen):

comp-test-2 =
#TCgen

#UCS

Measurement plan

Due to fact that the defined measures were relatively simple and to the fact

that the person in charge of the measurement process also participated to their

design, no particular efforts were made regarding the formalisation of the mea-

surement plan. The only caveat relates to the correct identification of which

measurable entities are to be considered due to the introduction of a derivation

type. The measurement procedure has to take into account that counting the

defined derivation (for the requirement completeness measures) translates as the

following algorithm:

UCSGen:= 0

UCSet:= Set of all existing UC

UCScenSet := Set of all existing UCS

WHILE UCSet not empty DO

CurrentUC := one element of UCSet

IF 1 elt linked to CurrentUC is found in UCSScenet THEN

UCSGen:= UCSGen + 1

Remove CurrentUC from UCSet

If more formalisation had been required, one of the derivation type removal tech-

niques described in Chapter 7 could have been applied.

226 Chapter 13. Empirical studies

Additionally, all measurement procedures were applied manually and verified

several times. This was made possible by the relatively small scope of the mea-

surement process. In the case of bigger projects, the measurement procedure

could have relied on a specific device (such as a traceability matrix) to perform

the measurement more easily.

Regarding the quality indicators, no assessment model was defined during

this study since the goal was to investigate the measures and not to provide an

indicator per se. However, a global completeness indicator was computed after-

wards as part of the analysis of the measurement data, for comparison purpose

(see Section 13.3.3).

13.3.3 Experimental study

Analysis of results for the first version of the completeness model

The measurement values collected during our study are presented in Table 13.1.

For each of the 6 student projects, the measurement values of comp-req-1 and

comp-test-1 are provided.

comp-req-1 comp-test-1

Project 1 1.02 2.41

Project 2 1.00 1.83

Project 3 0.77 3.24

Project 4 1.97 1.46

Project 5 1.00 1.63

Project 6 0.94 1.00

Average 1.12 1.93

Standard deviation 0.43 0.79

Median 1 1.73

Outliers 2 0

Table 13.1: Measurement values from the first version of the MoCQA model

According to the design of the functions defined for the derived attribute

(a basic ratio between base attributes) the measurement values should be inter-

preted as percentages, meaning that a value of 0.75 should be understood as“75%

complete”. However, the results from Table 13.1 can clearly not be interpreted

this way since comp-req-1 and comp-test-1 display overoptimistic completeness

assessment exceeding 100% completeness. Without a better interpretation of the

measurement values, those values would be misleading or useless.

A deeper analysis of the measurement definitions comp-req-1 and comp-test-1

provides an explanation. The measures comp-req-1 and comp-test-1 attempt to

produce a ratio of two unrelated types of entities. The amount of use case scenar-

ios is supposed to be more important than the amount of use cases by design, since

13.3. Support for software maintenance and evolution 227

any use case is refined into several scenarios (the same applies to the relationship

between scenarios and test cases). The ratio between the two amounts will almost

always produce values exceeding 1, except for very incomplete projects (such as

projects 3 and 6). Therefore, measures comp-req-1 and comp-test-1 should not

be interpreted as percentage but as the rather imprecise “anything under 1 is not

good” rule.

Analysis of results for the second version of the completeness model

The measurement values collected using the second version of the MoCQA model

are given in Table 13.2. For each of the 6 student projects, the measurement

values of comp-req-2 (improved version of comp-req-1) and comp-test-2 (which

improves upon comp-test-1) are provided. These measures provide more realistic

values.

comp-req-2 comp-test-2

Project 1 0.72 0.58

Project 2 0.76 0.54

Project 3 0.77 0.84

Project 4 1.00 0.62

Project 5 0.71 0.86

Project 6 0.74 0.62

Average 0.78 0.68

Standard deviation 0.11 0.14

Median 0.75 0.62

Inter Quartile Range 0.04 0.19

Outliers 1 0

Table 13.2: Measurement values from the improved version of the MoCQA model

Since all the measures were designed with the same basic formula (i.e., a

ratio between two amounts of entities), the difference between the two couples of

measures has to be related to the choice of the entities themselves and, therefore,

to the accuracy of their definition (i.e., project-related modelling).

In this case, the definition of the “UCS generation” derivation type (and the

“TC generation” derivation type) makes it possible to provide more precise mea-

surement definitions. By focusing on the generation of scenarios (or test cases)

based on each use case, measures comp-req-2 (or comp-test-2) count the amount

of use cases that are actually covered in the specifications (or tests). The ratio

between this amount and the amount of use cases makes more sense and may be

used to provide a correct completeness indicator, that may be interpreted as a

percentage and thus provides a more accurate quality assessment.

228 Chapter 13. Empirical studies

Comparing both versions

Figure 13.4 shows the boxplots for each measure, allowing the comparison of the

distributions of values obtained for each measure. A first observation we can

make is that there is much less variation for the measures based on the second

version of the MoCQA model.

Figure 13.4: Boxplots for each of the 4 measures

Table 13.3 provides the values for the global completeness indicators. The

global completeness indicators have to take into account the evaluation (estima-

tion or measurement) of requirements and test plan completeness (Figure 13.1).

The value comp-v3 provides a numerical representation of the teachers’ evalua-

tion as a percentage. This value has been computed on the basis of the scores

given to the groups at the end of the assignment. However, the score was modi-

fied in order to avoid the influence of all the factors unrelated to requirements or

test plan (i.e, the scores of unrelated aspects have been subtracted from the total

score before converting it into a percentage). Therefore, this can be assimilated

to a global completeness indicator.

In order to construct a global indicator on the basis of the measures defined in

Figure 13.2 and 13.3, we have to define the relative importance of requirements

completeness and test plan completeness. Moreover, this definition of weights

must be compatible with the definition of comp-v3 in order to allow the com-

parison between the indicators. In the computation of comp-v3, the emphasis

on requirements is equal to the emphasis on the test plan. Therefore, the value

comp-v1 is the average of comp-req-1 and comp-test-1 and the value comp-v2 is

the average of comp-req-2 and comp-test-2. As shown in Figure 13.5, the values

13.3. Support for software maintenance and evolution 229

comp-v1 comp-v2 comp-v3

Project 1 1.72 0.65 0,60

Project 2 1.42 0.65 0.60

Project 3 2.01 0.81 0.60

Project 4 1.72 0.81 0.67

Project 5 1.32 0.79 0.67

Project 6 0.97 0.68 0.75

Table 13.3: Global completeness indicators

of comp-v1 are totally inconsistent with those of comp-v3, which is not surpris-

ing since the values are not in the same range due to the poor definition of the

entities (they are not percentages as explained in Section. 13.3.2). Regarding

comp-v2, the consistence with comp-v3 is not perfect either. Although the values

are closer (around 0.70), the two indicators do not provide a similar ordering for

the student groups. This inconsistency can be explained by the fact that the

subjective evaluation remains more prone to detect number of flaws in the design

of the scenarios (or test cases), explaining why the scores are generally lower than

the indicators. Therefore, the careful examination of the project remains a better

way to provide accurate quality assessment but the customised measures provide

a good approximation.

Figure 13.5: Comparison between global indicators

13.3.4 Results

Section 13.3.3 already discussed the relevance and accuracy of the designed mea-

sures as well as the limitations of their interpretations regarding quality assess-

230 Chapter 13. Empirical studies

ment. This section discusses their usefulness to guide the maintenance process.

More precisely, a competent measure should provide support for:

1. The identification of where to apply improvement

2. The identification of the nature of the improvement

Additionally, the measurement results should be consistent with improve-

ment recommendations formulated by the teachers. Regarding this aspect, the

recommendations provided during the evaluation in the context of the assignment

clearly indicated that the flaws were in fact due to missing functionalities and/or

insufficient boundary testing. Neither design nor code would be appropriate to

correct such problems.

First version of the MoCQA model

According to these requirements, measures comp-req-1 and comp-test-1 show very

little potential to assist the maintenance process.

Interpreting the measurement values as a percentage would lead the main-

tainers mistakenly towards a costly inspection of design and/or code. Indeed, the

incorrect interpretation of the measures indicate that the requirements and test

plan are complete. This is not consistent with the recommendations formulated

by the teachers. Interpreting the measurement values as “anything under 1 is

not good” would lead to consider the correct artefacts only for the worst projects

(i.e., projects 3 and 6 that possess some use cases without any scenario). The

incompleteness of requirements/test plan for the other projects would remain

undetected since there is no way to interpret accurately any value above 1.

Even when the artefacts to improve are correctly identified (e.g., requirements

of projects 3 and 6) and become candidate to a refinement, measure comp-req-1

remains unhelpful to identify the nature of the improvement needed. Indeed,

since the definition of the measurable entities indicates no relationships between

the use cases and use case scenarios, counting blindly the two population sets,

quality assessment is not detailed enough to identify the exact use cases that are

not covered. The same applies to measure comp-test-1.

Second version of the MoCQA model

Measures comp-req-2 and comp-test-2 are more useful to guide the maintenance

process. First of all, they provide indicators helping us to identify precisely where

the problems are. For instance, the development team of project 4 produced a

pretty good coverage of their use cases but failed to provide boundary testing

for some scenarios. The measurement values point in that direction, targeting

the maintenance process towards the improvement of the test coverage instead of

towards more support for missing functionalities.

13.3. Support for software maintenance and evolution 231

The effort required to apply the measurement plan may be reused to support

the maintenance process. Indeed, the definition of measures comp-req-2 and

comp-test-2 forced the measurer (be it human or a tool) to tag a lot of precise

resources of the actual project. For comp-req-2, each use case scenario has to be

tagged with the related use case. For comp-test-2, each test case originating from

a precise scenario has to be tagged accordingly. Therefore, in the case of measure

comp-req-2, the result provides not only the level of completeness but also the

identification of functionalities which are more likely missing in the design and/or

the code: the functionalities without any defined scenario are more likely to have

been completely forgotten by the developers during the development. In the case

of measure comp-test-2, the measure indicates indirectly which functionalities are

more likely to be incorrect due to a lack of testing. Besides, the interpretation

is consistent with the recommendation of the teachers (missing functionalities

and/or insufficient boundary testing).

13.3.5 Discussion

Regarding our validation process, this case study seems to corroborate the ex-

ploitability, adaptability and expressiveness of the framework.

The fact that MoCQA models were designed to fit the investigated context

and address the particular problems of the context show the adaptability of the

approach in this context. The fact that we were able to provide a better solution

thanks to the MoCQA metamodel constructs tends to demonstrate the expres-

siveness of the approach. It is arguable that the second version of the MoCQA

model is better because the designer had the time to rethink the model. But

in this case, the case study still increases our confidence in the iterative quality

assessment methodology we propose.

Finally, the case study shows that it is theoretically feasible to support the

maintenance thanks to the framework, therefore reinforcing our confidence in its

exploitability.

13.3.6 Threat to validity

Although the results are encouraging, several threats to validity remain.

The data set of six medium-size projects in an academic and relatively con-

trolled environment is not sufficiently representative of real-world large size evolv-

ing software projects.

Besides, the post-mortem application of the framework raises some issues.

The exploration of intermediate artefacts was carried out after the delivery of the

project (including the maintenance phase) and not really during the development.

This remains artificial with respect to real evolving projects as the suggestions of

improvement (even answering diagnostics proven to be pertinent) have not been

232 Chapter 13. Empirical studies

implemented during the development or maintenance process to provide another

data set to compare with.

Finally, these results call for more generalisation. The results have only been

validated in this specific context and for the completeness quality characteristic.

Other attributes and/or quality characteristics have to be investigated in the

future to demonstrate similar results.

Nevertheless, the results should be regarded as a positive reinforcement, re-

garding our validation process.

Chapter 14

Supporting certification

This chapter describes a practical case study performed in a professional envi-

ronment that illustrates the adaptability and applicability of the MoCQA frame-

work. It exemplifies the acquisition and design steps of the MoCQA methodology.

It provides a context with specific challenges (linked to the certification of soft-

ware applications) that vary slightly from traditional quality assessment concerns,

therefore showing an example of the flexibility of the approach.

14.1 Context

The case study has been performed (and is currently still in progress) at THALES

communications Belgium, in the context of the Skywin-SAT project.

Skywin-SAT

The objective of the Smarter Airborne Technologies (SAT) project is to de-

velop new technologies for planes and more intelligent aeronautical systems. The

project consists of five axis : two skill centres and three technological axis. The

SAT project gathers 16 partners under the coordination of Thales Belgium S.A.1

Due to the size and the number of participants involved, the project is subdi-

vided along different themes. The MoCQA framework is currently in use in the

certif 2 workpackage. Certif 2 (Certification) has for vocation the certification

of on-board critical systems following the software standards RTCA DO-178B

(or 178C) and material (RTCA DO-254) defined by the FAA (Federal Aviation

Administration, USA) and EUROCAE (Civil European Organization for Avia-

1http://www.skywin-sat.be/

233

234 Chapter 14. Supporting certification

tion Equipment). This skill centre is interested more specifically in the aspects

of recertification and incremental certification of software product lines2.

Thales Communications Belgium

Thales Communications Belgium (TCB), the Belgian competence centre of the

Thales Group, is internationally recognised for the development and supply of

communication systems for the Defence sector and, more generally, for enhanced

Security. TCB, a company based in Tubize, Belgium, is the market leader in the

national Defense sector. TCB has built up a solid reputation as the developer of

a range of cutting-edge technological products and as a systems architect in the

field of system integration engineering for critical missions3.

Among the products developed by TCB, the Multifunctional Airborne Com-

munication System (MACS) is a state-of-the-art Intercommunication System de-

signed to meet the operational communication requirements of aircraft. Thanks

to its modularity and distributed architecture, the system can deliver customised

solutions for small and large airborne platforms.

Issues

In the context of the Skywin-SAT project, and the certif 2 workpackage, the

objectives are to help TCB adopt a selective certification process (compliant with

the software standards RTCA DO-178) of embedded communication devices, and

more specifically of the MACS.

As a highly configurable application, the MACS may be regarded as a “meta-

application” that may be instantiated to provide different complete embedded

systems. In this context, each instance of the MACS has to be validated accord-

ing to the DO-178 standard. However, since only some elements of the config-

uration vary from an instance to the other, the certification process should not

be performed from scratch for every instance, provided that we can accurately

pinpoint the elements of the configuration that have been modified, with regard

to a reference configuration. Developing a methodology to support this selec-

tive certification process is the main objective of the partnerships with Thales

Communication Belgium.

14.2 Objectives

Regarding our validation process, the objective is to show that the MoCQA frame-

work is able to adapt to this challenging context and support the selective certifi-

cation process described above. It also intends to show that the DO-178 standard

2http://www.skywin-sat.be/
3http://www.thales-communications.be/

14.3. Description 235

Figure 14.1: Traceability requirements

may be used in the same way other quality models may be exploited regarding

the acquisition step.

14.3 Description

As explained in the previous sections, the Multifunctional Airborne Communica-

tion System (MACS) provides a system that is highly customisable and can be

configured to fit a vast number of contexts (i.e., specific planes). The system may

therefore be regarded as a software platform, defined as “a set of software subsys-

tems and interfaces that form a common structure from which a set of derivative

products can be efficiently developed and produced” in [Meyer and Lehnerd, 1997].

Therefore, methods dedicated to the analysis of variability of Software Product

Lines apply to this context. Additionally, the MACS has to comply to the stan-

dard RTCA DO-178 in order to prove reliable enough to be embedded in aircraft.

14.3.1 RTCA DO-178b

The standard RTCA DO-178b [RTCA, 1992] describes a framework designed to

manage the safety of software used in airborne systems.

As shown in Figure 14.1, the main concern of the DO-178b is the traceability

of artefacts during the development. Figure 14.1 shows that the other crucial

aspect of the certification process is to ensure the testability (test preparation)

and robustness (test execution) of the software application that is reviewed.

In the context of TCB, a reference configuration of the MACS has already

been certified according to the expectations of the DO-178b standard.

236 Chapter 14. Supporting certification

Figure 14.2: Test preparation and test execution

14.3.2 Variability and Software Product Lines

[Pohl et al., 2005] defines variability as “the commonalities and differences in the

applications in terms of requirements, architecture, components, and test arte-

facts”. The main mechanism that supports the variability analysis of a platform

is the feature models. These models are used to represent all the possible features

of a software platform and the constraints that are applicable to them (e.g., ex-

clusivity of features, cardinality, etc.). Based on a feature diagram, it is therefore

possible to generate a specific product (or configuration) by selecting the desired

features while conforming to the constraints described in the diagram.

Prior to the introduction of the MoCQA approach in the context of TCB, a

variability analysis of the MACS was performed by another research partner. A

feature diagram was designed and represents the MACS as a platform.

14.3.3 Applying the MoCQA framework

The challenge in the case of the MACS was therefore to reconcile a static quality

model defined by the certification standard and a software platform that, by

nature, is bound to dynamically provide different systems.

The first step of the case study consisted in eliciting the requirements of the

stakeholders at TCB. Based on the DO-178b, it was defined that all the trace-

ability requirements regarding the MACS were already fulfilled. The acquisition

step of the MoCQA methodology revealed that the crucial aspect of the DO-178b

standard that required investigation was the “testability” and “robustness” qual-

ity issues of a specific configuration of the MACS. The challenge raised by these

14.3. Description 237

Figure 14.3: Modelling the traceability of test cases

quality issues is to consider the right test cases and demonstrate that all aspects

of a specific configuration of the MACS are covered.

During the acquisition step, we also discovered that the main artefact avail-

able to guide this process was the configuration database of the MACS. Indeed,

TCB developed a database that contains all the possible features a product may

display. MoCQA models were thus considered as a way to bridge the gap between

the features described by the feature model and the test cases that may target

multiple features at once.

Figure 14.3 shows a general view of how the project component may be used

to provide such a traceability. As we may see, the artefact types that are used to

provide the traceability are the entries of the configuration database. Since a test

case may include several features, the test case is also linked to several database

entries.

The testability quality issue may therefore be computed on the basis of the

number of test cases included and the number of database entries. The robustness

quality issue may be assessed through the number of successful test cases over

the total number of test cases.

14.3.4 Towards selective certification

The ultimate objective of the project, regarding the certification is to provide tool-

support for the generation of a test plan that correspond to a specific “instance”

of the MACS. The conjoint use of feature diagrams and MoCQA models has

been considered to provide this tool support. Future work will investigate the

possibility to tailor a MoCQA model on the basis of a given configuration of the

238 Chapter 14. Supporting certification

feature diagram. Due to the way the MoCQA models are designed, it is possible to

select a subset of behaviour types based on the subset of features provided by the

configuration. Since the project component ensures the traceability between the

features/behaviours and the test cases, any modification on the set of features

will provide a new subset of test cases to take into account. Comparing the

generated test plan to the existing reference certified configuration of the MACS

will therefore provide the delta that needs to be tested in order to comply to the

DO-178b standard.

14.4 Results

During the course of this case study, the following MoCQA-related activities have

been performed:

• Acquisition of the quality requirements based on the DO-178b standard

• Design of a MoCQA model addressing the testability issue for a subset of

the MACS

• Early design for a tool that supports the generation of the tests required

for the certification

The relevance of the process was assessed through the feedback of the stake-

holder and the project coordinator of the Certif 2 workpackage. Although no

quantitative data has been collected to evaluate the level of satisfaction of the

stakeholder, every artefact produced in the context of the MoCQA methodology

has been approved.

Based on the artefacts that have been produced and the tasks performed,

several points may be noted.

Regarding the integration of the DO-178b, it appears that this standard may

be viewed has a quality model and therefore integrated into a MoCQA model.

The testability quality issue was included in the MoCQA model to translate the

traceability requirements between code and test, while the robustness quality

issue translates the actual execution of these tests.

The framework revealed adequate to take the variability of the MACS into

account. As explained in Chapter 5, due to their semantics, the behaviour type

constructs may be aligned with features of a feature diagram. Therefore, it is

possible to provide a MoCQA model with a view that is compatible with feature

diagrams.

Although the software context of TCB provides some specific challenges due

to its centralised configuration data base, the project modelling constructs were

able to address these particular challenges due to the flexibility of artefact types

(e.g., data base entry as an artefact type).

14.5. Discussion 239

14.5 Discussion

The use of the MoCQA framework in the context of TCB tends to show its ap-

plicability since the first steps of the methodology have been successfully applied

to elicit stakeholders’ requirements.

Besides, MoCQA models were used to communicate and validate a long term

plan for the achievement of the selective certification.

The fact that the early design of the certification-related tool support inte-

grates XOCQAM documents as a central mechanism also show the flexibility of

the approach. Indeed, in this context, the MoCQA framework is used to provide

support for a task it had not been initially designed for.

14.6 Threat to validity

A threat to validity in this context is the fact that only one stakeholder partici-

pated in the elicitation process. The case study does not show that the MoCQA

models are better suited than a traditional requirements elicitation technique.

Another threat to validity is the fact that the long-term tooling relying on

the XOCQAM file is not yet developed. The case study therefore does not show

that this approach is feasible in practice but only theoretically.

Finally, the case study does not provide quantitative data regarding the cri-

teria that have been assessed.

Chapter 15

Quality Assurance

This chapter describes a practical case study that illustrates the adaptability,

exploitability and applicability of the MoCQA framework. This case study took

place in a professional environment. The MoCQA framework was used by a qual-

ity assurance team of an actual IT department to implement a quality assessment

life-cycle. The framework was deployed to maintain and monitor several projects

in both production and development states. The MoCQA framework has been

applied in the context during one year and half and has now been integrated in

the practice of the IT department in question. The application of the framework

in this specific context has been addressed in detail in [Hanoteau, 2012].

15.1 Context

The case study took place in the IT Department (D443) of the“Direction Générale

opérationnelle de l’Agriculture, des Ressources Naturelles et de l’Environnement

(DGARNE)”, one of the department of the “Service Public de Wallonie1 (SPW)”,

that is, the public administration of the Walloon Region. This IT Department is

in charge of about a hundred software products: mainly business applications but

also acquired software packages and distributed components. Except for a few

isolated cases, no metrics or quantitative assessment of any sort was being used

to monitor these products, prior to the introduction of the MoCQA framework.

Several internal and specific quality standards were used to guarantee the global

quality of projects. In order to fulfil their need of continuous quality assessment

and improvement, the quality assurance team of D443 was contacted and the

application of the MoCQA framework proposed.

1http://spw.wallonie.be/?q=dgo3

241

242 Chapter 15. Quality Assurance

15.2 Objectives

The main objective of this case study was to deploy the MoCQA framework in

order to ensure the applicability of the methodology. Showing the applicability

of the framework requires to ensure that each step of the methodology could

be carried out. Besides, it was required to show that the framework actually

contributed to the efficiency of the quality assessment process. The success of

the application was mainly determined by the reaction of stakeholders (mainly

management) to the results of the quality assessment.

Determining the level to which the procedures of the MoCQA methodology

were well received by any stakeholder involved in the quality assessment life-cycle

was a secondary goal of the case study. The assessment of this goal was conducted

through the level of participation of involved stakeholders, their feedback on the

assessment and the way the quality team efficiently exploited the framework.

15.3 Description

A preliminary learning phase was required to help the quality assurance team

adopt the concepts of the framework. This learning phase was performed through

several meetings with the quality assurance team leader, on the basis of the exist-

ing MoCQA documentation. In turn, the team leader was in charge of informing

his team (constituted of 4 additional members). This learning phase ultimately

gave birth to an industrial MoCQA deployment guide (see Section 15.4). Fol-

lowing the learning phase, the quality assurance team of the D443 department

started applying the MoCQA framework on a daily basis.

15.3.1 First quality assessment cycle

Acquisition

The first challenge to overcome in this context was the number of possible actors

that could have been selected as stakeholders. The IT department in which the

case study took place counts 70 agents. They manage a pool of software appli-

cations used by a total of 2400 users in the DGARNE. This wealth of possible

stakeholders lead to a selection of 5 stakeholders. This selection was based on

the availability and role of the actors. During this first step, the relevant classi-

fication was identified as a distinction between applicative stakeholders (i.e., any

stakeholder that has to act on the software applications, regardless of his spe-

cific role in the process) and management. Out of the 5 individual stakeholders,

3 were coming from management and 2 from the applicative stakeholders (i.e.,

team leaders). The acquisition step was performed by the quality assurance team

leader, through a round of individual interviews with each stakeholder. This pro-

15.3. Description 243

cess was formalised as a series of internal reports complying to the template in

use in the public administration.

This initial round of interviews lead to the elicitation of 26 quality goals/re-

quirements. They were classified, organised and prioritised with the help of the

head management of the D443 IT department, who may therefore be considered

as an additional stakeholder. The priority was given to the “reliability” require-

ment for the first quality assessment cycle.

MoCQA model Design

Figure 15.1: Example of quality issues expressed during the case study

Based on the structured list of quality requirements, the hierarchy of quality

issues shown in Figure 15.1 was designed. As we may see, although the “reliabil-

ity”quality factor may appear to originate from the ISO/IEC 9126 quality model,

it is fact inherited from the internal standard of the organisation. Therefore it is

decomposed a the following series of specific sub-issues:

• Incidence of disturbance

• Availability (of the software application)

• Impact of the disturbance

• Deployment frequency

These quality issues encompass all the relevant reliability aspects of a software

application in production in the environment of the case study. The first quality

issue is concerned by the frequency of unexpected behaviours from the software

application. The second quality issue complements the first and is concerned by

the overall availability of the application over time. The third issue intends to

measure the criticality of the disturbances. Finally, the deployment frequency

quality issue intends to provide a sense of the number of times the system has to

be modified and re-deployed, following a major disturbance. Note that the name,

although non conventional are inherited from the internal standards but could be

aligned with other standards (e.g., the availability in this context may be aligned

with the fault-tolerance characteristic of the ISO/IEC quality model).

244 Chapter 15. Quality Assurance

Figure 15.2: Example of MoCQA model designed during the case study

According to the prioritisation performed in the acquisition step, the first

quality issue that has been addressed is the “incidence of disturbance” quality

issue. Figure 15.2 provides the MoCQA model for this issue. As shown in the

model, the quality assessment described mainly relies on behaviours. Compared

to previous case studies, the design step of the MoCQA model provided us with

15.3. Description 245

a new challenge. This challenge related to the introduction of temporal con-

straints. This quality issue requires the introduction of a number of disturbances

per period of time. Although it was not supported by any specific procedure or

modelling construct of the framework, MoCQA models revealed flexible enough

to integrate this information almost seamlessly. The problem was solved through

the introduction of an “EvalDate” variable in the description of the functions

and assessment models. This variable represents the current date at the time

the assessment is performed. Similarly, the age of the software product may be

modelled as a derived attribute based on its original deployment, measured as a

base attribute.

The other quality issues were also modelled during this first design step, re-

lying on similar measurement methods.

Measurement plan tailoring

The operationalisation of the MoCQA model mainly consisted in providing mea-

surement procedures. For this MoCQA model, the measurement methods were

identified as “repository-mining” methods. Therefore, the two repositories were

identified (one for the acquisition of the original deployment date and one for

the report of disturbance) and specific SQL queries were designed for each of

the measurement methods. All other computations were performed manually, al-

though the functions and assessment models were formalised in C#, in prevision

of a future automation of the process. The data collection was planned using

spreadsheets.

Assessment and Exploitation

Based on the operational customised quality assessment model, the members

of the quality assurance team were able to apply the model to the 56 software

projects selected during the acquisition step.

The first exploitation step was performed with the management stakeholders.

They were explained the quality assessment process on the basis of the MoCQA

model. The quality assessment process was agreed upon and the assessment re-

sults analysed. The decisions taken on the basis of this first quality assessment

cycle were mainly related to the continuation of the quality assessment life-cycle.

Modifications in the interpretation rules, including the addition of specific rec-

ommendations regarding required corrective actions. However, the assessment

results were perceived positively by the stakeholders as reinforcing pre-existent

intuitions on several software applications of the pool.

246 Chapter 15. Quality Assurance

15.3.2 Continuation of the quality assessment life-cycle

The next quality assessment cycles focused on the refinement of the MoCQA

model in order to support corrective actions. During the second quality assess-

ment cycle, exploitation occurred with the contribution of applicative stakehold-

ers.

New quality issues were added with each new quality assessment cycle. At

the end of the case study, 14 quality issues were monitored with the support of

the MoCQA framework.

15.4 Results

During the one year and a half lifespan of the case study, each step of the MoCQA

methodology has been applied several times. The quality assurance team leader

reported his progress and results to the management of the D443 department on

a regular basis, in order to define if the course of the project was considered sat-

isfying and should be continued. Subsequently, the quality assurance team leader

provided us with reports on the events. Details on these reports are available

in [Hanoteau, 2012].

Similarly to the Thales case study, the relevance of the MoCQA framework has

therefore been assessed through the feedback of the stakeholders and the quality

assurance team leader. No quantitative data has been collected to evaluate the

level of satisfaction of the stakeholders but the application of the framework was

not discarded by the management at any point.

Based on the reports provided by the quality assurance team leader, several

points may be noted.

First, the iterative and incremental aspects of the methodology have been

accepted and applied. Although no quality indicator or measurement/estimation

method had to be deprecated during the course of the study, the apparition of

new quality requirements leading to new quality indicators occurred and was

supported by the methodology.

Regarding the design of MoCQA models, the constructs provided by the qual-

ity assessment metamodel were all used at some point of the process. The quality

assurance team was not confronted to a quality related problem that they could

not model and respected the semantics and syntactic rules of the quality assess-

ment metamodel.

The assessment performed on the basis of the MoCQA methodology was con-

sidered relevant according to both management and the quality assurance team.

The quality indicators defined during the quality assessment life-cycle of the study

were accurate in their support for refinement. The quality assessment performed

based on the MoCQA models led to the inspection and maintenance of several

software systems and to the refactoring of the help desk supporting repository.

15.5. Discussion 247

The deployment of the MoCQA framework in the context of the IT depart-

ment D443 also allowed to determine how manageable the assessment methodol-

ogy is in terms of costs. Due to organisational requirements, costs where recorded

and communicated to us for the first quality assessment cycle of the two first

quality issues investigated by the quality assurance team. For those two quality

assessment cycles, the costs were estimated to an average of 10 man-days2 per

cycle. These costs were reviewed by the quality assurance team and the manage-

ment and considered acceptable (i.e., not inducing an unacceptable overhead).

The main overhead was identified as the initial learning phase, evaluated to 14

man-days.

Finally, the framework has been chosen as a candidate to be integrated in

the D444 department as a full-fledged quality assessment support for the quality

assurance team.

15.5 Discussion

Regarding our validation process, this case study reinforces the positive perspec-

tive on the adaptability, exploitability and applicability of the MoCQA frame-

work.

The adaptability is shown by the fact that the framework helped model the

specific quality requirements in the studied environment, whereas the exploitabil-

ity is shown by the fact that the assessment results were well received and led to

actual actions carried out in the studied environment.

Regarding the applicability, the framework was reported to be used without

any hindrance by a third party (i.e., the quality assurance team), past the learning

phase. The cost estimation, although not providing general results, tends to show

that the overhead induced by the MoCQA methodology is not a stumbling block,

in comparison to the benefits it provides.

Additionally, the reports provided us with several observations about the use

of the MoCQA framework and Software Quality in general. The remainder of

this section reports and elaborates on these observations.

Industrial deployment guide and language issues

The first observation made in the context of the D443 department was the initial

difficulty to apprehend the concepts of the quality assessment metamodel. As it

turned out, this difficulty was not an intrinsic issue of the framework. The issue

was rather related to the terminology used in the framework and in the software

quality literature.

2In the context of the D443 department, a man-day is assimilated to 7.6 hours of work for
1 employee

248 Chapter 15. Quality Assurance

During the initial learning phase of the case study, several interactions with

the quality assurance team of the IT department revealed that the academic

terminology tended to obfuscate the meaning of otherwise easily understandable

concepts. Through regular exchanges with the quality assurance team leader,

the concepts of the framework were adapted to the terminology of the D443

department.

Another terminology issue was discovered during the exchanges with the qual-

ity assurance team. This issue regards the use of “software project” to define the

level of the quality assessment performed with the framework. In the context

of the IT department D443, the term “project” is used according to the defini-

tion provided in [PMI, 2004] (i.e.,“a temporary endeavour undertaken to create a

unique product or service”. This process oriented perception of “project” is com-

pliant with the second part of the definition provided by the CMMI framework:

“A project has an intended beginning (i.e., project startup) and end. Projects

typically operate according to a plan. Such a plan is frequently documented and

specifies what is to be delivered or implemented, the resources and funds to be

used, the work to be done, and a schedule for doing the work. A project can be

composed of projects”. However it led to initial conflicting understandings of the

scope of the framework. In the absence of a better word to specify the scope of

quality assessment modelling, the term software project was kept but the case

study showed that it is necessary to emphasise the definition of software project

provided in Chapter 4.

Besides, one of the first activity required during the case study was the adap-

tation of the MoCQA framework to the working language of the Walloon public

administration (i.e., French). The quality assessment metamodel and all the re-

quired documentation was therefore translated into French during the case study.

This process partially helped the learning process for the quality assurance team.

In order to circumvent those initial hiccups, an industrial MoCQA framework

deployment guide was designed in collaboration with the quality assurance team

leader of the IT department. This guide, described in [Hanoteau, 2012] and only

available in French so far, intends to formalise the terminology adaptations. It

therefore provides a more practical perspective on the framework and is supposed

to be generic enough to adapt to any company. It provides a comprehensive

description of the quality assessment metamodel and its constructs. It provides a

practical description of the MoCQA methodology and of the quality assessment

life-cycle implemented by the framework. Finally, it provides several examples

of MoCQA models and explores the modelling conventions designed during the

case study.

15.5. Discussion 249

15.5.1 Impact of quality indicators

During the course of the case study, we also had the opportunity to observe

the impact of the introduction of formalised quality indicators in the context.

At the end of the first quality assessment cycle, the assessment results provided

stakeholders with unsurprising conclusions. For the most part, the problems

reported by the quality assessment model were known or sensed to some level by

the management stakeholders. However, the introduction of quality indicators

and the rationale behind these values helped reinforce the motivation to take

actions in order to solve the problems. Although the indicators introduced in

the first quality assessment cycle were not very specific or refined, their impact

was already important. Moreover, the notion of iterative quality assessment life-

cycle guarantees that problems reported at the beginning of the process will be

reported again recurrently. This iterative mechanism acts as a reminder of known

problems.

The quality assessment process itself may also lead to interesting conclusions

that impact the environment. Since the exploitation step analyses both the assess-

ment results and assessment process, it is possible to report valuable information

while trying to improve the quality assessment process. For instance, the end of

the first quality assessment cycle showed that the collection of data was hampered

by the lack of a centralised repository to find the necessary data (i.e., mainly the

reported disturbances). Each software application was managed separately. The

exploitation step led to the decision to centralise the information on the various

software applications.

Regarding the interpretation of the quality indicators, the iterative method-

ology was also well received. The caveat with indicators in general is to avoid

interpreting them without a critical view on what reality they encompass. The

fact that the framework allows for a critical revision of quality indicators (e.g.,

modify the threshold of over-demanding quality indicators) and provides the for-

malised rationale behind the quality indicator was beneficial for the fine-tuning

of quality assessment over time.

15.5.2 Human aspects

During the course of the case study, we also had the opportunity to confront the

MoCQA framework to the perception of the various stakeholders. Some reluc-

tance or scepticism towards the introduction of a formalised quality assessment

framework appeared during the first and second quality assessment cycles. This

circumspection took different forms depending on the type of stakeholders.

The management mainly worried about the return on investment of the ap-

plication of the MoCQA methodology. The concern was thus the amount of time

250 Chapter 15. Quality Assurance

and effort the deployment of the framework would require. The conclusion of the

first quality assessment cycle provided reassuring answers to this concern.

The applicative stakeholders were more concerned by the quality indicators

themselves, raising the issue that the quality indicators may not reflect the truth

of the applications they were responsible for. As explained before, this reaction

is not surprising since individuals tend to dislike the notion of quality control.

During the second exploitation phase, explaining to them the fact that taking into

account their feedback on the results and interpretation was part of the process

helped solve the issue.

A transversal issue regarding the deployment of the framework was also raised

during the first quality assessment cycle. This issue was related to the perceived

“subjectivity” of the quality assessment process. The choice of reliability as a

first quality issue was questioned by other stakeholders. The same occurred with

the way quality issues were assessed. Following the regular MoCQA methodol-

ogy, this concern was integrated into the decision-making process regarding the

quality assessment process. Therefore, the input of stakeholders that were not

concerned by the reliability was used to decide which quality issue should be

investigated next. The assessment process for reliability was maintained after ex-

changes between the quality assurance team and the aforementioned stakeholders

The participative nature of the framework was therefore well received by the

various stakeholders and helped cope with their concerns.

15.5.3 Stakeholder classification

As explained previously, a light classification was proposed in the context of IT

department D443. This dichotomous categorisation turned out to be sufficient

during the course of the case study. The two categories of stakeholders clearly

elicited different goals and, as seen in the previous section, different worries re-

garding the quality assessment process. Note that the dual classification is also

sufficient due to the general quality approach adopted in this specific context.

Since the indicators are mainly high level and are attached to global products,

providing a more refined typology of stakeholders (e.g., designers, etc.) is not

relevant since nothing in the designed MoCQA models is targeting specific types

of stakeholders.

The dual classification management/applicative stakeholders also reveals an

inherent specificity. As a matter of fact, management stakeholders may also be

perceived as “generic” stakeholders. Their quality requirements are the same

for each system investigated (and therefore more high-level). On the contrary,

applicative stakeholders may have needs that slightly vary from a software appli-

cation to the next.

Another interesting observation regarding this dichotomy is the fact that the

way measurement and assessment results are introduced to the type of stakeholder

15.5. Discussion 251

varies slightly. Basically, we distinguished two tendencies.

• Managerial stakeholders are more prone to react positively to dashboards.

Although the presence of the MoCQA model itself is reassuring, the out-

come management stakeholders are expecting is a set of indicators.

• Applicative stakeholders are more prone to react negatively to dashboards.

Providing a set of values to the individuals that actually act on the software

applications raises concerns on the origin of the values and how they were

computed. In that case, the support of the MoCQA model helps provide a

good understanding of the rationale behind the indicators in a format that

is familiar to the applicative stakeholders (i.e., models).

15.5.4 Target of the assessment

As expected, an important aspect of the deployment of a quality assessment plan

was to communicate on the target of the assessment. The key to a successful

assessment is to prevent individuals from feeling assessed themselves. The hy-

brid point of view of the framework (i.e., product/process) helped reassuring the

development teams on this point.

First, the availability of the MoCQA model provides a transparent way to

clearly define the goals of the assessment. Through the consultation of the model,

each member of the department (even if they are not listed as stakeholders) may

understand the process. MoCQA models provide many constructs but clearly

none of them is designed to assess individuals. Therefore, the quality assessment

process was well received in the context of the study.

On the other hand, the concept of derivation type helps manage the most sen-

sitive aspect of the process. Whereas measuring a process may be perceived as

a way to point to some individual mistakes, derivation types provide an abstract

concept that removes completely the notion of individual assessment. Deriva-

tion types were used during the assessment of the second main quality issue (i.e.,

“compliance life-cycle”). Although the quality issue clearly relied on the assess-

ment of individuals’ performances or skills, the fact that derivations made the

implication of these individual abstract helped increase the overall acceptance of

the process.

15.5.5 Availability of results

The question of how the availability of quality assessment results would be man-

aged came early in the deployment of the framework. The issue with vastly

available quality assessment results is that people tend to compare results among

them. Although, this could be regarded as a way to motivate people, this induced

many concerns in the context of the study.

252 Chapter 15. Quality Assurance

The classification of stakeholders helped manage the availability of results. It

was decided that only management (i.e., generic) stakeholders would have access

to the complete data set. The applicative stakeholders were provided with data

related only to the software application they were involved in.

15.5.6 Support from the management

The case study also showed that quality assessment must be management-driven

in order to be productive. Although the framework provides many elements to

counter the reluctance of scepticism from the development team (i.e., participa-

tive and iterative methodology), the framework must be applied with the full

support of the management. During the course of the case study, the support

from the management helped the quality assurance team motivate and decide the

development team to take part in the quality assessment and improvement pro-

cesses. This observation reinforces the considerations provided by [Westfall and

Road, 2005]. The fact that each quality indicator is defined with a given purpose

(originating from the management) helps reinforce the perception that quality

assessment is a useful process. Additionally, the management has to clearly sup-

port the viewpoint described in previous sections (i.e., the guiding perspective of

quality assessment). The fact that the management supported the deployment of

a framework that relies on this “guiding over control” philosophy greatly helped

reassuring the applicative stakeholders in the studied environment.

15.6 Threat to validity

Although the results of this case study are positive, they once again only apply

to this specific context. The cost estimation cannot be generalised at this point

since this aspect is highly sensitive to the context of use and the complexity of the

designed MoCQA model. The support provided by the management was crucial

to the success of this deployment. Besides the views of the quality assurance

team were already close to the underlying concepts of the framework. In other

words, the environment of the case study was perfectly suited to introduce the

MoCQA framework. Results therefore call for generalisation in other contexts.

Another issue of the case study relates to the quality issues investigated dur-

ing its course. The MoCQA models designed during this study do not provide

really robust project components. For instance, the MoCQA model shown in Sec-

tion 15.3 is not suitable to perform a root-cause analysis. This aspects is mainly

due to the fact that the quality assurance team had to tackle many software

applications. In that context, it was not possible to define more precise project

components. This could be solved by differentiating the models for each software

application. However, the overhead induced by such an approach could influence

15.6. Threat to validity 253

the costs and effort drastically. Still, the flexibility of the framework provides the

opportunity to specialise MoCQA models only when required.

Finally, the case study does not provide quantitative data regarding the cri-

teria that have been assessed.

Part IV

Closing comments

255

Chapter 16

Discussion

Contribution, review and perspectives

This chapter recapitulates the main contribution of this thesis (Section 16.1)

and discusses its potential to improve the way software quality is envisioned

and managed (Section 16.2). Current limitations and improvement points are

also addressed in Section 16.3. The chapter ends with an overview of research

perspectives and future works motivated by our research work (Section 16.4).

16.1 Contribution

During the course of this research work, we developed a theoretical approach to

quality assessment in an attempt to provide a better support for the definition

of software quality goals and the monitoring of their level of achievement in the

context of software development. Based on a review of the lasting impediments

that prevent software quality assessment to be exploited at its full potential, we

identified three core notions that could be beneficial to our proposed approach:

• Model-driven quality assessment (i.e., using a quality assessment model

to support the elicitation of quality requirements, to plan the quality as-

sessment activities and to facilitate the communication, the analysis and

the exploitation of the measurement results.)

• Explicit and integrated quality assessment modelling (i.e., making

the quality assessment models operational and customised in order to en-

sure that the information recorded in the models is centralised, fits the

specific context in which the software development process occurs and con-

veys enough elements to prove useful to each involved stakeholder.)

257

258 Chapter 16. Discussion

• Dedicated quality assessment life-cycle (i.e., manage the design, re-

finements and evolution of operational customised quality assessment mod-

els through a distinct life-cycle that follows closely the sequence of events

inherent to the software development life-cycle.)

The introduction of these three notions aims to integrate the quality assess-

ment process further into the software engineering process itself. By allowing a

continuous back-and-forth exchange between the parallel software development

and quality assessment life-cycles, by means of quality assessment models, the

theoretical approach aims to improve the quality assessment process regarding

the following aspects:

• Support: help plan and adjust the quality assessment process through-

out the entire software development life-cycle, from early stages and on to

maintenance/evolution.

• Relevance: providing a quality assessment that fits the specific context in

which it is performed and avoids wasting time on pointless measuremen-

t/assessment efforts.

• Communication: ensuring that all stakeholders share the same view on

the quality goals for the project and accept the quality assessment process,

as well as helping each of them act individually so that the overall team

converges towards these goals.

• Awareness: providing support to detect the flaws in software measurement

methods and mistakes in the way quality is envisioned for the project, as

well as improving the common understanding of quality concerns among

the various stakeholders.

Relying on founding principles inherited from other fields of Software Engi-

neering and on documented good practices of Software Quality and Measurement,

we successfully implemented this approach to quality assessment into an concrete

and operational framework.

This Model-Centric Quality Assessment (MoCQA) framework defines an it-

erative and incremental assessment methodology that focuses on a goal-driven

definition of measures. This methodology relies extensively on the involvement

of the stakeholders and let the stakeholders steadily construct a common mental

model of the quality aspects at stakes for the software development project. It

emphasises a proactive treatment of the human aspects involved in the measure-

ment program (i.e., it envisions measurement as a guiding activity instead of a

control mechanism).

The methodology allows the exploitation of operational customised quality

assessment models (or MoCQA models) through a dedicated quality assessment

metamodel. This quality assessment metamodel guarantees the integration of

declarative and analytical approaches in MoCQA models and let these models

16.2. Review 259

adopt an ecosystemic viewpoint on software quality. Additionally, MoCQA mod-

els are supported by two domain-specific languages that increase the usability and

efficiency of the framework, while granting a better reusability of the components

of the models.

In consequence, the MoCQA framework has the potential to provide the neces-

sary support for the integration of various quantitative quality assessment meth-

ods (both existing ones and customised ones) into any type of development and

maintenance life-cycles in a meaningful (i.e., useful for all stakeholders), self-aware

(i.e., allowing a critical review of the measurement results) and flexible (i.e., al-

lowing to adapt easily to any type of development and maintenance life-cycle)

way.

16.2 Review

During the course of this research, we applied the MoCQA framework to various

case studies, both theoretical and empirical. In order to assess how the framework

concretely leverage the potential of our theoretical approach, we defined a series

of research questions to guide our effort (see Chapter 10 for more details). This

series of questions were classified in two categories, one focusing on the usability,

the other addressing the effectiveness of the framework.

The first category was formalised as follows:

[RQ1] Is the MoCQA framework usable?

[RQ1a] Is the model-driven quality assessment methodology defined by the frame-

work applicable in practice without negative impacts on the rest of the develop-

ment process?

[RQ1b] Is the MoCQA framework accepted and adopted by all involved stake-

holders?

[RQ1c] Are MoCQA models apt to model the necessary quality assessment infor-

mation and support the communication of this information between stakeholders?

Regarding RQ1a, Chapter 14 and Chapter 15 showed that following the iter-

ative model-driven methodology proposed by the framework is feasible in profes-

sional environments. Additionally, during the course of the case study described

in Chapter 15, we did not encounter any major issue regarding the maintenance

and evolution process that was performed in parallel to the quality assessment

life-cycle. Similarly, this case study reports that the MoCQA framework, in that

context, did not cause an unacceptable increase in cost, time or effort.

During the course of the case study described in Chapter 15, the majority of

the stakeholders did not display any major opposition or reluctance to integrate

260 Chapter 16. Discussion

the quality assessment life-cycle. The participative nature of the methodology

was globally accepted and even succeeded in tempering some issues regarding the

choice of the quality indicators. Although these results are less conclusive, due

to the relatively controlled context, the quality assessment metamodel was also

adopted by the students without any major hindrance (as shown in Chapter 13).

The answer to RQ1b therefore tends to be affirmative.

Similarly, RQ1c seems to be corroborated by the case studies. MoCQA mod-

els were used as the main mechanism to justify and exchange information on

the quality assessment process in case studies reported in both Chapter 14 and

Chapter 15 without problematic miscommunication.

Ultimately, the case studies we performed tend to show that the MoCQA

framework is usable in a professional environment. Past the inevitable learning-

curve, it does not hamper the course of the software development and was ac-

cepted and apt to support the quality assessment process in the contexts we

investigated.

The second category of research questions was formalised as follows:

[RQ2] Is the MoCQA framework effective?

[RQ2a] Does explicit and integrated quality assessment modelling succeed in

accurately modelling the specific quality requirements for a given context?

[RQ2b] Does the quality assessment methodology helps provide a targeted as-

sessment that meets the specific quality requirements?

[RQ2c] Does the iterative use of MoCQA models help plan and adjust the qual-

ity assessment process throughout the software life-cycle, from early stages to

maintenance and evolution.

[RQ2d] Do MoCQA models help detect the flaws in the quality assessment pro-

cess that is performed?

[RQ2e] Do MoCQA models help identify the corrective action that have to be

performed in order to improve the level of satisfaction of the quality goals?

Regarding RQ2a, the case studies showed transversally that it is possible

to design a MoCQA model that addresses adequately each specific problem we

encountered in the investigated contexts. Chapter 11 to 13 provided theoretical

responses to specific problems occurring at early stages of the development, while

Chapter 14 and 15 demonstrated the ability of MoCQA models to fit actual

ongoing software development life-cycles.

In the case study of Chapter 15, the framework was used to provide a quality

assessment process that met the expectation of all involved stakeholders. Chap-

ter 12 and 13 also showed that it is theoretically feasible to provide a focused

16.3. Limitations 261

quality assessment that actually helps the development team to avoid further

efforts. The answer to RQ2b thus tends to be positive as well.

Regarding RQ2c, Chapter 11 to 13 provided theoretical responses to spe-

cific problems occurring at early stages of the development, while Chapter 14

and 15 demonstrated the ability of MoCQA models to fit actual ongoing software

development life-cycles.

RQ2d and RQ2e found a reasonable number of positive hints in the case

studies we performed as well. Chapter 13 showed that is was possible to analyse

a MoCQA model and identify the mistakes that were made regarding the quality

assessment process in relatively controlled and safe contexts. Chapter 12 showed

the theoretical possibility of MoCQA models to support the decision-making pro-

cess regarding software architecture. Additionally, during the course of the case

study described in Chapter 15, MoCQA models were consistently used to identify

points of actions for the monitored software projects.

In conclusion, the case studies we performed provide enough positive rein-

forcement regarding the effectiveness of the MoCQA framework. In the contexts

we investigated, the framework was able to leverage the expected benefits of the

theoretical approach we developed.

16.3 Limitations

In spite of the overall positive outcome of our validation process, the MoCQA

framework and its underlying theoretical foundations still have to be thoroughly

investigated in order to gain in maturity and be regarded as a viable approach for

the industry. This maturation process has to cope with the limitations detailed

in the remainder of this section.

The first limitation the MoCQA framework has to overcome is the lack of

generalisation of the results presented in this dissertation. Although the research

questions regarding the approach have been answered in specific contexts, the

usability and effectiveness of the approach has to be demonstrated in other con-

texts. So far, the MoCQA approach has been applied successfully in two separate

professional environments but, at this stage, we cannot guarantee that every con-

text will allow a suitable integration of the approach. Only through repeated

empirical studies in various contexts will the approach collect enough evidence of

its advantages, or reveal other shortcomings that the approach needs to overcome.

Additionally, the industrial case studies performed during this research mainly

focused on the feasibility (i.e., usability and effectiveness) of quality assessment

processes relying on the MoCQA framework. Future case studies should therefore

investigate the efficiency of the approach (i.e., whether or not the approach ac-

tually increase the productivity and the cost-effectiveness of quality assessment).

262 Chapter 16. Discussion

Another limitation of the validation process performed so far is the fact that

the approach has not been applied in an actual software development process

conducted from scratch. Although the proposed approach has been designed in

order to support the integration of quality assessment from the very beginning of

the software development process and continuously as this process unfolds, not

enough opportunities to validate the effectiveness of this integration have been

encountered during the course of this research. Without empirical studies aiming

to confirm the effectiveness of the approach as a continued quality assessment

framework, we still cannot ensure its viability in the industry (i.e., the fact that

the methodology is applicable and that the early indicators may be refined in an

efficient way without hampering the development process) past the theoretical

feasibility that has been demonstrated.

Besides, the approach does not solve (nor does it aim to solve) the problem

of the selection or definition of adequate and valid measures. This topic has

been (and still is) studied extensively and is intimately linked to the maturation

process of Software Measurement. While multiple approaches (such as GQM-

MEDEA or SMML) may be applied in conjunction with the MoCQA framework

to strengthen the measures selection and definition process, the framework itself

only aims to structure these activities from a methodological and pragmatic point

of view, allowing the quality assurance team to document this process and correct

it throughout the quality assessment cycles.

Another limitation of the approach is the fact that the indicators defined in

Section 8.3.2 in order to provide concrete means to detect the possible flaws in the

design of MoCQA models have not been theoretically nor empirically validated.

Even though they have been defined in a consistent way, the fact that any measure

proposed in software engineering should undergo a careful process of theoretical

and empirical validation cannot be ignored, especially regarding the nature of

this research work. Although not yet crucial at this point, this validation process

will gain in relevance as the approach matures and, will have to be considered in

the future.

Finally, although we provided some demonstration of the expressiveness of the

approach regarding the integration of existing quality models, we cannot guaran-

tee that any possible quality model may be integrated in a MoCQA model as-is.

Provided that a quality model displays a hierarchical structure defining high-level

factors refined progressively towards a series of attribute-like criteria, the quality

assessment metamodel theoretically provides the necessary support for the align-

ment and integration process. However, a more systematic validation process,

as the one proposed in [Klaes et al., 2010] could provide more irrefutable evi-

dence. In the same way, quality models and quality assessment approaches based

on non-hierarchical structures (e.g., using Bayesian networks, such as [Vaucher,

2010]) have not been addressed during the course of this research. These ap-

16.4. Perspectives 263

proaches offer several advantages (e.g., the opportunity to include probabilistic

impacts of quality factors on each other) and should be investigated in the con-

text of MoCQA. This kind of non-hierarchical relationships between factors may

be modelled as assessment models. However, the feasibility of such an integration

should still be validated on concrete cases in order to guarantee the expressive-

ness of the quality assessment metamodel. In the future, investigations on how

they can be used in conjunction with the MoCQA framework should therefore be

carried out.

16.4 Perspectives

The research described in this dissertation attempts to provide an original view

on software quality and introduces notions that aim to change the way quality

assessment is performed and perceived. As such, it opens multiple research per-

spectives, both regarding the approach itself but also in regards to other software

engineering fields and research topics. The remainder of this section elaborates

on some of these opportunities.

More case studies in industrial context

As explained in the previous section, the MoCQA framework still needs to be used

in actual professional environments in order to gain in reliability and maturity.

The more the framework will be used concretely, the more the confidence in the

approach will increase. Many of the theoretical options offered by the approach

have still not been field-tested.

First, during the course of this research, we did not have the opportunity to

actually apply the framework in the context of a project starting from scratch.

This limitation will be addressed in the close future, thanks to a collaboration

with the Centre of Excellence in Information and Communication Technologies

(CETIC)1. In the context of a FEDER funded research project promoting the

collaboration between industrial and academic partners, the application of the

MoCQA framework has been considered by the CETIC to support the set up of

a quality assessment plan for a software project starting at the Office de la Nais-

sance et de l’Enfance (ONE)2. The software project is still in its inception phase

and the MoCQA approach is currently used to formalise the quality requirements

already collected by the CETIC. This collaboration will provide the opportunity

to test the usability of the framework earlier in the development process. This

will also help us test the guiding potential of the approach for the development

team.

1http://www.cetic.be/index-en.php
2http://www.one.be/

264 Chapter 16. Discussion

Another aspect of the framework that has not been put to use in an profes-

sional context so far is its potential to detect the semantic inconsistencies of the

quality assessment performed base on the indicator defined in Chapter 8. The

case studies described in Chapter 14 and 15 are still ongoing and have already

accumulated an important amount of MoCQA-related material. They should

therefore provide suitable contexts to test this potential.

However, finding more opportunities to field-test the approach is still required.

In order to convince more partners to deploy the MoCQA framework, it is essen-

tial to understand which factors may slow its adoption rate. The main reluctance

regarding the application of an experimental quality assessment framework is its

experimental status. Software quality is a delicate subject matter for which effi-

ciency is of the uttermost importance. Potential users may regard a new quality

assessment framework as a risk to produce erroneous results leading to costly

mistakes. The second factor that may discourage potential users to adopt the

framework is the learning-curve of the approach as well as the efforts required to

apply it.

Efforts required to counter these factors regard the way the MoCQA frame-

work is introduced to the partners. Putting the focus on the integrative nature

of the approach should help convince the potential users that MoCQA is not

just another quality framework but builds on the existing software quality body

of knowledge to integrate suitable quality assessment methods. Similarly, it is

important to emphasise the fact that the model-driven nature of the approach

has the potential to help spare time and effort, due to the existing set of tools

that exist to support the approach, as well as the fact that MoCQA models offer

a more concrete and reusable perspective on quality assessment.

Finally, future industrial case studies should focus on obtaining more quan-

titative results regarding the validation process. Obtaining data regarding the

productivity and cost in an industrial context is a complicated task. Each project

is unique and therefore, the comparison of quality assessment costs and efforts

across projects is not relevant. Future studies could however address the problem

of quantitative validation thanks to more structured approaches such as satisfac-

tion surveys to determine the level of satisfaction of the stakeholders.

Empirical studies

As for now, more empirical evidence is still required to demonstrate that the

MoCQA quality assessment metamodel offers a better definition of measures due

to its specific perspective on the measurable entities. Although the exploratory

study addressing the use of completeness quality issues in the maintenance process

of medium-sized student projects (see Chapter 13) provides encouraging results,

these results have only been validated in a specific context (small projects, only

16.4. Perspectives 265

Figure 16.1: Collaborative and iterative validation/refinement methodology

completeness indicators, etc.) and call for both generalisation and more statistical

evidence.

In order to generalise the results, future studies could focus on other quality

factors. The reliability characteristic should be investigated since its scope is close

to the completeness study (i.e., the use of test cases to evaluate the maturity/fault

tolerance instead of the completeness). The efficiency characteristic is also a good

candidate to test the MoCQA viewpoint since the capability to trace the impact

of specific artefacts on external attributes (such as response time, memory use,

etc.) should prove valuable for software maintenance.

To acquire more statistically relevant results, future studies should focus on

larger sets of projects. A possibility would be to rely on smaller individual stu-

dent projects with more focused requirements. Although these projects would

be smaller, their increased availability would help us apply more sophisticated

statistical tests. Open-source software projects should be considered too, since

the availability of successive software versions would allow us to monitor the evo-

lution of the measurement values and analyse their relationships with the changes

made by the development team.

Refinement of the acquisition step

Among the various solutions proposed in Chapter 6 in order to provide a more

systematic acquisition of quality requirements, the use of questionnaire-like anal-

ysis grids is promising. Through analysis grids, the acquisition step would benefit

from a more structured output and would therefore facilitate the MoCQA model

design step. However, the design of questionnaires that are generic enough to fit

any context, yet accurate enough to produce an output that is structured and

complete is not a trivial process.

[Vanderose et al., 2011] discusses how to carry out this process and introduces

an iterative methodology to validate and refine the process of knowledge acquisi-

tion in the context of the MoCQA framework. This 6-step validation methodology

is shown in Figure 16.1.

In Step 1, an analysis grid is designed for each group of concepts of the quality

assessment metamodel. This grid is designed according to the rules defined in

266 Chapter 16. Discussion

Chapter 6.

Step 2 is performed on site, with industrial partners. It is dedicated to the

interviews of selected practitioners that are not familiar with the MoCQA frame-

work. The interviews, based on the analysis grid of Step 1, allow us to capture

information about the quality assessment practices and/or goals in the company.

In Step 3, thanks to the methods cited in Chapter 6, we align the collected in-

formation with the quality assessment metamodel concepts in order to design a

MoCQA model that should reflect the quality assessment strategy of the indus-

trial partner.

Step 4 is the cornerstone of the validation/refinement methodology and also oc-

curs on site. This time, we interact with stakeholders that have already been

trained to use the MoCQA framework. Those stakeholders, due to their knowl-

edge of both the context and the MoCQA framework, can then detect the flaws

or inconsistencies in our MoCQA model.

Step 5 is performed with the same stakeholders and addresses the process of

checking the analysis grid itself. This validation step looks for any flaw in the

appropriateness or accurateness of the questions of the grid. In this process,

the practitioners that have been trained to MoCQA are indispensable since they

know enough of the two worlds (i.e., industrial vs. academic) to bridge the gap

and detect the errors and misconceptions we could have made.

Depending on the result of Step 5, Step 6 consists either in designing a new

version of the analysis grid leading to a new round of interviews and subsequent

steps, or in refining the metamodel itself. In the latter case, the next iteration

would begin with a new refined grid design.

Due to the lack of available partners to conduct this relatively heavy and time

consuming process, this validation has not been carried out during the course of

this research. However, providing an analysis grid that formalises the process

of acquisition would benefit the effectiveness of the approach. This iterative

validation methodology appears to be a good candidate to ensure that the process

of designing analysis grids is consistent.

Improvement of the DSL aspect

Although UML profiles, XOCQAM and the graphical notation used by the MUG

tool provide a first layer for a MoCQA-specific language, these concrete syntaxes

still cannot be considered cognitively efficient. In order to improve the communi-

cational aspects of the framework (i.e., to facilitate the exchange of information

with the stakeholders), this cognitive efficiency should be refined.

The aim of this refinement process would be to provide a whole new graphical

notation that is expressive enough for any stakeholder to understand the possible

the exact nature of the quality profile produced during a quality assessment cycle.

A research addressing this issue is currently starting as an internal collaboration

16.4. Perspectives 267

within the PReCISE research centre3. The aim of this collaboration is to define

a graphical notation relying on pictorial representations of the measurable entity

types and the possible defects that may be addressed by the quality assessment.

This kind of notation should help improve the acquisition by providing a more

expressive way to elicit quality-requirements, while retaining all the structural

foundations of the MoCQA framework.

Process Improvement

During the course of the past decade, Agile methods have become a reliable

way to improve software development. The MoCQA framework and its iterative

quality assessment life-cycle support is, by design, a good candidate to support

quality assessment in an Agile environment.

However, the complementarity between the two approaches could be pushed

further. Although they are in essence very flexible, surveys show that Agile practi-

tioners are in need of even more flexibility and therefore rely on the customisation

of Agile methods. The problem of customising Agile methods is to provide objec-

tive ways to select the adequate methodological elements, as explained in [Ayed

et al., 2012].

An Agile customisation framework integrating concepts of the MoCQA frame-

work has already been proposed in [Ayed et al., 2012]. This metamodel has been

designed to support the construction of agile methods while relying on measure-

ment to provide guidance to agile methodologists during the method construction

phase and throughout the development process. The core notion of this approach

is to use measurement results from the assessment of the various deliverables pro-

duced during the process to reflect on the methodology that is currently followed.

Based on this quantitative information, the Agile methodologist may be oriented

towards a specific process element that is expected to correct the problems de-

tected through measurement. In this context, the Agile customisation metamodel

proposed in [Ayed et al., 2012] relies on a subset of quality assessment meta-

model in order to map the measurement process with the concepts of the Open

Process Framework (OPF) [OPFRO, 2009], Software Process Engineering Meta-

model (SPEM) [OMG, 2008] and Standard Metamodel for Software Development

Methodologies (SMSDM) [Henderson-Sellers and Gonzalez-Perez, 2005].

This research continues in an attempt to push forward the integration of

the MoCQA framework with the approach proposed in [Ayed et al., 2012]. The

MoCQA methodology, due to its iterative nature, could be applied as the frame-

work in which the Agile customisation metamodel is used. Indeed, in the case

of an agile method construction based on measurement values, the selection of

the appropriate process element may be regarded as a hierarchy of quality is-

sues. The stakeholders for these quality issues are the “agile methodologists”

3http://www.fundp.ac.be/en/precise/

268 Chapter 16. Discussion

whereas their scope would be the different part of the project where specific

process elements are used. Supporting the approach this way would allow to

perform a regular model-centric quality assessment. The Agile customisation

metamodel would then provide the structure required to define interpretation

rules that would bridge the gap between the quality indicators and the rules that

address directly the methodological elements. The recommendations of the in-

terpretation rules would consist in proposing a given process element to include

in the methodology (e.g., XP programming) according to the interpretation itself

(e.g., a unacceptable level of syntactic defects in the source code).

Towards automation and continuous quality assessment

Section 9.3.5 basically sets the roadmap for the tool support that has yet to be

provided in order to fully support the MoCQA framework. Short-term devel-

opment efforts should therefore focus on incrementally achieving this dedicated

and integrated tool support. However, additional development efforts could help

provide an even more complete support to the quality assurance team.

Indeed, a process the MoCQA framework that has been designed to support

but has not been covered during this research is the automation of quality as-

sessment and the continuous quality assessment of software projects during their

development life-cycle. Automated and continuous model-centric quality assess-

ment would consist in providing frequent warning and recommendations to the

development team based on the central MoCQA model as the project evolves.

The measurement plan and its formalisation into a XOCQAM file provides

the basis for this process. The metadata added at the operational level allows for

a more systematic management of the measurement plan and the integration of

various specific tools to automate some tasks (i.e., the identification of measurable

entities, the calculation of the derived measures or indicators, etc.). However,

many other issues have to be considered before a fully automated and continuous

methodology may be implemented.

First, many measurement tools exist (Cast4, Sonar5, SDMetrics6, etc.) and

are already in use in given context. In order to maintain the adaptability of the

framework (i.e., its ability to fit any context), the automated methodology should

provide a way to bridge the gap between the external tools and the MoCQA

model.

Conversely, some customised measurement or evaluation methods allowed by

the MoCQA framework are not supported by any tool because they would not

be useful outside a model-driven quality assessment life-cycle (i.e., too imprecise

to be used as control at a later stage of the development but useful from a

4http://www.castsoftware.com/
5http://www.sonarsource.org/
6http://www.sdmetrics.com/

16.4. Perspectives 269

guidance perspective). In consequence, dedicated tool support for the design

of customised measures should be considered in order to automate the MoCQA

methodology. Existing research may be the founding step of this automation,

such as the metamodel-based approach proposed in [Garćıa et al., 2007].

QuaTALOG

In essence, QuATALOG is designed to emphasise the interaction with the software

quality community. Although its support is mainly based on the idea of retrieving

a canonical information previously introduced, the tool is able to support the

extension towards a fully community-based platform.

As a community-based platform, QuaTALOG could become a means to facil-

itate the exchange of information on Software Quality, both on well-established

material (e.g., ISO and IEEE standards, validated metrics, etc.) and on more

in-progress topics (e.g., listing of new results about a possible way to predict ex-

ternal quality characteristics based on internal characteristics [Bocco et al., 2005],

new quality models for a specific artefacts, etc.).

From a technical point of view, this approach only requires the opening of

the platform to community contributors, which is already possible in the cur-

rent version of QuaTALOG. The main caveat with a community-based approach,

however, is to ensure the validity of the content introduced in the knowledge base.

This verification process may be implemented through various mechanisms.

Ruling out the intentional meddling of the knowledge base content (since

the platform would operate with a closed community of practitioners and not a

wide-open public community), the content is exposed to two types of mistakes:

First, the coexistence of more and less validated approaches within the same

repository may bring confusion to the users, and bother the contributors respon-

sible for an arguably better proposal. Fortunately, the platform already imple-

ments a mechanism to circumvent this potential issue: since the conceptual model

of the repository is an adaptation of the quality assessment metamodel, it also

provides a status attribute designed to characterise an assessment model, func-

tion or method. Therefore, the introduction of any of those elements requires the

specification of the level of validation of the proposal (from purely experimental

to empirically and theoretically validated).

Besides, the content may not be introduced accordingly to the structure defined

by the quality assessment metamodel. Once again, the ontological support of

the quality assessment metamodel in the design of the conceptual model of the

repository provides a way to ensure that the content is introduced in a relevant

manner. An additional support for the introduction could be provided by a

inference engine that would provide hints based on the current content of the

repository, the intent of the contributor and the quality assessment metamodel

itself. This approach would push further the knowledge base aspect. Additionally,

270 Chapter 16. Discussion

a discussion apparatus could be implemented in order to allow community-based

reflection on the relevance of given methods/function/models. This approach

would push further the “wiki” aspect of the platform.

Another point of improvement for the QuaTALOG project relates to the ap-

plication itself. More specifically, the web services proposed by the platform call

for refinement in order to be fully satisfying. So far, the queries managed by the

application are very simple and provide coarse-grained results. For instance, one

may query the knowledge base in order to receive an entire quality model or a

set of methods and functions linked to a specific attribute. However, the process

would gain in efficiency if more complex queries were made possible (e.g., finding

a candidate measurement method for a specific entity type in order to assess a

specific quality factor, etc.).

Conclusion

As this research work started, our first observation was the enduring challenge

software quality has been posing to software engineers. Despite a long and pro-

ficient record of research efforts carried out in Software Quality, defining what a

“good” software is remains an elusive and difficult question that is still not solved.

This lasting effort to “corner the chimera” (an expression coined in [Dromey,

1996] and that cleverly captures the seemingly impossible task of defining quality)

made the Software Quality field a very broad and dense field of study. Although

it is desirable, this wealth of available methodologies and tools also induces a

spread of very focused techniques that tends to isolate various quality assessment

processes form each other throughout the development.

Therefore, our objective throughout this research work has been to help pro-

vide a better sense of convergence between available quality assessments. The

Model-Centric Quality Assessment framework described throughout this disser-

tation strives to provide the quality assurance team with better methodological

mechanisms to tackle the challenge of quality assessment.

Introducing the notion of model-driven quality assessment, the framework

intends to support the centralisation of quality issues that may arise in a specific

context. In turn, this centralisation of quality issues provides a better way for

stakeholders to share a common point of view on quality in their context.

The notion of explicit and integrated quality assessment modelling supported

by the framework primarily intends to take advantage of the wealth of exist-

ing quality assessment methods. Relying on a quality assessment metamodel,

MoCQA models allow the integration of various specialised measurement meth-

ods and quality models into a coherent and transversal view of quality along

the software development. Similarly, the explicitness of the quality assessment

modelling helps extend the traditional controlling paradigm inherent to Software

Quality. Providing each stakeholder with detailed information on the quality

assessment, MoCQA models intend to involve each stakeholder (besides the qual-

ity assurance team) as a proactive actor of the quality assurance of a software

project.

271

272 Conclusion

The notion of quality assessment life-cycle sustained by the iterative and

incremental MoCQA assessment methodology strives to integrate the previous

elements into a coherent whole. Iterations and increments regarding the quality

assessment process allow to slowly construct a coherent set of quality requirements

and monitoring methods. The methodology also emphasises the importance of a

clear understanding of how measures and estimations reflect both the problems

and the leads towards corrective actions.

The various case studies performed to validate the framework (and there-

fore its underlying principles) proved globally positive. Although it induces a

methodological overhead, the framework provides enough support to streamline

many activities (e.g., reusability of MoCQA models, domain-specific languages,

etc.). In consequence, the framework appears as an applicable solution in an

actual professional environment. The effort of systematisation provided by this

research work thus provides the basis for several extensions and refinements that

could steadily lead to a comprehensive and efficient quality assessment method.

As the MoCQA framework intends to seemingly integrate other research efforts,

this efficiency will increase as Software Quality evolves and becomes more and

more successful in its search for more accurate and unambiguous measurement

methods.

In the meantime, the MoCQA framework contributes to overcoming the lim-

itations (described in Chapter 2) pertaining to Software Quality. First and fore-

most, the framework makes use of existing quality models in order to provide

an actual quality modelling of software projects. Through MoCQA models, it

provides a less static viewpoint on quality while not giving up the existing body

of knowledge gathered in traditional quality models. The MoCQA methodol-

ogy also contributes to reducing the difficulty regarding the operationalisation of

quality models. Thanks to its operational viewpoint, it considers quality mod-

els as catalogues of quality issues that may be included more easily in a quality

assessment plan.

Regarding the limitations of Software Measurement, the framework proposes

to alleviate the shortcomings of measures through the documentation of their

purposes and roles in the quality assessment process. The additional data col-

lected in MoCQA models (e.g., scales, value types, etc.) provides safeguards

against the conceptual misuses of measures by explicitly defining their purpose

and how they are used in the quality assessment process. Thanks to this addi-

tional information, the quality assurance team may detect more easily a misuse or

mistake regarding the choice of given measures. Similarly, MoCQA models help

alleviate the lack of validation of measures on two levels. First, they help moni-

tor the overall level of validation of the used measures. Additionally, they allow

the evolution of the quality assessment plan towards more refined and validated

measures. Finally, the framework provides a flexible mechanism that reduces the

Conclusion 273

difficulty to implement the underlying measurement program. First, it provides a

way to communicate between stakeholders that is more standard and accepted

(i.e., actual models). Moreover, the iterative methodology helps correct mistakes

as the quality assessment process unfolds.

The MoCQA framework is also suited to reduce the gap between the software

development and the quality assessment process. As explained in Chapter 2,

the integration of quality assessment in software development raises some issues.

Regarding these issues, the main advantage the framework is to provide the def-

inition of a proper role of quality assessment that is more tightly integrated into

software development. The introduction of a dedicated quality assessment life-

cycle helps redefine the role of the quality assurance team as first-level activity.

Consequently, the framework proposes to address the organisational issues by

providing better ways to communicate within the organisation. Due to its view-

point on software, the framework helps bridge the gap between the viewpoint of

the development team (i.e., the model-driven or ecosystemic view on software)

and the quality assurance viewpoint. The final shortcoming the framework could

help solve is the cost of quality. Although more field-testing is required in order

to actually evaluate the cost and effort of quality assessment performed with the

MoCQA framework, it could provide a way to actually reduce the cost and ef-

fort of quality assessment. Thanks to the reusability of MoCQA models, efforts

regarding the planning of quality assessment may be reduced. In the meantime,

the focus on stakeholders’ requirements could help avoid useless data collection.

In addition to its contribution to those challenges, the research work described

throughout this dissertation helped us gain some more insights on Software Qual-

ity as a field. In order to bring this dissertation to an end, we would like to provide

some closing comments reflecting these insights. As explained before, the funda-

mental question software engineers strive to answer is “how to produce reliable

software?” leading to the question “what is software quality?”. The design of

the MoCQA framework and the different experimentations performed with this

approach tend to show that defining a unique and unambiguous vision of what

good software means appears to be an endless search that will never be achieved

due to the fact that software engineering is in constant evolution.

However, determining if a specific software project shows a proper level of

quality is not as elusive a concept. As shown in the literature and the various

case studies performed with the MoCQA framework, this process is primarily

influenced by contextual circumstances and heterogeneous expectations from the

stakeholders. Our final conclusion regarding this research work is that the con-

structivist approach implemented in the framework seems to be a key aspect for

the creation of a common view of the current state of a given software project,

regarding its quality. Besides, allowing the iterative and incremental construc-

tion of this common view may actually help avoid unsatisfactory responses to

274 Conclusion

stakeholders’ expectations.

In consequence, and according to us, a reliable software product could be

defined as a software product for which all actors involved (from the management,

to the developer, to the customers) share a common view of what is expected from

the others, regarding quality. The MoCQA framework aims to introduce the basic

set of mechanisms that are expected to support the creation of this shared view.

However, it remains a small step that opens a vast field of possibilities that

will require investigation in order to finally provide an answer to this existential

question: what is software quality?

Bibliography

Abouzahra, A., Bézivin, J., Del Fabro, M., and Jouault, F. (2005). A practical approach

to bridging domain specific languages with UML profiles. In Proceedings of the Best

Practices for Model Driven Software Development at OOPSLA, volume 5. Citeseer.

[cited at p. 167]

Abran, A. (2010). Software Metrics and Software Metrology. John Wiley & Sons Inter-

science and IEEE-CS Press. [cited at p. 19, 26, 45, 47, 48, 51]

Abran, A. and Robillard, P. N. (1994). Function points: A study of their measurement

processes and scale transformations. Journal of Systems and Software, 25:171–184.

[cited at p. 20]

Abran, A. and Sellami, A. (2002). Measurement and metrology requirements for empirical

studies in software engineering. In STEP ’02: Proceedings of the 10th International

Workshop on Software Technology and Engineering Practice, page 185, Washington,

DC, USA. IEEE Computer Society. [cited at p. 19, 39]

Al Balushi, T. H., Sampaio, P. R. F., Dabhi, D., and Loucopoulos, P. (2007). Elic-

itO: a quality ontology-guided NFR elicitation tool. In Proceedings of the 13th in-

ternational working conference on Requirements engineering: foundation for software

quality, REFSQ’07, pages 306–319, Berlin, Heidelberg. Springer-Verlag. [cited at p. 137]

Albrecht, A. (1979). Measuring application development productivity. In Press, I. B. M.,

editor, IBM Application Development Symp., pages 83–92. [cited at p. 20]

Antoniol, G., Lokan, C., Caldiera, G., and Fiutem, R. (1999). A function point-like

measure for object-oriented software. Empirical Software Engineering, 4(3):263–287.

[cited at p. 21]

Antony, J. (2004). Some pros and cons of six sigma: an academic perspective. The TQM

Magazine, 16(4):303–306. [cited at p. 28, 29]

Ayed, H., Vanderose, B., and HABRA, N. (2012). A metamodel-based approach for cus-

tomizing and assessing agile methods. In Proceedings of the 8th International Confer-

ence on the Quality of Information and Communications Technology (QUATIC 2012).

[cited at p. 267]

275

276 Bibliography

Bansiya, J. and Davis, C. G. (2002). A hierarchical model for object-oriented design

quality assessment. IEEE Trans. Softw. Eng., 28(1):4–17. [cited at p. 21]

Bansiya, J., Etzkorn, L. H., Davis, C. G., and Li, W. (1999). A class cohesion metric for

object-oriented designs. JOOP, 11(8):47–52. [cited at p. 21]

Basili, V., Caldiera, G., and Rombach, D. H. (1994). The goal question metric approach.

[cited at p. 24, 31, 73]

Basili, V. R. and Weiss, D. M. (1984). A methodology for collecting valid soft-

ware engineering data. IEEE Transactions on Software Engineering, 10(6):728–738.

[cited at p. 18, 66]

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,

Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. (2001). Manifesto for Agile

Software Development. [cited at p. 64]

Behkamal, B., Kahani, M., and Akbari, M. K. (2009). Customizing ISO 9126 qual-

ity model for evaluation of B2B applications. Information and Software Technology,

51(3):599 – 609. [cited at p. 14]

Bengtsson, P., Bengtsson, P., and Bengtsson, P. (2002). Architecture-level modifiability

analysis. Journal of Systems and Software, 69. [cited at p. 136, 212]

Biehl, R. E. (2004). Six sigma for software. IEEE Softw., 21(2):68–70. [cited at p. 29]

Biggerstaff, T. J. and Richter, C. (1989). Software reusability: vol. 1, concepts and

models. chapter Reusability framework, assessment, and directions, pages 1–17. ACM,

New York, NY, USA. [cited at p. 68]

Bocco, M. G., Moody, D. L., and Piattini, M. (2005). Assessing the capability of internal

metrics as early indicators of maintenance effort through experimentation: Research

articles. J. Softw. Maint. Evol., 17(3):225–246. [cited at p. 155, 269]

Bøegh, J., Depanfilis, S., Kitchenham, B., and Pasquini, A. (1999). A method for software

quality planning, control, and evaluation. IEEE Softw., 16(2):69–77. [cited at p. 25]

Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall PTR, Upper

Saddle River, NJ, USA. [cited at p. 11]

Boloix, G., Sorenson, P. G., and Tremblay, J. P. (1993). Software metrics using a meta-

system approach to software specification. J. Syst. Softw., 20(3):273–294. [cited at p. 20]

Booch, G. (2004). Object-Oriented Analysis and Design with Applications (3rd Edition).

Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA. [cited at p. 65]

Briand, L., Devanbu, P., and Melo, W. (1997a). An investigation into coupling measures

for C++. In ICSE ’97: Proceedings of the 19th international conference on Software

engineering, pages 412–421, New York, NY, USA. ACM. [cited at p. 21]

Bibliography 277

Briand, L. and Morasca, S. (1997). Software measurement and formal methods: A

case study centered on TRIO+ specifications. In Proc. First Int́l Conf. Formal Eng.

Methods (ICFEM 9́7, pages 12–14. [cited at p. 20]

Briand, L. C., Differding, C. M., and Rombach, H. D. (1997b). Practical guidelines for

measurement-based process improvement. Special issue of International Journal of

Software Engineering & Knowledge Engineering. [cited at p. 48]

Briand, L. C., Morasca, S., and Basili, V. R. (1996). Property-based software engineering

measurement. IEEE Trans. Softw. Eng., 22(1):68–86. [cited at p. 19, 21]

Briand, L. C., Morasca, S., and Basili, V. R. (1999). Defining and validating mea-

sures for object-based high-level design. IEEE Trans. Software Eng., 25(5):722–743.

[cited at p. 21]

Briand, L. C., Morasca, S., and Basili, V. R. (2002). An operational process for

goal-driven definition of measures. IEEE Trans. Softw. Eng., 28(12):1106–1125.

[cited at p. 24, 52, 54, 65]

Brito e Abreu, F. and Carapuça, R. (1994a). Candidate metrics for object-oriented

software within a taxonomy framework. Journal of Systems and Software, 26(1):87–

96. [cited at p. 21]

Brito e Abreu, F. and Carapuça, R. (1994b). Object-oriented software engineering: Mea-

suring and controlling the development process. In Proceedings of the 4th Interntional

Conference on Software Quality, USA. McLean. [cited at p. 21]

Brito e Abreu, F. and Melo, W. (1996). Evaluating the impact of object-oriented de-

sign on software quality. Software Metrics, IEEE International Symposium on, 0:90.

[cited at p. 21]

Budgen, D. (2003). Software Design. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA. [cited at p. 210]

Bundschuh, M. and Dekkers, C. (2008). The IT Measurement Compendium: Estimating

and Benchmarking Success with Functional Size Measurement, chapter Variants of

the IFPUG Function Point Counting Method, pages 397–407. Springer Publishing

Company, Incorporated. [cited at p. 20]

Cachero, C., Calero, C., and Poels, G. (2007). Metamodeling the Quality of the Web

Development Process Intermediate Artifacts, pages 74–89. [cited at p. 31]

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design.

IEEE Trans. Softw. Eng., 20(6):476–493. [cited at p. 21]

Chirinos, L., Losavio, F., and Bøegh, J. (2005). Characterizing a data model for software

measurement. Journal of Systems and Software, 74(2):207 – 226. The new context for

software engineering education and training. [cited at p. 17, 25, 52, 54]

Christel, M. and Kang, K. (1992). Issues in requirements elicitation. Technical report.

[cited at p. 137]

278 Bibliography

Clements, P., Kazman, R., and Klein, M. (2001). Evaluating Software Architectures:

Methods and Case Studies. Addison-Wesley. [cited at p. 136]

Cockburn, A. (2006). Agile Software Development: The Cooperative Game (2nd Edition)

(Agile Software Development Series). Addison-Wesley Professional. [cited at p. 64]

Conradi, R. and Fuggetta, A. (2002). Improving software process improvement. IEEE

Softw., 19(4):92–99. [cited at p. 43]

Cook, S. (1996). Process Improvement: A Handbook for Managers. Gower. [cited at p. 27]

Cruz-Lemus, J. A., Genero, M., Manso, M. E., Morasca, S., and Piattini, M. (2009).

Assessing the understandability of UML statechart diagrams with composite states

- A family of empirical studies. Empirical Software Engineering, 14(6):685–719.

[cited at p. 22]

Cyra, L. and Górski, J. (2008). Extending GQM by argument structures. pages 26–39.

[cited at p. 24]

Deissenböck, F. (2009). Continuous Quality Control of Long-Lived Software Systems.

PhD thesis, Institut für Informatik der Technischen Universität München. [cited at p. 32,

49, 81, 84]

Deissenboeck, F., Juergens, E., Lochmann, K., and Wagner, S. (2009). Software quality

models: purposes, usage scenarios and requirements. In Proceedings of the Seventh

ICSE conference on Software quality, WOSQ’09, pages 9–14, Washington, DC, USA.

IEEE Computer Society. [cited at p. 35, 37]

Deming, W. E. (2000). Out of the Crisis. MIT Press. Paperback. Originally published

by MIT-CAES in 1982. [cited at p. 28]

Derr, K. W. (1995). Applying OMT: a practical step-by-step guide to using the object

modeling technique. SIGS Publications, Inc., New York, NY, USA. [cited at p. 22]

Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on

Software Engineering, 21(2):146–162. [cited at p. 12]

Dromey, R. G. (1996). Cornering the chimera. IEEE Softw., 13(1):33–43. [cited at p. 12,

36, 65, 76, 124, 271]

Dubielewicz, I., Hnatkowska, B., Huzar, Z., and Tuzinkiewicz, L. (2006). Software quality

metamodel for requirement, evaluation and assessment. In ISIM06 Conference, volume

No. 105, pages 115–122, Prerov, Czech Republic, Acta Mosis. [cited at p. 33]

Englebert, V. and Heymans, P. (2007). Towards more extensible metaCASE tools. In

Advanced Information Systems Engineering, pages 454–468. Springer. [cited at p. 176]

Falcone, G. (2010). Hierarchy-aware software metrics in component composition hierar-

chies. PhD thesis, Berlin. [cited at p. 156]

Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P., and Mishra, R.

(2007). Predicting software defects in varying development lifecycles using Bayesian

nets. Inf. Softw. Technol., 49(1):32–43. [cited at p. 16]

Bibliography 279

Fenton, N. E. and Neil, M. (1999). Software metrics: success, failures and new directions.

J. Syst. Softw., 47(2-3):149–157. [cited at p. 1, 42]

Fenton, N. E. and Pfleeger, S. L. (1998). Software Metrics: A Rigorous and Practical

Approach. PWS Publishing Co., Boston, MA, USA. [cited at p. 17, 18, 39, 46, 49]

Finney, K., Rennolls, K., and Fedorec, A. (1998). Measuring the comprehensibility of Z

specifications. Journal of Systems and Software, 42(1):3 – 15. [cited at p. 20]

Firesmith, D. (2005). Are your requirements complete? Journal of Object Technology,

4(1):27–44. [cited at p. 225]

Garćıa, F., Bertoa, M. F., Calero, C., Vallecillo, A., Rúız, F., Piattini, M., and Genero,

M. (2006). Towards a consistent terminology for software measurement. Information

and Software Technology, 48(8):631 – 644. [cited at p. 19, 26, 31, 45, 46, 47, 48, 52, 53]

Garćıa, F., Serrano, M., Cruz-Lemus, J., Rúız, F., and Piattini, M. (2007). Managing

software process measurement: A metamodel-based approach. Information Sciences,

177(12):2570–2586. [cited at p. 31, 269]

Garćıa Frey, A., Céret, E., Dupuy-Chessa, S., and Calvary, G. (2011). QUIMERA:

a quality metamodel to improve design rationale. In Proceedings of the 3rd ACM

SIGCHI symposium on Engineering interactive computing systems, EICS ’11, pages

265–270, New York, NY, USA. ACM. [cited at p. 33]

Genero, M. (2002). Defining and Validating Metrics for Conceptual Models. PhD thesis,

University of Castilla-La Mancha. [cited at p. 22]

Genero, M., Manso, E., Visaggio, A., Canfora, G., and Piattini, M. (2007). Building

measure-based prediction models for UML class diagram maintainability. Empirical

Softw. Engg., 12(5):517–549. [cited at p. 22]

Genero, M., Piattini, M., and Calero, C. (2000). Early measures for UML class diagrams.

L’OBJET, 6(4). [cited at p. 22]

Genero, M., Piattini, M., and Calero, C., editors (2005a). Metrics For Software Concep-

tual Models. World Scientific Publishing Co., Inc., River Edge, NJ, USA. [cited at p. 20,

22, 23]

Genero, M., Piattini, M., and Calero, C. (2005b). A survey of metrics for UML class

diagrams. Journal of Object Technology, 4:59–92. [cited at p. 21, 22]

Gerhardt-Powals, J. (1996). Cognitive engineering principles for enhancing human-

computer performance. Int. J. Hum.-Comput. Interact., 8(2):189–211. [cited at p. 171]

Gilson, F. and Englebert, V. (2011). Rationale, decisions and alternatives traceability

for architecture design. In Proceedings of the 5th European Conference on Software

Architecture: Companion Volume, ECSA ’11, pages 4:1–4:9, New York, NY, USA.

ACM. [cited at p. 210]

Grady, R. B. (1992). Practical software metrics for project management and process

improvement. Prentice-Hall, Inc., Upper Saddle River, NJ, USA. [cited at p. 12]

280 Bibliography

Grady, R. B. and Caswell, D. L. (1987). Software metrics: establishing a company-wide

program. Prentice-Hall, Inc., Upper Saddle River, NJ, USA. [cited at p. 12]

Habra, N., Abran, A., Lopez, M., and Sellami, A. (2008). A framework for the design

and verification of software measurement methods. J. Syst. Softw., 81(5):633–648.

[cited at p. 19, 38, 39, 45, 46, 47, 49, 50]

Habra, N. and Lopez, M. (2004). A structured analysis of the McCabe cyclomatic com-

plexity measure. In Dumbke, R. and Abran, A., editors, 14th International Workshop

on Software Measurement (IWSM2004), pages –, Aachen. Shaker Verlag. [cited at p. 38]

Halstead, M. H. (1977). Elements of Software Science (Operating and programming

systems series). Elsevier Science Inc., New York, NY, USA. [cited at p. 23]

Hanoteau, S. (2012). Déploiement de l´approche MoCQA en environnement profession-

nel. Master’s thesis, University of Namur. [cited at p. 241, 246, 248]

Harrison, R., Counsell, S., and Nithi, R. (1998). Coupling metrics for object-oriented

design. In METRICS ’98: Proceedings of the 5th International Symposium on Software

Metrics, page 150, Washington, DC, USA. IEEE Computer Society. [cited at p. 21]

Henderson-Sellers, B. and Gonzalez-Perez, C. (2005). A comparison of four process

metamodels and the creation of a new generic standard. Information and software

technology, 47(1):49–65. [cited at p. 267]

Henry, S. and Kafura, D. (1981). Software structure metrics based on information flow.

IEEE Trans. Softw. Eng., 7(5):510–518. [cited at p. 22]

IEEE (1998). Standard for a software quality metrics methodology. IEEE Computer

Society, IEEE Std, pages 1061–1998. [cited at p. 46, 48, 49]

IEEE Computer Society (2004). Software Engineering Body of Knowledge (SWEBOK).

Angela Burgess, EUA. [cited at p. 94]

ISO/IEC (1999). 14598-1:1999 Information technology – Software product evaluation –

Part 1: General overview. [cited at p. 49, 89, 193]

ISO/IEC (2001a). 9126-1, Software engineering - product quality - Part 1: Quality

Model. [cited at p. 13, 47, 48, 49, 219]

ISO/IEC (2001b). 9126-2, Software engineering - product quality - Part 2: External

metrics. [cited at p. 23, 191]

ISO/IEC (2001c). 9126-3, Software engineering - product quality - Part 3: Internal

Metrics. [cited at p. 23, 191]

ISO/IEC (2001d). 9126-4, Software engineering - product quality - Part 4: Quality In

Use Metrics. [cited at p. 23, 191]

ISO/IEC (2003a). 15504-2:2003 Information technology - Process assessment - Part 2:

Performing an assessment. [cited at p. 30]

Bibliography 281

ISO/IEC (2003b). 19761:2003, Software engineering – COSMIC-FFP – A functional size

measurement method. [cited at p. 20]

ISO/IEC (2005a). 19502:2005 Information technology - Meta Object Facility (MOF).

[cited at p. 82]

ISO/IEC (2005b). 25000, Software Engineering – Software product Quality Requirements

and Evaluation (SQuaRE) – Guide to SQuaRE. [cited at p. 14]

ISO/IEC (2007a). 15939:2007 Systems and software engineering - Measurement process.

[cited at p. 19, 52, 86, 185]

ISO/IEC (2007b). Guide 99:2007, International vocabulary of metrology – Basic and

general concepts and associated terms (VIM). [cited at p. 19, 47, 48, 50]

ISO/IEC (2008). 12207:2008 – Systems and software engineering – Software life cycle

processes. [cited at p. 40, 50, 51]

ISO/IEC (2011). 25010, Systems and software engineering – Systems and software Qual-

ity Requirements and Evaluation (SQuaRE) – System and software quality models.

[cited at p. 222]

Jacquet, J.-P. and Abran, A. (1997). From software metrics to software measurement

methods: A process model. In Proceedings of the 3rd International Software Engi-

neering Standards Symposium (ISESS ’97), page 128, Washington, DC, USA. IEEE

Computer Society. [cited at p. 18]

Jonassen, D. (1991). Objectivism versus constructivism: Do we need a new philo-

sophical paradigm? Educational Technology Research and Development, 39:5–14.

10.1007/BF02296434. [cited at p. 63]

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and Valduriez, P. (2006). ATL: A QVT-

like transformation language. In Companion to the 21st ACM SIGPLAN symposium

on Object-oriented programming systems, languages, and applications, pages 719–720.

ACM. [cited at p. 168]

Juristo, N. and Moreno, A. M. (2001). Basics of Software Engineering Experimentation.

Kluwer Academic Publishers, Boston, USA. [cited at p. 183]

Kaner, C., Member, S., and Bond, W. P. (2004). Software engineering metrics: What

do they measure and how do we know? In In METRICS 2004. IEEE CS. Press.

[cited at p. 125]

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990). Feature-

Oriented Domain Analysis (FODA) feasibility study. Technical report, Carnegie-

Mellon University Software Engineering Institute. [cited at p. 94]

Kantner, R. (2000). The ISO 9000: Answer Book, 2nd Edition. John Wiley & Sons, Inc.

[cited at p. 29]

Kasunic, M. (2006). The state of software measurement practice: Results of 2006 survey.

Technical report, Software Engineering Institute. [cited at p. 1, 40, 42]

282 Bibliography

Kazman, R., Kazman, R., Klein, M., Klein, M., Clements, P., Clements, P., Compton,

N. L., and Col, L. (2000). ATAM: Method for architecture evaluation. [cited at p. 199,

200, 201, 202]

Kelly, S. (2004). Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM. In 19th

Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and

Applications, Workshop on Best Practices for Model Driven Software Development.

[cited at p. 175]

Kent, S. (2002). Model Driven Engineering. In Proceedings of the Third International

Conference on Integrated Formal Methods, IFM ’02, pages 286–298, London, UK, UK.

Springer-Verlag. [cited at p. 165]

Khosravi, K. and Guéhéneuc, Y.-G. (2005). Open issues with quality models. In Brito e

Abreu, F., Calero, C., Lanza, M., Poels, G., and Sahraoui, H. A., editors, Proceedings

of the 9th ECOOP workshop on Quantitative Approaches in Object-Oriented Software

Engineering (QAOOSE). Springer-Verlag. [cited at p. 33]

Kitchenham, B., Pfleeger, S. L., and Fenton, N. (1995). Towards a framework for software

measurement validation. IEEE Trans. Softw. Eng., 21(12):929–944. [cited at p. 18, 21,

39]

Klaes, M., Lampasona, C., and Nunnenmacher, S. (2010). How to evaluate meta-models

for software quality? In Proceedings of the 20th International Workshop on Software

Measurement (IWSM2010). [cited at p. 33, 262]

Koshima, A., Englebert, V., and Thiran, P. (2011). Distributed collaborative model

editing framework for Domain Specific Modeling tools. In Global Software Engi-

neering (ICGSE), 2011 6th IEEE International Conference on, pages 113–118. IEEE.

[cited at p. 168]

Koziolek, H. (2011). Sustainability evaluation of software architectures: a systematic

review. In Proceedings of the joint ACM SIGSOFT conference – QoSA and ACM

SIGSOFT symposium – ISARCS on Quality of software architectures – QoSA and

architecting critical systems – ISARCS, QoSA-ISARCS ’11, pages 3–12, New York,

NY, USA. ACM. [cited at p. 39, 136, 199]

Krogstie, J., Lindland, O. I., and Sindre, G. (1995). Defining quality aspects for con-

ceptual models. In Proceedings of the IFIP international working conference on In-

formation system concepts, pages 216–231, London, UK, UK. Chapman & Hall, Ltd.

[cited at p. 17]

Kurtev, I. (2008). State of the art of QVT: A model transformation language stan-

dard. Applications of Graph Transformations with Industrial Relevance, pages 377–

393. [cited at p. 168]

Lange, C. and Chaudron, M. (2004). An empirical assessment of completeness in UML

designs. IEE Seminar Digests, 2004(920):111–119. [cited at p. 22]

Lange, C. F. J. (2007). Assessing and Improving the Quality of Modeling. PhD thesis,

Technische Universiteit Eindhoven. [cited at p. 22]

Bibliography 283

Lavazza, L. and Barresi, G. (2005). Automated support for process-aware definition

and execution of measurement plans. In ICSE ’05: Proceedings of the 27th interna-

tional conference on Software engineering, pages 234–243, New York, NY, USA. ACM.

[cited at p. 24]

Lee, Y. and Chang, K. H. (2000). Reusability and maintainability metrics for object-

oriented software. In ACM-SE 38: Proceedings of the 38th annual on Southeast regional

conference, pages 88–94, New York, NY, USA. ACM. [cited at p. 33]

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski, W. M. (1997).

Metrics and Laws of Software Evolution - The Nineties View. Software Metrics, IEEE

International Symposium on, 0:20+. [cited at p. 152]

Li, E. Y., Chen, H. G., and Cheung, W. (2000). Total Quality Management in Soft-

ware Development Process. The Journal of the Quality Assurance Institute, 14(1).

[cited at p. 27, 28]

Li, W. and Henry, S. (1993). Object-oriented metrics that predict maintainability. J.

Syst. Softw., 23(2):111–122. [cited at p. 21]

Lindland, O. I., Sindre, G., and Solvberg, A. (1994). Understanding quality in conceptual

modeling. IEEE Softw., 11(2):42–49. [cited at p. 16]

Lopez, M., Paulus, V., and Habra, N. (2003). Integrated validation process of software

measure. In Proceedings of the 13th International Workshop on Software Measurement

(IWSM2003), MontrÃl’al, Canada. Shaker Verlag. [cited at p. 18]

Lorenz, M. and Kidd, J. (1994). Object-oriented software metrics: a practical guide.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA. [cited at p. 21]

Losavio, F., Chirinos, L., Matteo, A., Lévy, N., and Ramdane-Cherif, A. (2004). ISO qual-

ity standards for measuring architectures. Journal of Systems and Software, 72(2):209–

223. [cited at p. 14]

Losavio, F., Chirinos, L., and Perez, M. A. (2001). Quality models to design software

architectures. In Proc. Technology of Object-Oriented Languages and Systems TOOLS

38, pages 123–135. [cited at p. 14]

Lungu, M. (2009). Reverse Engineering Software Ecosystems. PhD thesis, University of

Lugano, Switzerland. [cited at p. 2, 41]

Marchesi, M. (1998). OOA metrics for the Unified Modeling Language. In CSMR

’98: Proceedings of the 2nd Euromicro Conference on Software Maintenance and

Reengineering (CSMR’98), page 67, Washington, DC, USA. IEEE Computer Society.

[cited at p. 20, 21]

Matulevicius, R., Kamseu, F., and Habra, N. (2009). Measuring open source documenta-

tion availability. In Proceedings of the international Conference on Quality Engineering

in Software Technology. [cited at p. 23, 193, 197]

284 Bibliography

McCabe, T. J. (1976). A complexity measure. In ICSE ’76: Proceedings of the 2nd

international conference on Software engineering, page 407, Los Alamitos, CA, USA.

IEEE Computer Society Press. [cited at p. 23]

Mccall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in software quality.

Volume i. concepts and definitions of software quality. Technical Report ADA049014,

General Electric co Sunnyval, Ca. [cited at p. 11, 49, 219]

Mens, T., Czarnecki, K., and Gorp, P. V. (2005a). 04101 discussion – a taxonomy of

model transformations. In Bezivin, J. and Heckel, R., editors, Language Engineer-

ing for Model-Driven Software Development, number 04101 in Dagstuhl Seminar Pro-

ceedings, Dagstuhl, Germany. Internationales Begegnungs- und Forschungszentrum für

Informatik (IBFI), Schloss Dagstuhl, Germany. [cited at p. 99]

Mens, T., Doctors, L., Habra, N., Vanderose, B., and Kamseu, F. (2011). Qualgen:

Modeling and analysing the quality of evolving software systems. In Proc. IEEE Int’l

CSMR, pages 351 – 354. IEEE. [cited at p. 132]

Mens, T. and Goeminne, M. (2011). Analysing the evolution of social aspects of open

source software ecosystems. In Proc. 3rd Int. Workshop on Software Ecosystems

(IWSECO), pages 1–14. [cited at p. 2]

Mens, T. and Gorp, P. V. (2006). A taxonomy of model transformation. Electronic Notes

in Theoretical Computer Science, 152:125 – 142. Proceedings of the International

Workshop on Graph and Model Transformation (GraMoT 2005). [cited at p. 141, 174,

224]

Mens, T. and Lanza, M. (2002). A graph-based metamodel for object-oriented software

metrics. Electr. Notes Theor. Comput. Sci., 72(2). [cited at p. 33]

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., and Jazayeri, M.

(2005b). Challenges in software evolution. In IWPSE ’05: Proceedings of the Eighth

International Workshop on Principles of Software Evolution, pages 13–22, Washington,

DC, USA. IEEE Computer Society. [cited at p. 152, 168]

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to develop domain-

specific languages. ACM Comput. Surv., 37(4):316–344. [cited at p. 69]

Meyer, M. H. and Lehnerd, A. P. (1997). The Power of Product Platforms. Free Press,

New York. [cited at p. 235]

Mich, L., Anesi, C., and Berry, D. M. (2004). Requirements engineering and creativity:

An innovative approach based on a model of the pragmatics of communication. In

in Proceedings of Requirements Engineering: Foundation of Software Quality REF-

SQâĂŹ04. [cited at p. 137]

Miller, J. and Mukerji, J. (2003). MDA Guide version 1.0.1. Technical report, Object

Management Group (OMG). [cited at p. 83, 98]

Miller, R. E. (2009). The Quest for Software Requirements. MavenMark Books, USA.

[cited at p. 137]

Bibliography 285

Miranda, D., Genero, M., and Piattini, M. (2003). Empirical validation of metrics for

UML statechart diagrams. In ICEIS (1), pages 87–95. [cited at p. 22]

Mohagheghi, P. and Dehlen, V. (2008). Developing a quality framework for model-driven

engineering. [cited at p. 2, 15, 33]

Mohagheghi, P., Dehlen, V., and Neple, T. (2008). A metamodel and supporting process

and tool for specifying quality models in model-based software development. Nordic

J. of Computing, 14(4):301–320. [cited at p. 33]

Moody, D. L. (2009). The physics of notations: Toward a scientific basis for constructing

visual notations in software engineering. IEEE Transactions on Software Engineering,

35:756–779. [cited at p. 171]

Moody, D. L. and Shanks, G. G. (2003). Improving the quality of data models: empirical

validation of a quality management framework. Information Systems, 28(6):619–650.

[cited at p. 15]

Mora, B., Piattini, M., Ruiz, F., and Garcia, F. (2008). SMML: Software Measurement

Modeling Language. In Proceedings of the 8th Workshop on Domain-Specific Modeling

(DSM’2008). [cited at p. 31, 69]

Morasca, S. (1999). Measuring attributes of concurrent software specifications in Petri

nets. Software Metrics, IEEE International Symposium on, 0:100. [cited at p. 20]

Morasca, S. (2001). Handbook of Software Engineering And Knowledge Engineering:

Recent Advances, chapter 2: Software Measurement, pages 239–276. World Scientific

Publishing Co., Inc., River Edge, NJ, USA. [cited at p. 18, 20, 23]

Morasca, S. (2008). Refining the axiomatic definition of internal software attributes.

In ESEM ’08: Proceedings of the Second ACM-IEEE international symposium on

Empirical software engineering and measurement, pages 188–197, New York, NY, USA.

ACM. [cited at p. 19]

Morasca, S. and Briand, L. (1997). Towards a theoretical framework for measuring

software attributes. In Proc. IEEE Symp. Software Metrics, pages 119–126. IEEE.

[cited at p. 19, 39]

Neil, M. and Fenton, N. (1996). Predicting software quality using Bayesian belief net-

works. In Proc 21st Ann. Software Eng. Workshop, NASA Goddard Space Flight

Centre, pages 217–230. [cited at p. 16]

Neil, M., Fenton, N., and Nielson, L. (2000). Building large-scale Bayesian networks.

Knowl. Eng. Rev., 15(3):257–284. [cited at p. 16]

OMG (2006). Meta Object Facility (MOF) Core Specification Version 2.0. [cited at p. 83]

OMG (2008). Software & Systems Process Engineering Metamodel Specification (SPEM)

version 2. [cited at p. 267]

OMG (2010). OCL 2.2 Specification. [cited at p. 167]

286 Bibliography

OPFRO (2009). Open process framework. [cited at p. 267]

Ortega, M., Pérez, M., and Rojas, T. (2003). Construction of a systemic quality model for

evaluating a software product. Software Quality Control, 11(3):219–242. [cited at p. 11,

12, 14, 192, 221]

Parnas, D. L. (1994). Software aging. In Proceedings of the 16th international conference

on Software engineering, ICSE ’94, pages 279–287, Los Alamitos, CA, USA. IEEE

Computer Society Press. [cited at p. 152]

Paulk, M. C. (1999). Analyzing the conceptual relationship between ISO/IEC 15504

(Software Process Assessment) and the Capability Maturity Model for Software.

In in Proceedings, Ninth International Conference on Software Quality, pages 4–6.

[cited at p. 30]

Perez Garcia, F., Pinna Puissant, J., Mens, T., Kamseu, F., and Habra, N. (2012).

Software quality practices in industry: A pilot study in Wallonia. Technical report.

[cited at p. 37]

Peters, J. F. and Pedrycz, W. (1998). Software Engineering: An Engineering Approach.

John Wiley & Sons, Inc., New York, NY, USA. [cited at p. 1]

Pfleeger, S. L. (1998). Software Engineering: Theory and Practice. Prentice Hall.

[cited at p. 11]

PMI (2004). A Guide To The Project Management Body Of Knowledge (PMBOK

Guides). Project Management Institute. [cited at p. 248]

Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,

NJ, USA. [cited at p. 236]

Prather, R. E. (1984). An axiomatic theory of software complexity measure. The Com-

puter Journal, 27(4):340–347. [cited at p. 19]

Pressman, R. S. (2000). Software Engineering : A Practioner’s Approach. Mc Graw-Hill

International (UK) Limited. [cited at p. 37]

Ramdoyal, R., Cleve, A., and Hainaut, J.-L. (2010). Reverse engineering user interfaces

for interactive database conceptual analysis. In Proceedings of the 22nd international

conference on Advanced information systems engineering, CAiSE’10, pages 332–347,

Berlin, Heidelberg. Springer-Verlag. [cited at p. 135]

Read, D. (2005). Iterative development: Key technique for managing software develop-

ments. In Proceedings of ICT WA ’05. [cited at p. 64]

Reynoso, L., Cruz-Lemus, J. A., Genero, M., and Piattini, M. (2008). Formal defi-

nition of measures for UML statechart diagrams using OCL. In Proceedings of the

2008 ACM symposium on Applied computing, pages 846–847, Fortaleza, Ceara, Brazil.

ACM. [cited at p. 22]

Bibliography 287

Riguzzi, F. (1996). A survey of software metrics. Technical Report DEIS-LIA-96-010,

LIA Series n.17, DEIS, Università di Bologna. [cited at p. 2]

Rittgen, P. (2008). COMA: A tool for collaborative modeling. In CAiSE Forum, pages

61–64. [cited at p. 168]

Rittgen, P. (2009). Collaborative modeling - A design science approach. In System Sci-

ences, 2009. HICSS’09. 42nd Hawaii International Conference on, pages 1–10. IEEE.

[cited at p. 168]

Robles, G., Gonzalez-Barahona, J. M., and Merelo, J. J. (2006). Beyond source code: the

importance of other artifacts in software development (a case study). J. Syst. Softw.,

79(9):1233–1248. [cited at p. 41]

Rooney, J. J., Heuvel, V., and Lee, N. (2004). Root Cause Analysis for beginners. Quality

Progress, 37(7):45–53. [cited at p. 151]

RTCA (1992). DO-178b, Software Considerations in Airborne Systems and Equipment

Certification. Radio Technical Commission for Aeronautics (RTCA), European Orga-

nization for Civil Aviation Electronics (EUROCAE), DO178-B. [cited at p. 235]

Saeki, M. (2003). Embedding metrics into information systems development methods: An

application of method engineering technique. In CAiSE, pages 374–389. [cited at p. 20]

Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. Computer,

39(2):25–31. [cited at p. 2, 37]

SEI (2010). CMMI for Development, Version 1.3,. Technical report, CMU/SEI-2010-

TR-033, Carnegie Mellon University. [cited at p. 47, 50, 51, 63]

Sendall, S. and Kozaczynski, W. (2003). Model transformation: The heart and soul of

model-driven software development. Software, IEEE, 20(5):42–45. [cited at p. 168]

Sharp, H., Finkelstein, A., and Galal, G. (1999). Stakeholder identification in the re-

quirements engineering process. In Proceedings of the 10th International Workshop on

Database & Expert Systems Applications, DEXA ’99, pages 387–, Washington, DC,

USA. IEEE Computer Society. [cited at p. 65, 130]

Si-Said Cherfi, S., Akoka, J., and Comyn-Wattiau, I. (2007). Perceived vs. measured

quality of conceptual schemas: an experimental comparison. In ER ’07: Tutorials,

posters, panels and industrial contributions at the 26th international conference on

Conceptual modeling, pages 185–190, Darlinghurst, Australia, Australia. Australian

Computer Society, Inc. [cited at p. 22]

Sprinkle, J. M., Ledeczi, A., Karsai, G., and Nordstrom, G. (2001). The new meta-

modeling generation. Engineering of Computer-Based Systems, IEEE International

Conference on the, 0:0275. [cited at p. 82]

Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., and Murphy, R. (2007).

An exploratory study of why organizations do not adopt CMMI. J. Syst. Softw.,

80(6):883–895. [cited at p. 31]

288 Bibliography

Stelzer, D., Mellis, W., and Herzwurm, G. (1996). Software process improvement via

ISO 9000? Results of two surveys among European Software Houses. In Proceedings

of the 29th Hawaii International Conference on System Sciences Volume 1: Software

Technology and Architecture, HICSS ’96, pages 703–, Washington, DC, USA. IEEE

Computer Society. [cited at p. 29]

Stevens, S. S. (1975). Psychophysics: Introduction to its perceptual, neural, and social

prospects. [cited at p. 17]

Suryn, W., Abran, A., and April, A. (2003). ISO/IEC SQuaRE: The second generation

of standards for software product quality. In Proceedings of the 7th IASTED Inter-

national Conference on Software Engineering and Applications (ICSEAâĂŹ03, pages

1–9. [cited at p. 14]

Symons, C. R. (1991). Software sizing and estimating: Mk II FPA (Function Point

Analysis). John Wiley & Sons, Inc., New York, NY, USA. [cited at p. 20]

Tian, J. and Zelkowitz, M. V. (1992). A formal program complexity model and its

application. Journal of Systems and Software, 17(3):253 – 266. [cited at p. 19]

Torchiano, M., Jaccheri, L., Sørensen, C.-F., and Wang, A. I. (2002). COTS products

characterization. In SEKE ’02: Proceedings of the 14th international conference on

Software engineering and knowledge engineering, pages 335–338, New York, NY, USA.

ACM. [cited at p. 14]

Torgerson, W. S. (1958). Theory and methods of scaling. New York: John Wiley & Sons,

1958. [cited at p. 17]

Trendowicz, A. and Punter, T. (2003). Quality modeling for software product lines. In

In: 7th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software

Engineering (QAOOSE03). [cited at p. 15]

Uschold, M. and King, M. (1995). Towards a methodology for building ontologies. In

In Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction

with IJCAI-95. [cited at p. 51, 52]

van Amstel, M., Lange, C., and van den Brand, M. (2009). Using metrics for assess-

ing the quality of ASF+SDF model transformations. Theory and Practice of Model

Transformations, pages 239–248. [cited at p. 23]

van Lamsweerde, A. and Letier, E. (2004). From object orientation to goal orientation:

A paradigm shift for requirements engineering. Radical Innovations of Software and

Systems Engineering in the Future, pages 153–166. [cited at p. 137]

van Opzeeland, D. J., Lange, C. F., and Chaudron, M. R. (2005). Quantitative techniques

for the assessment of correspondence between UML designs and implementations. In

Proc. ECOOP Workshop on Quantitative Approaches in Object-Oriented Software En-

gineering, pages 1–17. [cited at p. 22]

Vanderose, B. and Habra, N. (2008). Towards a generic framework for empirical studies of

model-driven engineering. In Proceedings of the First Workshop on Empirical Studies

of Model-Driven Engineering Toulouse, France, September 29, 2008. [cited at p. 90]

Bibliography 289

Vanderose, B. and Habra, N. (2011). Tool-support for a model-centric quality assess-

ment: Quatalog. In Proceedings of the 2011 Joint Conference of the 21st International

Workshop on Software Measurement and the 6th International Conference on Software

Process and Product Measurement, IWSM-MENSURA ’11, pages 263–268, Washing-

ton, DC, USA. IEEE Computer Society. [cited at p. 173]

Vanderose, B., HABRA, N., and Kamseu, F. (2011). Operationalization of a model-

centric quality assessment (MoCQA) framework. In Proceedings of the 3rd Workshop

on Leveraging Empirical Research Results for Software Business Success (EPIC2011).

[cited at p. 265]

Vanderose, B., Kamseu, F., and Habra, N. (2010). Towards a model-centric quality as-

sessment. In Proceedings of the 20th International Workshop on Software Measurement

(IWSM2010), pages 21–34. [cited at p. 71, 175, 215]

Vanderose, B., Mens, T., Kamseu, F., and HABRA, N. (2012). A feasability study of

quality assessment during software maintenance. In Proceedings of the 6th Interna-

tional Workshop on Software Quality and Maintainability (SQM2012). [cited at p. 219]

Vaucher, S. (2010). Modelling Software Quality: A Multidimensional Approach. PhD

thesis, Université de Montréal. [cited at p. 262]

Vignaga, A. (2007). A methodological approach to developing model transformations.

In MoDELS (Doctoral Symposium). [cited at p. 2]

Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz, A., Plösch, R., Seidl,

A., Goeb, A., and Streit, J. (2012). The Quamoco product quality modelling and

assessment approach. In Proceedings of the 2012 International Conference on Soft-

ware Engineering, ICSE 2012, pages 1133–1142, Piscataway, NJ, USA. IEEE Press.

[cited at p. 32]

Wagner, S., Lochmann, K., Winter, S., Goeb, A., and Klaes, M. (2009). Quality models

in practice: A preliminary analysis. In Proceedings of the 2009 3rd International

Symposium on Empirical Software Engineering and Measurement, ESEM ’09, pages

464–467, Washington, DC, USA. IEEE Computer Society. [cited at p. 36, 133]

Westfall, L. and Road, C. (2005). 12 steps to useful software metrics. Proceedings of the

Seventeenth Annual Pacific Northwest Software Quality Conference, 57 Suppl 1(May

2006):S40–3. [cited at p. 2, 42, 51, 65, 66, 69, 70, 130, 252]

Weyuker, E. J. (1988). Evaluating software complexity measures. IEEE Trans. Softw.

Eng., 14(9):1357–1365. [cited at p. 19]

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2000).

Experimentation in software engineering: an introduction. Kluwer Academic Publish-

ers, Norwell, MA, USA. [cited at p. 183, 219]

Yu, E. and Mylopoulos, J. (1998). Why goal-oriented requirements engineering. In Pro-

ceedings of the 4th International Workshop on Requirements Engineering: Foundations

of Software Quality, pages 15–22. [cited at p. 137]

290 Bibliography

Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., and Grabowski, J. (2007). Ap-

plying the ISO 9126 quality model to test specifications exemplified for TTCN-3 test

specifications. In Software Engineering, pages 231–242. [cited at p. 14]

Zuse, H. (1997). A Framework of Software Measurement. Walter de Gruyter & Co.

[cited at p. 18, 39, 156]

Index

A

analysis model, 48

artefact, 90

artefact type, 90

assessment model, 115

attribute, 46

B

base measure, 47

behaviour, 94

behaviour type, 94

D

decision criteria, 48

deliverable, 50

derivation, 98

derivation type, 97

derived measure, 47

E

entity, 45

entity class, 46

entity population, 46

external attribute, 46

I

indicator, 48

information need, 48

internal attribute, 46

interpretation rule, 120

M

measure, 47

measurement function, 47

measurement life cycle, 47, 62

measurement method, 48

measurement plan, 48

measurement procedure, 48

metric, 48

MoCQA model, 72, 76, 81

O

operational customised quality assessment

model, 61, 72

P

process, 50

process measurement, 50

project, 51

Q

quality assessment cycle, 74

quality assessment life-cycle, 74

quality assessment metamodel, 84

quality assessment model, 81, 82

quality assessment modelling, 76

quality factor, 49

quality indicator, 119

quality issue, 82, 113

quality model, 35, 49

quality profile, 150

S

scale, 49

software product, 51

software project, 67

software ecosystem, 41

stakeholder, 51

U

unit of measurement, 50

V

value, 50

291

	Contents
	List of Tables
	List of Figures
	I Research Context
	1 Software Quality
	1.1 Quality models
	1.1.1 First influential researches
	1.1.2 ISO/IEC 9126 Quality Model and variations
	1.1.3 Domain-specific quality models
	1.1.4 Other quality frameworks

	1.2 Software Measurement
	1.2.1 Fundamentals of software measurement
	1.2.2 Software Measures
	1.2.3 Implementation of measurement programs

	1.3 Software process improvement
	1.4 Quality modelling
	1.4.1 GenMETRIC and SMML
	1.4.2 QMM and Quamoco
	1.4.3 Other quality metamodels

	2 Research issues
	2.1 Issues related to quality models
	2.1.1 Complexity of the operationalisation
	2.1.2 Confusion between quality models and quality modelling

	2.2 Issues related to software measurement
	2.2.1 Conceptual misconception pertaining to measurement
	2.2.2 Lack of empirical validation
	2.2.3 Complexity of measurement programs implementation

	2.3 Issues related to the integration of quality assessment into the software development
	2.3.1 Spread of measurement methods
	2.3.2 Problematic role of quality assessment
	2.3.3 Impact of model-driven engineering
	2.3.4 Impact of software ecosystems
	2.3.5 Organisational issues regarding quality assessment
	2.3.6 Cost and effort of quality assessment/improvement

	3 Conceptualisation of the domain
	3.1 Terminology
	3.2 Ontology
	3.2.1 Purpose
	3.2.2 Building the ontology
	3.2.3 Evaluation and documentation
	3.2.4 Software Quality ontology

	II Model-Centric Quality Assessment
	4 Overview of the approach
	4.1 Objectives of the approach
	4.2 Founding principles
	4.2.1 Constructivism
	4.2.2 Iterative / incremental life-cycle
	4.2.3 Involvement of the stakeholders
	4.2.4 Goal-Driven definition of measures
	4.2.5 Ecosystemic viewpoint
	4.2.6 Definitional and analytic approaches integration
	4.2.7 Reusability
	4.2.8 Domain-specific languages and expressiveness
	4.2.9 Human aspect of software quality

	4.3 The MoCQA framework
	4.3.1 MoCQA models
	4.3.2 Model-Centric Quality Assessment methodology

	4.4 Structure

	5 MoCQA models
	5.1 MoCQA models and Meta-Object Facility
	5.2 Quality assessment metamodel
	5.2.1 Project package
	5.2.2 Measurement package
	5.2.3 Assessment package

	5.3 Designing the MoCQA model
	5.3.1 Components instantiation
	5.3.2 Structural coherence

	6 Step 1: Acquisition
	6.1 Overview
	6.1.1 Activities
	6.1.2 Formalisation

	6.2 MoCQA model design in practice
	6.2.1 Customising existing quality models
	6.2.2 Developing analysis grids
	6.2.3 Tool support
	6.2.4 Complementarity with scenario-based analysis
	6.2.5 Complementarity with Requirements Engineering

	7 Step 3: Measurement Plan
	7.1 Overview
	7.1.1 Activities

	7.2 MoCQA model transformations
	7.3 Operationalisation challenges
	7.3.1 Formalisation of the operationalisation

	7.4 Preparing data collection
	7.4.1 Data Model

	8 Step 5: Exploitation
	8.1 Overview
	8.1.1 Activities

	8.2 Quality Profiling
	8.2.1 Interpreting quality indicators
	8.2.2 Supporting root-cause analysis
	8.2.3 Exploiting MoCQA models during software evolution
	8.2.4 Exploiting MoCQA models at early stages of the development

	8.3 Reviewing MoCQA models
	8.3.1 Content integrity
	8.3.2 MoCQA-related indicators
	8.3.3 Illustration

	9 Tool support
	9.1 Tool-related challenges of model-driven quality assessment
	9.2 Model-driven tools and MoCQA framework
	9.2.1 Exploitation of model constraints
	9.2.2 Exploitation of model transformation languages
	9.2.3 Co-evolution of models and collaborative modelling

	9.3 Dedicated and integrated tool support
	9.3.1 XML-based Operational Customised Quality Assessment Model
	9.3.2 MoCQA Utilities on the Go (MUG)
	9.3.3 OCQAM editor
	9.3.4 QuaTALOG
	9.3.5 Towards and integrated tool support

	III Validation of the approach
	10 Validation process
	10.1 Research questions
	10.2 Challenges

	11 Operationalisation of quality models
	11.1 Objectives
	11.2 ISO/IEC 9621 quality model
	11.2.1 Overview
	11.2.2 Instantiation
	11.2.3 Results

	11.3 QualOSS documentation availability model
	11.3.1 Overview
	11.3.2 Metamodel Instantiation
	11.3.3 Results

	11.4 Discussion
	11.5 Threat to validity

	12 Quality of software architecture
	12.1 Context
	12.2 Objectives
	12.3 Architecture trade-off analysis method
	12.4 Architecture analysis method with MoCQA
	12.4.1 Utility trees and MoCQA models
	12.4.2 First proposal of quantitative assessment
	12.4.3 Second proposal of quantitative assessment
	12.4.4 Third proposal of quantitative assessment

	12.5 Results
	12.5.1 Support for utility tree processing
	12.5.2 Support for quality traceability
	12.5.3 Support for architecture refactoring decisions
	12.5.4 Support for architecture design decisions
	12.5.5 Flexibility of the approach

	12.6 Discussion
	12.7 Threat to validity

	13 Empirical studies
	13.1 Preliminary study
	13.1.1 Context and objectives
	13.1.2 Description
	13.1.3 Results
	13.1.4 Discussion and threat to validity

	13.2 Preliminary study: Quality of OSS
	13.2.1 Context and objectives
	13.2.2 Description
	13.2.3 Results
	13.2.4 Discussion and threat to validity

	13.3 Support for software maintenance and evolution
	13.3.1 Planning of the study
	13.3.2 Design of the study
	13.3.3 Experimental study
	13.3.4 Results
	13.3.5 Discussion
	13.3.6 Threat to validity

	14 Supporting certification
	14.1 Context
	14.2 Objectives
	14.3 Description
	14.3.1 RTCA DO-178b
	14.3.2 Variability and Software Product Lines
	14.3.3 Applying the MoCQA framework
	14.3.4 Towards selective certification

	14.4 Results
	14.5 Discussion
	14.6 Threat to validity

	15 Quality Assurance
	15.1 Context
	15.2 Objectives
	15.3 Description
	15.3.1 First quality assessment cycle
	15.3.2 Continuation of the quality assessment life-cycle

	15.4 Results
	15.5 Discussion
	15.5.1 Impact of quality indicators
	15.5.2 Human aspects
	15.5.3 Stakeholder classification
	15.5.4 Target of the assessment
	15.5.5 Availability of results
	15.5.6 Support from the management

	15.6 Threat to validity

	IV Closing comments
	16 Discussion
	16.1 Contribution
	16.2 Review
	16.3 Limitations
	16.4 Perspectives

	Conclusion

	Bibliography
	Index

