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ABSTRACT
A traditional product line approach struggles with complex-
ity and weak evolution support. We propose an evolutionary
software product line modelling approach based on control-
lable inheritance of product line members specifications. In-
stead of a predefined product line architecture we use hierar-
chies of implemented product specifications accompanied by
correctness control of product model transformations. An
industrial case study from the embedded systems domain
demonstrating a modelling technique is provided. The ap-
proach is supported by an appropriate tool prototype.

1. INTRODUCTION
The product line approach is an approach to software reuse.
In large-scale industrial systems it is used, for example, in
embedded systems domain. Embedded software product
lines such as consumers electronics applications are usually
characterized by a huge variety of slightly different product
line members [18].

The mainstream of approaches to software product line (SPL)
development [8, 4] applies different diversity management
techniques to a generic SPL architecture. This allows a de-
signer to produce new products reusing common SPL as-
sets [10] within the boundaries of such a generic architec-
ture. This approach is robust but also complicated and not
flexible enough in terms of evolution support.

On the other hand, a component-based development ap-
proach has its own worth in the SPL area [17, 5]. This
approach employs composition of reusable components as a
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basis for product population [19] development. However, in
the absence of a reference SPL architecture, the main advan-
tage of the product line approach, i.e. controlled variability,
may be damaged.

We propose an SPL modelling method that provides inher-
itance of implemented product line members model specifi-
cations accompanied by correctness control of model trans-
formations. The method considers inheritance of product
behaviour specifications as inheritance of processes [2, 22].
The method combines the flexibility of component-based ap-
proaches with the rigorous correctness of architecture-based
techniques. As a result, a designer obtains an instrument
that allows him to model new product line members quickly
introducing new required functionality and avoiding design
bags.

The rest of the paper is organized as follows. Section 2
provides a brief discussion about existing SPL approaches
and raises the relevant problems. Section 3 describes a case
study from the domain of embedded systems. Section 4 ex-
plains our method and provides corresponding illustrations
using the case study. Section 5 describes the tool prototype,
which has been developed to support our method. The pa-
per is concluded in Section 6.

2. SOFTWARE PRODUCT LINES:
STATE-OF-THE-ART APPROACHES
AND PROBLEMS

Software product lines traditionally employ a top-down ar-
chitecture -based methodology of software system develop-
ment [8, 10, 4, 14, 9]. It starts by choosing a set of products
comprising a product line and then proceeds by identifying
what requirements are common to all products (commonal-
ities) and what product features make them different (vari-
abilities). On the basis of requirements analysis a common
product line architecture and a set of reusable components
are designed and implemented. Finally, actual products are
derived from these shared assets [4]. Commonalities be-
tween SPL members are captured by a generic architecture.
Variabilities are usually introduced into this architecture by
means of so-called variation points [6], which imply unre-
solved diversity in the generic and component architectures
that should be explicitly introduced and bound into a con-
crete product during possibly latest phases of product line



members development [6] (Figure 1).
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Figure 1: Traditional SPL modelling process.

So, a common SPL architecture with variability manage-
ment fulfils a double role. Firstly, it provides the reference of
integrity for SPL components reuse. Secondly, the diversity
of all product line members, existent or future, should cor-
respond to the variability already implicit in such a generic
architecture. The SPL architecture should provide correct-
ness of product modifications.

However, there are some disadvantages of such an architec-
ture -driven [19] approach.

The first problem is complexity. The entire development
process is divided into two concurrent parts - domain en-
gineering for reusable SPL assets and application engineer-
ing for product line members [14]. SPL development and
maintenance give rise to a lot of related tasks, which have
to be solved coherently [8, 4]. Among others design of
a reusable architecture is an especially complicated prob-
lem. How much commonality and variability should be in-
troduced into a common SPL architecture? It has to be
somewhat between minimal reuse (common requirements
only) and maximal reuse (all requirements, both common
and different). The more variability is introduced into the
architecture, the more benefits of reuse should be expected.
However, design of such a flexible architecture meets a truly
challenge [10, 4, 3].

The second problem is evolution support [25]. Require-
ments are changed, technology is improved. How can we
predict the features and, therefore, the architectures of fu-
ture product line members? Even architecture itself suffers
from erosion during a software product evolution process.
Research [12] shows how seemingly robust design decisions
taken early in the evolution of a single product may con-
flict with requirements that need to be implemented later
in the evolution. For product lines the problem increases
immensely (e.g., [27]).

The impact of above mentioned problems is high cost of

wrong architectural design decisions.

The alternative software reuse approach is an evolutionary
component-based software development process [26]. In the
SPL domain it is a product population approach [17, 19, 18,
5]. That approach uses lightweight [17] common architec-
ture and implements software component modifications and
component compositions instead of architecture-based vari-
ability management (e.q., [18]).

The benefits of evolutionary approaches are explicit. An
SPL grows when new product line members appear. A de-
sign process is flexible and incremental. Similar already
implemented products are reused to introduce the exten-
sions, which are required by a new product. However, in
the absence of a fixed common architecture the problems
of SPL integrity and product line members design correct-
ness rise sharply. Component modification and composition
rules are static, they do not guarantee that the entire sys-
tem behaviour comprises the behaviour of composition parts
in a correct manner. The evolutionary approach needs a
design methodology that can help designers collect useful
features of already implemented SPL members and avoid
incorrect design decisions while they introduce new prod-
uct functionality. In addition, SPLs are rather long-lived
software projects and need to be supported not only by a
reusable component set but also by some joint model to be
a reference of integrity.

In order to overcome outlined challenges we propose an
evolutionary software product line modelling method based
on the inheritance of product line members design speci-
fications and correctness control of model transformations.
Each implemented specification can become a predecessor
of a new product specification. At the same time, correct-
ness of behavioural inheritance with new extensions should
be proved (Figure 2).
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Figure 2: Evolutionary SPL modelling approach.

In our approach design specifications are implemented us-
ing UML (Unified Modeling Language) profile with defined
inheritance relations on specifications [23]. The profile de-
fines a special type of UML class diagrams, interface-role
diagrams, similar to CATALYSIS approach [11]. Compo-
nent system behaviour is specified in the profile using UML
sequence diagrams as it was first introduced in [7]. Pro-
cess semantics is used as a basis for inheritance relations on



component behavioural specifications [2, 22].

Correctness control is provided by product model transfor-
mation checks using inheritance of processes. Applying of
backward derivation rules to produce parent product pro-
cess specifications from inheritor’s ones allows a designer
to prove correctness of inheritance or to find the points of
wrong design decisions.

In [21] the evolutionary SPL modelling technique is used
within the traditional architecture-centric SPL development
process. Now we advocate our modelling method as a self-
sufficient and robust alternative to the traditional one. The
previous theoretical results are extended by the notion of a
product process graph. The notion of inheritance of prod-
uct line members specifications is defined on the basis of a
process graph definition. In this paper we also discuss the
application of our method.

3. CASE STUDY: SCIENTIFIC SILICON
ARRAY X-RAY SPECTROMETER

We intend to emphasize applicability of our method. Our
case study is a product line representation of Scientific Sili-
con Array X-Ray Spectrometer (SIXA) Control Software [13,
9]1. This is an onboard satellite system that provides scien-
tific data in two measurement modes [13]: Energy Spectra
(EGY) and Single Event Characterization (SEC).

Despite some differences between EGY and SEC measure-
ment realizations there are also a lot of common require-
ments that makes it possible to regard this case study as an
example of an SPL. Following [9] we intend to model three
members of SIXA software product line:

◦ stand alone EGY Controller
◦ stand alone SEC Controller
◦ combined EGY and SEC Controller

The key aspects of SPL modelling have to be found in the
requirements, both functional and behavioural, to product
line members. Let us consider them subsequently.

3.1 Product line members functionality
The SIXA Controller fulfils the following functional require-
ments [13]:
- it receives measurement programmes from the ground via
a satellite computer,
- provides data measurement,
- collects and sends data back.

These requirements to the product line software can be de-
scribed in terms of four interconnected subsystems [13] re-
alizing main product features:

• Measurement Control subsystem. This subsystem pro-
vides Controller Commands interface with an onboard
satellite computer. External control commands and
measurement programmes come via this interface.

1We thank Prof. Eila Niemela and Tuomas Ihme from VTT
Electronics for sharing the insights into this case study

• Data Acquisition subsystem. It executes measurement
programmes received via its interface Control Data Ac-
quisition from Measurement Control subsystem.

• Data Management subsystem. It

– fills its internal buffer with data received from
Data Acquisition subsystem via interface Save Data.

– sends scientific data back to the ground via Satel-
lite Computer interface Controller Data Response
following commands from Measurement Control
subsystem via interface Control File Management.

• Satellite Computer that is regarded as an external sys-
tem. It uses Spectrometer interface Controller Com-
mands and receives scientific data via its own interface
Controller Data Response.

The described above SIXA spectrometer functionality is com-
mon for the entire SPL.

The variability is defined by the different measurement modes
that have to be implemented. EGY and SEC modes are
realized by different specific Data Acquisition subsystems
and corresponding interfaces Control Data Acquisition and
Save Data. There is also slightly different organization of
a data exchange process with the satellite computer: EGY
Controller Data Management subsystem sends data to the
satellite computer after measurement programme has been
fulfilled completely, whereas SEC Controller Data Manage-
ment subsystem can initialize data exchange when its inter-
nal buffer is full. So, this subsystem should be able to send
such a request to Satellite Computer.

EGY and SEC Controller has to provide functionality of
each stand alone mode whatever has been chosen by the
ground measurement programme.

3.2 Product line members behaviour
The behavioural requirements to the SIXA Spectrometer
software are defined by two data observation processes, one
process for each observation mode [13]. Both processes com-
prise two sequential sub-processes: data measurement and
data exchange. Using usual algorithmic notation the pro-
cesses can be described as it is shown in Fig. 3. (We omit
a few not significant technical details in order to draw a
more clear picture.) Each block in Fig. 3 corresponds to an
operation call that is performed by interacting SIXA Con-
troller software subsystems and supported by hardware sig-
nals. The blocks above the dashed line (Fig. 3) perform the
data measurement sub-processes, the blocks below this line
correspond to the data exchange sub-process.

The data exchange sub-process is common for EGY and SEC
modes: after sending to the ground the number of blocks
with scientific data to be transmitted it performs a cycle of
data blocks transmission.

The data measurement sub-processes are partially different.
The dark blocks in Fig. 3 depict the steps of the measure-
ment sub-processes which are different for EGY and SEC
modes. The EGY measurement sub-process is performed
subsequently for each of the predefined observation targets.



This corresponds to the external cycle of the algorithm on
the left hand side in Fig. 3. The algorithm on the right
hand side does not contain this cycle because in SEC mea-
surement mode a single target is observed continuously. For
both modes a single target observation cycle lasts until an
observation time is expired. However, in SEC mode the ob-
servation process can be interrupted when Buffer Full mes-
sage is raised in the system.

The real SIXA spectrometer has more features to be mod-
elled [9], support of a hard disk in SEC mode, for example.
However, additional features can become part of future SPL
members generations. The case study is enough to give a
demonstration of how our method works.
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Figure 3: Observation algorithms for SIXA Spec-
trometer. On the left hand side: EGY mode; on
the right hand side: SEC mode; measurement sub-
process is above − − −− line; data exchange sub-
process is below.

4. EVOLUTIONARY PRODUCT LINE
MODELLING METHOD

The method includes two parts: a product model specifica-
tion and the definition of inheritance of product line mem-
bers specifications with the derivations rules providing cor-
rectness of model transformations.

4.1 Product Model Specification
The product line member specification is a pair

PrSp = (IR, BS)

where IR is an interface-role specification and BS is a be-
havioural specification.

4.1.1 Interface-role specification
The interface-role specification describes static aspects of
product functionality. Roles can provide interfaces, which
the other roles can require [11]. Each such a pair of roles
interacting via the interface can model a piece of product
functionality, i.e. a product feature [4]. So, product func-
tional requirements can be mapped directly to interface-role
specifications.

On the other hand, roles with interfaces are quite similar
in nature to product components. Components interact by
playing roles. A designer is free to abstract from a con-
crete component implementation during role modelling [28].
However, one or several interacting roles can be mapped to a
product component architecture in such a way that compo-
nent boundaries should come across the interfaces provided
by roles [28, 21].

Interface-role specification is a tuple

IR = (R, I, PI, RI, RR), where :

• R is a finite set of roles. R = Rp ∪ Rd, Rp is a subset
of roles that provide interfaces; Rd is a subset of roles
that require interfaces. The same role can belong to
both subsets Rp and Rd.

• I is a finite set of interfaces provided by roles from Rp.
Each interface i ∈ I has finite set of operations OPi.
Each operation op ∈ OPi has finite set of result values
Resop.

• PI ⊆ {(r, i)| r ∈ Rp, i ∈ I} defines provided relations
between roles and interfaces.

• RI ⊆ {(r′, pi)| r′ ∈ Rd, pi ∈ PI} defines required rela-
tions between roles and interfaces. Each role requires
a finite set of provided interfaces.

• RR ⊆ {(r, r′)| r, r′ ∈ R} is a set of inheritance re-
lations on the set of roles. These relations are part
of inheritance relations between product line members
specifications and will be considered later (see section
4.2.1).

The interface-role specification of EGY Controller is shown
in Fig. 4. In all specification parts, where EGY Controller
specifics has to be introduced, the names have prefix ”EGY”.

Four roles-providers correspond to four subsystems in the
product requirements specification as well as five provided
interfaces represent specified earlier (section 3.1) system in-
terfaces.

Provided relations are presented by pairs (role-provider, in-
terface), for example, (Satellite Computer, IController Data



Responce). For each such a pair each possible triple (role-
requirer, role-provider, interface) represents a required rela-
tion, for example, (EGYData Acquisition, EGYData Man-
agement, ISaved EGYData) (Fig. 4).

Operation names in Fig. 4 are the same as the names of
operations presented by blocks in Fig. 3. We only use a few
abbreviations.

We have chosen EGY Controller to be the first product in
the product line; hence its specification does not contain
inheritance relations.
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Figure 4: Interface-role specification IREGY of EGY
Controller
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Figure 5: Interface-role diagram for EGY Controller

The interface-role specification is realized in the UML pro-
file [23] and presented by a UML class diagram [16], where
roles are UML classes with stereotype ¿RoleÀ and inter-
faces are classes with stereotype ¿InterfaceÀ. Interfaces
are depicted by cycles. Provided relations are presented by

UML realize-relations between roles and provided interfaces
and depicted by solid lines [16]. Required relations are the
same as UML dependency relations between roles and re-
quired interfaces. A required relation is depicted by a dashed
arrow directed from a role to a required interface [16].

The interface-role diagram of EGY Controller is shown in
Fig. 5.

4.1.2 Behavioural specification
The behavioural specification describes dynamic aspects of
product functionality, i.e. product behaviour. A grain of
product behaviour is presented by a pair of actions [22].
The first action of the pair is an operation call, the second
one is an operation return. It has to be noticed here that
operation calls and returns in the model specification are
not the same as ones in the implementation phase: each
modelled call and/or return can be implemented by one or
several methods (procedures and functions).

An action name for the operation call is a = r′.r.i.op , which
means ”role r′ calls operation op of interface i provided by
role r ”.

An action name for the operation return is a = r′.r.i.op :
resop , which means ”role r returns result resop responding
to operation call a = r′.r.i.op”.

As a result of product IR specification, action set APrSp

is introduced for the entire product specification. To refer
to the concrete actions of this set we apply on it a numeric
order relation giving natural numbers to all actions:

APrSp = {a1, a2, ...}
The quantity of actions ai ∈ APrSp is defined completely
by the quantity of operation calls and returns via required
relations ri ∈ RI between roles r′ ∈ Rd and r ∈ Rp.

Fig. 6 shows the action set for the EGY Controller speci-
fication. We omit interface names in action names for con-
venience. This is possible if operation names are unique for
each pair of interacting roles. There are thirteen operation
calls and same number of operation returns in this set.

Using action set APrSp we construct behavioural specifica-
tion BS of a product line member as a finite set of sequences
representing product behavioural patterns [22]:

BS = {S1, S2, ..., Sn},
where Si,∀i = 1, 2, ..., n is a sequence of actions
aj , ak ∈ APrSp,∀j, k = 1, ..., |APrSp|:

Si = {aj , ak, ...}
The last definition means that we can construct behavioural
pattern Si using any action from action set APrSp any num-
ber of times. We apply the restriction that one and only
one action representing operation return must appear after
(but not necessarily just after) the action that represents
the corresponding operation call.

Any sequence Si can contain any number nested in any
depth repeated subsequences or cycles [21]. For example,



AEGY={a1,…a26}

a1 - SatelliteComputer.EGYMeasurementControl.Analog_ON 
a2 - EGYMeasurementControl.EGYDataManagement.ClearData 
a3 - EGYMeasurementControl.EGYDataManagement.ClearData:void 
a4 - SatelliteComputer.EGYMeasurementControl.Analog_ON:void 
a5 - SatelliteComputer.EGYMeasurementControl.StartEGYObservationTime 
a6 - SatelliteComputer.EGYMeasurementControl.StartEGYObservationTime:void 
a7 - EGYMeasurementControl.EGYDataAcquisition.StartEGYMeasurement 
a8 - EGYDataAcquisition.EGYDataManagement.SendEGYData(structure) 
a9 - EGYDataAcquisition.EGYDataManagement.SendEGYData:void 
a10 - EGYMeasurementControl.EGYDataAcquisition.StartEGYMeasurement:true 
a11 - SatelliteComputer.EGYMeasurementControl.FinishEGYObservationTime 
a12 - SatelliteComputer.EGYMeasurementControl.FinishEGYObservationTime:void 
a13 - SatelliteComputer.EGYMeasurementControl.Analog_OFF 
a14 - SatelliteComputer.EGYMeasurementControl.Analog_OFF:void 
a15 - SatelliteComputer.EGYMeasurementControl.GroundContact 
a16 - SatelliteComputer.EGYMeasurementControl.GroundContact:void 
a17 - EGYMeasurementControl.EGYDataManagement.GiveNoOfBlocks 
a18 - EGYDataManagement.SatelliteComputer.SendNoOfBlocks(integer) 
a19 - EGYDataManagement.SatelliteComputer.SendNoOfBlocks:void 
a20 - EGYMeasurementControl.EGYDataManagement.GiveNoOfBlocks:void 
a21 - EGYMeasurementControl.EGYDataManagement.StartContact 
a22 - EGYMeasurementControl.EGYDataManagement.StartContact:void 
a23 - EGYDataManagement.SatelliteComputer.SendNextBlock(structure) 
a24 - EGYDataManagement.SatelliteComputer.SendNextBlock:void 
a25 - SatelliteComputer.EGYMeasurementControl.ContactOK 
a26 - SatelliteComputer.EGYMeasurementControl.CoontactOK:void 

Figure 6: Set of actions AEGY for EGY Controller

sequence:

Si = {st1, aj , ...f1, ak, ...st2, am, ...st3, ap, ...f3, aq, ...f2, an}
contains three cycles, the first cycle goes form aj to ak, the
second one lasts from am to an. The third cycle ap, ...aq

is nested in the second one. Prefix ”st,” with the number
of a cycle denotes the action starting repetition and pre-
fix ”f,” with the same number denotes the action finishing
repetition.

{Si}
Sequence of actions

aj∈AEGY

EGYObservation

a1, a2, a3, a4, st1,a5, a6,
st2,a7, a8, a9, f2,a10, a11,
f1,a12, a13, a14, a15, a16,
a17, a18, a19, a20, a21, a22,
st3,a23, f3,a24, a25, a26

Figure 7: Behavioural specification BSEGY of EGY
Controller

Behaviour of EGY Controller is specified by requirements to
the EGY observation process which is described in section
3.2. Using this specification we have designed behavioural
specification

BSEGY = {EGY Observation}
containing single sequence EGY Observation (Fig. 7).

The behavioural specification is realized in the UML pro-
file [22] and presented by a set of UML sequence diagrams [16],

one diagram for each sequence Si. The precise definition of
a sequence diagram for this UML profile is given in [21].

The sequence diagram for EGY Controller is shown in Fig.
8. This diagram corresponds to the algorithm on the left
hand side in Fig. 3.
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Figure 8: Sequence diagram EGYObservation for
EGY Controller

4.2 Inheritance of Product Specifications
We regard inheritance of product line members as inheri-
tance of product behaviour. If, for example, product EGY
and SEC Controller inherits product EGY Controller, then
it inherits the possibility to observe energy spectra and ex-
tends it by the SEC spectra observation facility.

Let us use notation PrSpq −¤PrSpp to depict inheritance
of product PrSpq from product PrSpp.

In our approach behaviour is presented by product BS spec-
ification. So, product specification PrSpq inherits product
specification PrSpp if behavioural specification BSq inherits
behavioural specification BSp.

Behaviour specification BSq = {S1q , S2q , ..., Snq} completely
inherits BSp = {S1p , S2p , ..., Smp} if n ≥ m and each se-
quence Siq inherits corresponding sequence Sip .

If BSq inherits a subset of sequences of BSp we have the
case of partial inheritance.

Hence, to define the inheritance of product specifications
we need to define the inheritance of sequences presenting
product behaviour patterns.

Each sequence Si is defined by set of actions APrSp and



this set is defined by set RI of required relations on product
interface-role specification IR. So, first we need to define
inheritance at the level of interface-role specifications.

4.2.1 Inheritance of interface-role specifications
Interface-role specification

IRq = (Rq, Iq, P Iq, RIq, RRq)

inherits interface-role specification

IRp = (Rp, Ip, P Ip, RIp, RRp)

if ∃(r′, r) ∈ RRq|r′ ∈ Rq, r ∈ Rp and ¬∃(r, r′) ∈ RRp|r′ ∈
Rq, r ∈ Rp

In other words, at least one role from IRq inherits at least
one role from IRp and none of the roles from IRp inherit
roles from IRq.

If role r′ inherits role r: r′ −¤r, then [22]:

• role-parent r is included in specification IRq;

• role-child r′ inherits all interfaces, provided by role-
parent and, hence, all its provided relations;

• role-child r′ inherits required relation of role-parent r

ri = (r, pi) ∈ RIp|pi = (r′′, i) ∈ PIp, r, r′′ ∈ Rp, i ∈ Ip,

if role-provider r′′ is also inherited by specification
IRq.

Inheritance of roles is defined in the UML profile [22] and
corresponds to the specialize-relation between UML classes
[16]. The relation is shown on the interface-role diagram by
a solid line with the triangle end −¤ directed from role-child
to role-parent [16].

As a result of inheritance, the child interface-role specifica-
tion comprises two parts:

IRq = (IRInh
q , IRNew

q ), where

IRInh
q contains inherited roles, their provided interfaces and

provided relations, and, possibly, required relations; IRNew
q

is a new part, which contains new roles, interacting via new
interfaces; it realizes new product functionality and inherits
the functionality of a parent product. The only possibility
to utilize IRInh

q specification is to use its roles as parents in

inheritance relations with roles from IRNew
q specification.

Dealing with our case study a designer should first decide
how to order the chain of inheritance:

PrSpEGY andSEC −¤PrSpSEC −¤PrSpEGY

or

PrSpSEC −¤PrSpEGY andSEC −¤PrSpEGY .

In other words, what product should inherit EGY Controller
first, SEC Controller or EGY and SEC Controller? Despite
the fact that a usual composition way dictates the first vari-
ant, the second one is the right answer. If the first vari-
ant had been chosen, then role EGYData Acquisition from

IREGY specification should have been replaced by a new
role that fulfils another observation process and EGY data
acquisition functionality would have been lost for further
utilization.

The first inheritor EGY and SEC Controller has to utilize
functionality of EGY Controller and extend it by new SEC
Controller functionality. Fig. 9 a) shows inheritance rela-
tions between roles from IREGY and IREGY andSEC . Each
role from parent specification IREGY has a child role. So,
all provided interfaces and required relations are inherited
by product EGY and SEC Controller. The part IRNew of
interface-role specification IREGY andSEC is shown in Fig. 9
b). New functionality is realized by three new interfaces of
the child roles.

Child roles
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 interfaces  Ip
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SatelComputer
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Computer

IController
Data Responce
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MeasureControl
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IControl
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File Management
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Data

Management

EGY
Data

Management ISaved EGYData
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Interfaces (I)
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requirers
(Rd)
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providers
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Result
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(Resop)

EGY&SEC
Data

Manag.
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SatelComputer IBufferFull BufferFull void
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Control
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Data
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SECData
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StartSEC
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MeasureCont

rol

EGY&SEC
Data

Manag.

ISaved
SECData

SendSECData
(structure)

void

b)

Figure 9: a) Inheritance of roles and b) IRNew part
of EGY and SEC Controller specification

The interface-role diagram of EGY and SEC Controller is
shown in Fig. 10.

Third product SEC Controller inherits the second one. The
interface-role specification of EGY and SEC Controller al-
ready contains the functionality required for the third prod-
uct. A designer is free not to utilized by SEC Controller part
of this functionality dealing with EGY data acquisition.

Products-inheritors keep functionality of their predecessors
within inherited required relations. However, how can a
designer be aware that parent behaviour is not damaged
by new design decisions widening or narrowing parent func-
tionality? Such decisions should be supported by product
behaviour inheritance modelling, which we consider next.
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Figure 10: Interface-role diagram of EGY and SEC
Controller

4.2.2 Inheritance of product behaviour
To define inheritance of product behaviour we apply process
semantics on behaviour specifications BS. We use a process
semantics of type

P = (A,P, T ) [2], where :

- A is a finite set of actions.

- P = {p, p1, p2, ..., pF } is a finite set of abstract states from
initial state p to final state pF .

- T is a set of transitions. Transition t ∈ T defines a pair of
states (p′, p′′), such that p′′ is reachable from p′ as a result

of action a ∈ A: p′
a

=⇒ p′′.

Considering set of actions A as set APrSp from a product line
member specification, we construct a single process graph for
the entire product behaviour specification.

Process graph Gp = (N, E) is a directed (cyclic or acyclic)
graph [1] in which

• each node n∈N corresponds to the state from P; all
nodes, except the root and the final nodes, are un-
named;

• each edge e∈E corresponds to the action from APrSp

and is named as this action;

• the edges may carry the termination label ↓ to one
final node. This node corresponds to states pF .

• The process graph has one common root in start node
that corresponds to initial states p. Each initial state
p is considered as a result of start action that creates
instances of interacting roles [22]. Action start is im-
plicit but not shown in the process graph.

Process graph (Fig. 11) keeps parallel branches containing
alternatives of sequential, probably cyclic, paths between

Legend:
         states
         actions
          sequential  pahts

         alternatives

         parallel  branches

         cycles

start

final

...

Figure 11: Process graph type

start and final nodes. Each such a finite sequential path
corresponds to sequence Si from product behaviour speci-
fication BS. Two or several sequences beginning from the
same action and containing the same subsequence of actions
correspond to a single sequential sub-path in the process
graph beginning from start node. First two actions that
become different for two sequences running the same sub-
path produce alternative edges in the process graph. Parallel
branches model parallel processes. These branches are the
alternatives, which begin from start node and, in addition,
each pair of them corresponds to the subsets of sequences
from BS, which have disjoint sets of actions and are not
started by same roles [21].

For process graph construction we apply our own algorithm.
The algorithm provides control of crosscutting cycles which
may be designed by mistake for a single sequence or pro-
duced during the process graph construction. The early al-
ternative exit from a cycle body is not prohibited for the
process of type P .

The process graph for EGY Controller is shown in Fig. 13
a). It contains the only sequential path that corresponds
to single sequence EGY Observation from BSEGY specifi-
cation.

Behaviour specification BSEGY andSEC for EGY and SEC
Controller

BSEGY andSEC = {EGY Observation, SECObservation,
SECObservationBufferFull}

contains three sequences realizing the requirements to the
behaviour of second product. These requirements have been
described in section 3.2.

Sequence EGY Observation fulfils the same behaviour pat-
tern as the sequence from BSEGY specification. However,
inherited required relations are realized by new roles and,
therefore, actions from the second product behaviour speci-
fication (Fig. 12) have different names, for example,
b1 = EGY&SECSatelComputer.EGY&SECMeasureControl.Analog ON

instead of
a1 = SatelliteComputer.EGYMeasurementControl.Analog ON

and so on to actions b26 and a26 correspondingly (compare
Fig.7 and Fig.12).

Sequence SECObservation models the conventional SEC
mode measurement process, whereas sequence



SECObservation BufferFull corresponds to Buffer Full
event in the system (section 3.2).

{Si}
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bj∈AEGY and SEC
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cj∈ASEC

EGY
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SEC
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c6, c7, c8, c27,
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c13, c14, c15,
c16, c17, c18,
c19, c20, c21,
c22, st1, c23,
f1,c24, c25, c26

Figure 12: Behavioural specifications BSEGY andSEC

for EGY and SEC Controller and BSSEC for SEC
Controller

The corresponding process graph for EGY and SEC Con-
troller is shown in Fig. 13 b). It contains three possible se-
quential paths from start to final node. These three paths
correspond to three sequences in BSEGY andSEC specifica-
tion (Fig. 12).

Behaviour specification BSSEC for SEC Controller

BSSEC = {SECObservation, SECObservationBufferFull}

contains two sequences, which comprise exactly the same
operations as ones for EGY and SEC Controller (Fig. 12).
However, corresponding actions have different names. The
process graph for SEC Controller is shown in Fig. 13 c). It
contains two sequential paths corresponding two sequences
from BSSEC . Sequence EGY Observation is not utilized.

As a result of inheritance of interface-role specifications ac-
tion set APrSpq of the inheritor contains two subsets:

APrSpq = ANew
PrSpq

∪AOld
PrSpq

; ANew
PrSpq

∩AOld
PrSpq

= ∅, where

- AOld
PrSpq

is a subset of actions, which are realized by inher-

ited required relations from IRInh
q ;

- ANew
PrSpq

is a subset of actions, which are realized by newly

designed required relations from IRNew
q .
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Figure 13: Process graphs for a) EGY Controller;
b) EGY and SEC Controller; c) SEC Controller

For example, EGY and SEC Controller has subset AOld
EGY &SEC

= {b1, b2, ...b26} and subset ANew
EGY &SEC of new actions pre-

sented in Fig. 14.

ANew
EGY&SEC={b27,…b38}

b27 - EGY&SECSatelComputer.EGY&SECMeasureControl.StartSECObservationTime
b28 - EGY&SECSatelComputer.EGY&SECMeasureControl.StartSECObservationTime:void
b29 - EGY&SECMeasureControl.EGY&SECDataAquisition.StartSECMeasurement
b30 - EGY&SECDataAquisition.EGY&SECDataManag.SendSECData(structure)
b31 - EGY&SECDataAquisition.EGY&SECDataManag.SendSECData:true
b32 - EGY&SECMeasureControl.EGY&SECDataAquisition.StartSECMeasurement:true
b33 - EGY&SECSatelComputer.EGY&SECMeasureControl.FinishSECObservationTime
b34 -
EGY&SECSatelComputer.EGY&SECMeasureControl.FinishSECObservationTime:void
b35 - EGY&SECDataAquisition.EGY&SECDataManag.SendSECData:false
b36 - EGY&SECMeasureControl.EGY&SECDataAquisition.StartSECMeasurement:false
b37 - EGY&SECMeasureControl.EGY&SECSatelComputer.BufferFull
b38 - EGY&SECMeasureControl.EGY&SECSatelComputer.BufferFull:void

Figure 14: Subset of new actions for EGY and SEC
Controller

Now let us give the definition of correct product behaviour
inheritance.

Firstly, we define renaming function RN , which we apply on
parent set of actions APrSpp producing subsets of inherited

AInh
PrSpp

and not inherited Anot Inh
PrSpp

parent actions:

AInh
PrSpp

∪Anot Inh
PrSpp

= RN(APrSpp); AInh
PrSpp

∩Anot Inh
PrSpp

= ∅
such that AInh

PrSpp
= AOld

PrSpq
.

For example, RN(AEGY ) = AInh
EGY = AOld

EGY &SEC =



{b1, b2, ..., b26}; Anot Inh
EGY = ∅.

SEC Controller does not inherit from EGY and SEC Con-
troller subset of actions Anot Inh

EGY &SEC=
{b5, b6, b7, b8, b9, b10, b11, b12}, which corresponds to the spe-
cific EGY measurement subsequence from EGY Observation
sequence (Fig. 12).

Secondly, let us define on graph of type Gp a pair of graph
transformation rules δ(Gp) and τ(Gp).

• Blocking rule δ(Gp). If subset B ∈ APrSp is defined
and action x ∈ B, action a /∈ B and δ is blocking ac-
tion, then process graph Gp is transformed as it follows
from Fig. 15 a). This rule allows cutting down alterna-
tive branches starting from actions x ∈ B. Applied to
a sequential path this rule cuts it down starting from
action x but blocking action is not removed [2].

• Hiding rule τ(Gp). If subset H ∈ APrSp is defined
and action y ∈ H, action a /∈ H and τ is silent ac-
tion, then process graph Gp is transformed as it follows
from Fig. 15 b). This rule allows shortening sequential
branches by means of deleting actions y ∈ H [2].

y ττττ

x

a

δδδδ δδδδ
a

final
δδδδxa a a

a a a

a)

b)

Figure 15: a) δ(Gp) and b) τ(Gp) graph transforma-
tion rules

Applying process algebra for process of type P [2] on process
graph representation we define conditions of complete and
partial inheritance of product specifications.

• Child PrSpq completely inherits parent PrSpp

if and only if RN(APrSpp)= AInh
PrSpp

and Anot Inh
PrSpp

= ∅
and

τ(δ(G
PrSpq
p )) = G

PrSpp
p

on condition that

– the action set of G
PrSpp
p is renamed using function

RN(APrSpp);

– for the transformation of the child process graph
subset B=ANew Alt

PrSpq
and subset H=ANew Seq

PrSpq
, where

ANew Alt
PrSpq

is a subset of ANew
PrSpq

containing actions,

which start alternative branches and ANew Seq
PrSpq

is

the rest of ANew
PrSpq

.

In other words, if the parent action set contains only inher-
ited actions we apply the renaming function on the parent
set of actions and using the blocking rule eliminate from the
child process graph all alternative branches that are started
by new actions. Next, we apply the hiding rule and eliminate
the rest of new child actions. If the resulting transformed
graph is equal to the parent graph with renamed actions,
then the child specification is a correct inheritor of the par-
ent specification.

In spite of seemingly tricky notation this definition has clear
rationale: alternatives started by new actions will run their
own branches to the final state (Fig. 11); they will never
return to parent behaviour and, therefore, have to be elimi-
nated during parent process graph derivation. New actions
running a sequential branch may be hidden to return to par-
ent behaviour within the same branch (sequence).

• Child PrSpq partially inherits parent PrSpq

if and only if AInh
PrSpp

6= ∅ and Anot Inh
PrSpp

6= ∅ and

τ(δ(G
PrSpq
p )) = δ(G

PrSpp
p )

on condition that

– action set from PrSpp is renamed using function
RN(APrSpp);

– for the transformation of the child process graph
subset B=ANew Alt

PrSpq
and subset H=ANew Seq

PrSpq
, where

ANew Alt
PrSpq

is a subset of ANew
PrSpq

containing actions,

which start alternative branches and ANew Seq
PrSpq

is

the rest of ANew
PrSpq

;

– for the transformation of the parent process graph
subset B=Anot Inh

PrSpp
.

In other words, child process graph transformation is the
same as that in the case of complete inheritance, but before
comparing, the parent process graph is transformed using
the blocking rule to eliminate not inherited parent actions
and, therefore, corresponding sequences. The hiding rule is
not applicable to the parent process graph because hiding
means shortening sequences from parent specification BSp

each of those must be inherited completely or not inherited
at all.

In our case study EGY and SEC Controller is a correct
complete inheritor of EGY Controller. Indeed, if we rename
parent actions {a1, a2, ..., a26} to {b1, b2, ..., b26} and hide
and block the new actions from the child set, the child pro-
cess graph is transformed to the parent one (actually, for
such transformation blocking of action b27 in Fig. 13 b) is
enough).

SEC Controller is a correct partial inheritor of EGY and
SEC Controller. To prove this we need to block not inherited
action b5 in Fig. 13 b) and rename the parent inherited
actions: b1 to c1 , b2 to c2 and so on (compare graphs in
Fig. 13 b) and c)). Graph transformation of the child graph
is not required because the specification of the inheritor does
not contain new actions.



If a child specification is not a correct inheritor of a parent
specification, then transformed child or/and parent process
graphs contain not eliminated τ and δ actions. The rest of a
sequence (or sequences) starting by such an action becomes
unreachable [2]. All these sequences are easily transformed
back from the process graph and the positions of τ or/and
δ actions show the points of design errors. These errors are
actions, which cannot be realized within a given specifica-
tion. So, the roles performing such impossible actions can
be indicated. As a result, the method allows a designer not
only to prove correctness of inherited specifications but also
to find design bags.

5. TOOL SUPPORT
The described method comprises several formal techniques
and algorithms to be used during a modelling process. The
successful usage of the method requires appropriate tool sup-
port. We have developed a tool that provides an environ-
ment for design and reuse of component specifications in
the UML [24]. The tool is implemented as a Rational Rose
Add-In [20].

A familiar with Rational Rose designer performs with the
help of the tool the following sequential steps:

1. He/she chooses a parent product to inherit from. The
interface-role diagram of this product is drawn by the tool
in a Rational Rose class diagram window.
2. The designer extends the parent interface-role diagram by
new roles and interfaces using dialogs provided by the tool.
The interface-role diagram of the new product is produced.
3. The designer draws a set of sequence diagrams using
the set of actions derived by the tool from the interface-role
diagram of the new product.
4. The tool constructs the process graph corresponding to
the UML specification of the new product.
5. The tool defines action sets that have to be hidden and
blocked in the process graph of the new product to derive
the parent process graph, hides and blocks those actions and
compares the parent process graph with the process graph-
result of hiding and blocking.
6. If the process graph-result is not equal to the parent
process graph, then the sequence diagrams that represent
unreachable behaviour patterns are indicated by the tool.
The designer should correct the design of the new product.
7. If the process graph-result is equal to the parent process
graph, then the new product specification is correct and it
can be used in further product development phases.

The screen shot of a derivation dialog for EGY and SEC
Controller is shown in Fig 16. More details about the tool
are contained in [24].

6. CONCLUSION AND FUTURE WORK
The presented method provides evolutionary incremental
modelling of software product line members using inheri-
tance of their behaviour specifications. Correctness of model
transformations is proved by using a derivation technique
that allows a designer to produce the process graph of a
product-predecessor from the inheritor’s one or to find the
points of incorrect design.

An appropriate tool prototype has been developed to sup-

port the modelling. The tool applies techniques and algo-
rithms which accompany the method. Robustness of the
method and the tool is proved by the modelling of an indus-
trial case study.

In future work we intend to find out how our method appli-
cable to large-scale industrial systems. In this context the
problem of product requirements mapping to our specifica-
tions needs to be investigated. In large-scale applications
such successful direct mapping that we have shown in our
case study is not so apparent. A kind of a specifications
mapping technique is required. Recent researches (e.g., see
in [14]) apply UML use case and scenario diagrams to SPL
requirements engineering. In such a case, requirements can
be mapped to interface-role specifications directly: actors
iterating via use cases can be mapped to roles; use cases
itself can be realized as sets of required relations between
roles; scenario diagrams can be considered as prototypes of
sequence diagrams.

Mapping between our specifications and product component
architectures is also a significant problem. Component sys-
tems are usually described in Architecture Description Lan-
guages (ADLs) (see good overview [15]). Most of them
allow representing roles and interfaces as components and
connectors. Among others, ADLs with strong component
evolution support, such as Koala [18], are more close to our
approach. Moreover, Koala is a good practical example of an
ADL for component-based product population development.
Our specifications can be mapped to Koala’s configurations
in such a manner that roles would correspond to compo-
nents. Provided and required relations can be presented by
Koala’s provides and requires interfaces. Compositional ca-
pacity of a Koala component (combinations of components
are components again [18]) provides appropriate support for
inheritance of roles. Inheritance of interface-role specifica-
tions is supported by the ability of Koala’s configurations to
comprise other configurations.
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