DISSERTATION

Adaptation and Composition Techniques
for Component-Based Software Engineering

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

0. Univ.-Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri

E184-1
Institut fiir Informationssysteme

eingereicht an der

Technischen Universitidt Wien
Technisch-Naturwissenschaftliche Fakultat

von

Dipl.-Ing. Thomas Gschwind
tom@infosys.tuwien.ac.at
Matrikelnummer: 9225658
Laudongasse 28/14

A-1080 Wien
Osterreich

Wien, im Februar 2002

Meiner Mutter

Zusammenfassung

Die Bedeutung von Softwarekomponenten wurde in den letzten Jahren auch von der
Industrie erkannt. Dies wird durch die Anzahl der kommerziell entwickelten Kompo-
nentenmodelle deutlich. Das Ziel von Softwarekomponenten ist die vermehrte Software-
wiederverwendung, sowie die Vereinfachung der Implementierung und Komposition von
Komponenten. Heutige Komponentenmodelle beschéftigen sich priméar mit der Spezifi-
kation von Komponenten und beachten die Adaption dieser nur wenig. Daher ist es noch
immer notwendig, die einzelnen Komponenten manuell zusammenzusetzen, sofern sie
nicht fiireinander entwickelt worden sind. Da einer der Vorteile von Softwarekomponen-
ten die unabhéngige Entwicklung der Komponenten sein soll, kann man im allgemeinen
nicht davon ausgehen, daf die Komponenten fiireinander entwickelt worden sind und
daher kompatibel zueinander sind.

Um die Komposition von Softwarekomponenten zu vereinfachen, ist es notwendig
diese zu adaptieren. Leider beschiftigen sich nur wenige Anséitze mit der automatischen
Adaption von Komponenten. Jene Ansiitze die sich mit der automatischen Adaption
beschéftigen, wie zum Beispiel Generische Programmierung (generic programming),
beschéftigen sich nur mit der Erzeugung von Komponenten, die bestimmte Anforde-
rungen erfiillen sollen oder nur mit der Optimierung eines aus Softwarekomponenten
bestehenden Systems, nicht aber mit der Anpassung der von einer Softwarekomponente
zur Verfiigung gestellten Schnittstelle.

Um das Problem der automatischen Adaptierung der Schnittstelle einer Komponen-
te zu 16sen, haben wir Typbasierte Adaptierung (type-based adaptation) entwickelt, die
in dieser Arbeit beschrieben wird. Typbasierte Adaptierung setzt auf den Schnittstel-
len auf, die von einer Komponente zur Verfiigung gestellt werden. Nahezu alle heutigen
Komponententechnologien sind stark typisiert und stellen einen Mechanismus zur Ver-
fiigung, um die Schnittstellen, die von einer Komponente implementiert werden, abzu-
fragen. Daher kann Typbasierte Adaptierung leicht in ein bestehendes System integriert
werden.

Basierend auf der Vorstellung der unterschiedlichen Adaptionstechniken wird eine
Klassifikation gegeben. Diese Klassifikation ermdglicht es, die unterschiedlichen Tech-
niken in Relation zueinander zu stellen und ermoglicht Entwicklern die richtige Adap-
tionstechnik fiir die Losung eines Problemes auszuwihlen.

Schlagworte: software components, software engineering, adaptation, composition,
classification, assessment.

Abstract

Component models have received much attention recently both from the software en-
gineering research community and from industry. This is apparent through the sheer
number of component models that have been developed in the last few years. The goal
of each of these models is to increase reuse and to simplify the implementation and
composition of new software. All these models focus on the specification and packaging
of components but provide almost no support for the adaptation and easy composi-
tion of components. If components have not been written with each other in mind,
their composition still has to be carried out programmatically. Since one of the advan-
tages of software components is independent development, they will rarely be entirely
compatible with each other.

Hence, it is imperative to focus on the adaptation of software components to sim-
plify their composition. Though many research projects exist in this area, they try
to target different aspects of adaptation. While some of these projects support the
automated generation of components based on a requirements specification or the au-
tomated optimization of a given composition, none of these techniques supports auto-
mated adaptation to simplify the composition process itself.

To solve this problem, we have developed type-based adaptation, a novel adaptation
technique that is based on a simple but powerful and efficient formal description of
a component, namely its type. Type-based adaptation exploits a property shared by
almost all of today’s component models, namely, that they use strongly typed compo-
nents and support querying a component’s type using reflection or a similar approach.
This allows type-based adaptation to be added transparently to an existing system
without having to modify the components for that system. We provide a reference
implementation for different environments to show the feasibility of our approach.

We will also present our classification of today’s adaptation techniques. Such a
classification is important since it allows researchers to put the different approaches
in relation to each other and allows developers to select an appropriate adaptation
algorithm to solve a given problem. The classification is based on a series of case stud-
ies we have performed to evaluate the different adaptation and composition approaches.

Keywords: software components, software engineering, adaptation, composition,
classification, assessment.

Acknowledgments

This thesis is dedicated to my mother because I would have never been able to accom-
plish it without her love and support.

I would like to thank my brother for his invaluable help and advice and my supervisor
Mehdi Jazayeri for his comments, advice, and discussions. Finally, I would like to thank
Pankaj K. Garg of Hewlett Packard Laboratories for our many interesting discussions
about type-based adaptation and its use for transaction monitoring, Metin Feridun of
IBM Research for our discussions about service adaptation in the context of Mobile
Agents, and Pedrick Moore for proofreading this thesis.

Additionally, T would like to thank IBM Research, Zurich Research Laboratory for
sponsoring this thesis as part of a University Partnership Award and the European
Union for sponsoring this thesis as part of the EASYCOMP project (IST 1999-14191).

Contents

1 Introduction

1.1 Contribution
1.2 Motivation
1.3 Outline. e
2 Component Models
2.1 Libraries
2.2 JavaBeans
2.2.1 Properties
222 Events
223 Methods
2.2.4 Introspection
2.3 Enterprise JavaBeanso Lo
2.3.1 Architecture
2.3.2 Beans
2.3.3 Packaging and Deployment
2.4 The CORBA Component Model (CCM)
2.4.1 Component Specification
2.4.2 Component Implementation
2.4.3 Container Model and Architecture
2.4.4 Client Programming Model
2.4.5 Component Assembly and Packaging
2.4.6 Component Deployment
2.5 SUMMATY e e
2.5.1 Desktop Component Models
2.5.2 Server-Side Component Models
3 Adaptation of Components
3.1 Adaptation for Composition,
3.1.1 Scripting Languages,
3.1.2 Composition Languages
3.1.3 Wrapping

W W N =

o O ot Ot

10
10
11
12
16
17
18
20
21
23
23
24
24
24
25

3.1.4 The Software Bus

3.2 Separation of Concerns
3.2.1 Configuration Languages
3.2.2 Generic Programmingo
3.2.3 Generative Programming L.
3.2.4 Aspect-Oriented Programming

3.3 Performance Adaptation oL
3.3.1 Simplicissimus
3.3.2 COMPOST

Towards A Classification

4.1 Objectives of Adaptation L.

4.2 Adaptation Transparencyo

4.3 Application Domaino

4.4 Adaptation Time

4.5 Degree of Automation L

4.6 SUMMATY e

Type-Based Adaptation

5.1 Fundamentals
5.2 Adaptation Modelo
5.3 Requirementso
5.3.1 Adapter Description
5.3.2 Packaging
5.3.3 The Adapter Repository
5.3.4 The Adaptation Component
5.4 Requirements for Server-Side Component Models
5.4.1 Trading Services
5.4.2 Adapter Location and Usage
5.4.3 Security Considerations
5.5 Requirements for Desktop Component Models
5.5.1 Granularity of Adaptation L.
5.5.2 The Adaptation Component
5.5.3 Adapter Description
5.5.4 Performance Considerations
Evaluation
6.1 Server-Side Component Models and Web Services
6.1.1 Address Book Component
6.1.2 Weather-Service Component
6.2 Desktop Component Models
6.2.1 The Component Work Bench

i

38
38
39
41
41
42
42

45
45
48
20
ol
ol
52
52
23
o4
o4
26
o7
o7
29
29
29

6.3 Mobile Agent Systemso

6.3.1 Mobile Agent Definitions
6.3.2 The AgentBean Development Kit
6.3.3 The Calendar Agent
6.4 Summary

Related Work

Conclusions

8.1 Contributions

8.2 Future Research Directions

Glossary

Examples

B.1 JavaBeans
B.1.1 Bean Class
B.1.2 Beanlnfo Class

B.2 Enterprise JavaBeans o Lo
B.2.1 Session Bean Example,
B.2.2 Entity Bean Example 000000
B.2.3 Message Driven Bean Example

il

75

78
79
79

81

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
4.1

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4

6.5
6.6

The AgentBean Development Kit 7
A Simple JavaBean 7
The Enterprise JavaBean Architecture 11
UML Diagram of an EJB Session Bean 12
The CORBA Container Architecture 22
Typical Web Service Architecture 25
Defining Point-Cuts in AspectJ 35
Objectives of Adaptation 38
Basic Subtyping Rules oo 46
Subtyping Rule for Functions 47
Subtyping Rule for Object and Interface Types 48
A Sample Adapter Repository L. 50
Adapter Working on the Interface Level 52
Accessing a Service in a Distributed Component System 55
Typical Client Code in a Distributed Component System 25
Adaptation on Method Basis 58
Adapter Working on the Signature Level 60
Internet Shopping Application 63
Integrated Development Environment 65
Connectors of the Component Workbench 66
Type-Based Adaptation Connection Wizard for the Component Work-

bench 68
Example llustrating the Three Component Categories 70

Based the ADK the Developer Combines Components to Build the Agent 70

iv

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

4.1

5.1
5.2

Standard Methods to Read and Write Properties
KeyListener Interface
Standard Methods to Subscribe to and to Unsubscribe from Events

Methods Declared in the Session Bean’s Home Interface
Methods Declared in the SessionBean Interface
Methods Declared in the Entity Bean’s Home Interface
Additional Methods Declared in the EntityBean Interface
Methods Declared in the Entity Bean’s Home Interface

Classification of Adaptation Techniques

Methods Provided by the Adaptation Component
Methods provided by the Trading Service

Chapter 1

Introduction

The purpose of software components is to increase software reuse and to simplify the
creation of new software through composition of existing components [Cox90|. Al-
though the term software component is in widespread use today, there is still a lack of
common understanding. This is due to the fact that many people are working in this
area on similar but nevertheless different issues. A look at some definitions of software
component given by different researchers will illustrate just how broadly the term is
used.

A generalization of objects that extends the primitives for realizing interac-
tion to include distributed components, graphical user interfaces, databases,
robots, and virtual reality. [Weg93|

A static abstraction with plugs. By static, we mean that a software com-
ponent is a long-lived entity that can be stored in a software base, inde-
pendently of the applications in which it has been used. By abstraction,
we mean that a component puts a more or less opaque boundary around
the software it encapsulates. With plugs means that there are well-defined
ways to interact and communicate with the component. [NT95]

Reusable software components are self-contained, clearly identifiable arti-
facts that describe and/or perform specific functions and have clear inter-
faces, appropriate documentation and a defined reuse status. [Sam97|

Software components are binary units of independent production, acquisi-
tion, and deployment that interact to form a functioning system. Composite
systems composed of software components are called component software.
The requirement for independence and binary form rules out many soft-
ware abstractions, such as type declarations, C macros, C++ templates, or
Smalltalk blocks. Other abstractions, such as procedures, classes, modules,
or even entire applications, could form components, as long as they are in
a binary form that remains composable. [Szy97]

CHAPTER 1. INTRODUCTION 2

In this thesis, we use the term software component to refer to a piece of software
that exhibits well-defined interfaces, does not require knowledge of its implementation,
is easier to reuse than to reimplement, and can be used for the implementation of other
software systems. This definition is sufficiently strict and matches the general idea of
most of the definitions above. A detailed glossary with the terms and their definitions
used in this thesis can be found in Appendix A.

Although many software component models exist today [Ham97, MH00, OMG99a],
it is still necessary to compose such components manually. Plug and play composi-
tion is not yet possible because two components can only interact with each other if
the interface provided by one component matches the interface required by the other
component.

Software components are sometimes compared to hardware components, and the
implication is that the composition of software components should be as easy as that
of hardware components. But experience has shown that even though hardware com-
ponents can be plugged together, they do not necessarily interact, or “play” together,
unless the operating system contains the appropriate device drivers. Similarly, software
components cannot simply be plugged together if they do not have the same interface.

1.1 Contribution

Our approach to simplifying the adaptation and composition of software components
is type-based adaptation. The goal of type-based adaptation is to provide an infras-
tructure that enables components provided by different suppliers to interact with each
other transparently. Type-based adaptation can deal with different kinds of compo-
nents. They can be traditional software components, components in a distributed
component environment, or simple Web services, as long as the provided and required
interfaces can be determined. On the basis of this information and an adapter repos-
itory, explained in Chapter 5, type-based adaptation facilitates the translation of an
interface provided by one component to the interface required by another.

Besides type-based adaptation, other adaptation techniques exist that try to tackle
different parts of the problem. Again, different techniques reflect the different goals
that different software engineering researchers try to achieve. For instance, Genera-
tive Programming [BSST93| or Aspect-Oriented Programming [KLM*97| focus on the
aspect level of a software component. Simplicissimus [SGMLO1], on the other hand, fo-
cuses on the performance optimization of a given composition. This thesis presents our
classification of different adaptation approaches that clarifies the relationship among
these research efforts. Such a classification has been lacking until now.

CHAPTER 1. INTRODUCTION 3

1.2 Motivation

Type-based adaptation can be used for various application domains such as dynamic
distributed component systems [Grii00] which are the successor of dynamic distributed
object systems, or builder tools such as Sun’s Bean Development Kit [Sun98a]. Some
application scenarios for these domains are illustrated by the following examples:

e Allowing shoppers at amazon.com to use an external address book service (for
instance, provided by Yahoo or an application on the user’s local computer).
This would allow shoppers on the Internet to maintain a single address book
instead of having to reenter billing and shipment addresses in all the different
proprietary address books used by different Internet sites.

e Supporting users of an application builder to set up the connections between
components. Instead of having to write application code, in many situations, it
should be sufficient to configure a connection manager.

e In order to support backwards compatibility, the component has to provide both
the old and new version of its interface. Typically, this leads to the entangling of
legacy code necessary for providing backwards compatibility and code providing
the component’s functionality. Using type-based adaptation, however, the legacy
code can be separated.

1.3 Outline

In Chapter 2 we present today’s state-of-the-art component models and illustrate how
their components fit the description of a software component. These component models
range from simple desktop component models to server-side component models that can
be used to implement services on the Internet.

Chapter 3 gives an overview of the adaptation techniques available today and the
problems they try to address. These adaptation techniques range from scripting lan-
guages to performance optimizations.

On the basis of this overview, chapter 4 gives a classification of the adaptation
techniques presented in the previous chapters. Although our classification is not yet
comprehensive, it defines already key criteria. This puts the adaptation techniques into
a coherent relation to each other and allows developers to decide which technique is
suitable for their problems.

Chapter 5 presents type-based adaptation, its architecture and how it can be im-
plemented for several application domains. Due to the differences in the component
models used by different application domains, they pose different requirements. For

CHAPTER 1. INTRODUCTION 4

instance, in distributed component environments, component discovery occurs at run-
time and frequently no developer is available. In the case of IDEs, however, components
are selected and composed by a developer at the system’s design time.

Chapter 6 describes the experiments we have used to verify the feasibility of type-
based adaptation and to evaluate the benefits it provides. We have evaluated type-based
adaptation with regards to local and distributed component environments as well as in
the context of mobile agents.

Chapter 7 presents related work and how it influenced our type-based adaptation
approach. Finally, we draw our conclusions in Chapter 8.

Chapter 2

Component Models

A component model defines the characteristics of a set of components. These charac-
teristics usually include the packaging of a component to simplify its installation, the
user-configurable parts of the component, and its interfaces.

One of the earliest component models is provided by Unix systems, though it is
typically not regarded as such. Programs can be viewed as the components which
process data read from stdin and return the result on stdout. The components are
composed using pipes which themselves are created by the Unix shell. If the output of
one component is different from the input expected by another component, it can be
transformed using the stream editor sed.

In the following sections we limit our discussion to higher level component models.
As we will describe, a component model can be suitable for either a local computing en-
vironment resembling a traditional programming model or for a distributed computing
environment.

2.1 Libraries

Software libraries or parts thereof are the oldest well-known software components. Soft-
ware libraries can be composed using the programming language for which they have
been written. Frequently, such libraries also come with bindings for scripting, composi-
tion, and configuration languages such as Guile [Gal96|, Perl [WCO00], Python [Ros99],
or TCL [Ous94]. A more detailed discussion of these languages can be found in Sec-
tions 3.1.1, 3.1.2, and 3.2.1.

A library consisting of software components can be called a catalog. According
to [Jaz95| catalogs and their components have to fulfill the following requirements:

Systematic Taxonomy: The components within a catalog must be closely related to
a common application domain and adhere to a systematic taxonomy. This allows
a user to identify easily whether the catalog contains a specific component.

CHAPTER 2. COMPONENT MODELS 6

Comprehensiveness: The application domain covered by a catalog needs to be cov-
ered comprehensively. Otherwise, programmers would have to reimplement the
same functionality over and over again and would stop using the catalog.

Genericity: The catalog should try to minimize the number of components it contains
while maintaining the same functionality. The fewer components the catalog
provides, the easier it is to use.

Efficiency: Since components are likely to be used for the implementation of other
components, it is important that they provide the best performance possible.

While each of these requirements sounds simple, it is hard to fulfill them all, es-
pecially since genericity frequently has a negative effect on efficiency and vice-versa.
Another challenge is that many catalogs are efficient if used on their own, but their
performance degrades when used in combination with other catalogs [SGMLO1|. Hence,
it is necessary to understand the concepts of an application domain perfectly before
developing a catalog for it. The catalog itself has to be useful repeatedly to make the
effort of studying it worthwhile.

As explained in [Jaz95|, components do not have to form an inheritance relationship
to each other. In fact, many catalogs such as standard I/O libraries or C-++’s Standard
Template Library (STL) [Str97, ISO98| use little or no inheritance at all.

Today’s component models, however, focus on large-grained application-oriented
components that have to fulfill many more requirements. Although they employ an
object-oriented model, inheritance is mostly restricted to the sole use of type-inheritance
(sometimes also referred to as interface-inheritance).

2.2 JavaBeans

In [Ham97|, a JavaBean is defined as a reusable software component that can be vi-
sually manipulated in a builder tool. A screenshot of such a builder tool, the Bean
Development Kit [Sun98a| provided by Sun Microsystems, is shown in Figure 2.1. Al-
though JavaBeans have been designed to be used within a builder tool, they can be
used like any other Java class.

Any Java class that implements the Serializable interface and that provides a
zero-argument constructor is a JavaBean. The first requirement simplifies the handling
of beans within builder tools and the second allows a bean to be instantiated using
Beans.instantiate(). Neither of these requirements, however, is enforced by the
JavaBeans component model.

The most important features of JavaBeans are the exposed set of properties, the
support for a set of events, and the set of methods they provide. This information
is either exposed implicitly by naming conventions and reflection [Sun98b| or by a

© 00 ~J O CU = W N

10

12
13
14
15
16
17
18

CHAPTER 2. COMPONENT MODELS

= ToolBox [

H == BeanBox BE

—i| _Properties - SNMPRequester | [/

FrimeEenchmark
Echa
Routeradder
SHMPPaller
SHMFPRequester
Listavigator

EventCollectar

RoamingMavigator

Wait

SMMPRESUItPracCessn

— File Edit Wiew InfoBus Help

Fioaming Navigator Routeradder

FRFrE sy,

: SMMFFReguester #

Frararrrrrrrrrs,

a)

Figure 2.1: The AgentBean Development Kit with a) the Available JavaBeans, b) the

EventCollector

b)

hostname
CoOMmunity
WErsian
QD

port

t B
timeout

retries

localhost
publid

w2
ipRoutaTablg
161
RFC1213-MIB
S0

el

c)

Composition Area, and ¢) the SNMPRequester’s Property Sheet

package at.ac.tuwien.infosys.examples. jb;

class Dra
private
private

/* colo
public
public

/* pen
public
public

/* mous
public

public void removeMouselListener(MouseListener 1) { /*

wingArea implements Serializable {
Color _color;
boolean _drawing;

r property */
void setColor(Color c¢) { _color=c; }
Color getColor() { return _color; }

is drawing */
void setDrawing(boolean b) { _drawing=b; }

boolean isDrawing() { return _drawing; }

e listener */
void addMouselListener(MouselListener 1) { /%

Figure 2.2: A Simple JavaBean

*/ }

. */ }

CHAPTER 2. COMPONENT MODELS 8

BeanlInfo class that provides such types of meta-information (see Section 2.2.4). A
sample JavaBean is shown in Figure 2.2.

2.2.1 Properties

Properties are named attributes associated with a JavaBean that can be read and
written using a set of getter and setter methods. Properties can also be marked read-
only or write-only by specifying only the setter or getter methods.

void setProperty (Type p)
Write a property with name property and of type Type.

Type getProperty ()
Read a property with name property and of type Type.

boolean isProperty ()
Read a boolean property with name property. This can be provided in
addition to or instead of the getProperty method.

void setProperty (int i, Type v)
Write the i-th element of an indexed property with name property and
of type Type.

Type getProperty (int i)
Read the i-th element of an indexed property with name property and
of type Type.

Table 2.1: Standard Methods to Read and Write Properties

Properties can be identified transparently if the getter and setter methods adhere to
the JavaBeans naming convention as shown in Table 2.1. Otherwise, these properties
and their setter and getter methods have to be specified within the JavaBean’s BeanInfo
class. Properties that can take a whole array of arguments are called indexed properties.
Additional methods can be provided for such properties that read and write only a
specific element of the array.

Sometimes it can be useful to notify other components if a property changes. To
provide that functionality, a JavaBean can provide a change notification service to
other components by emitting a PropertyChangeEvent whenever a property changes.
Typically, such properties are referred to as bound properties. If other components are
allowed to veto such a property change, the property is referred to as a constrained
property.

CHAPTER 2. COMPONENT MODELS 9

When a JavaBean is used in a builder tool, properties can be edited and changed
visually. For instance, the properties of the SNMPRequester bean are shown in Fig-
ure 2.1 on the right-hand side. The editor to be used for a property is managed by the
java.beans.PropertyEditorManager class, which derives the editor to be used from
the property’s type.

2.2.2 Events

Events provide a way for components to be plugged together by application builders.
Whenever the state of a component changes it can trigger an event. This event can be
caught by another component which can react to the event.

void KeyPressed(KeyEvent e)
This method is invoked when a key has been pressed.

void KeyReleased(KeyEvent e)
This method is invoked when a key has been released.

void KeyTyped(KeyEvent e)
This method is invoked when a key has been typed.

Table 2.2: KeyListener Interface

The JavaBeans component model collects a set of related events within a single
listener interface. For instance, the KeyLister interface shown in Table 2.2 contains
all the events associated with keyboard input. This interface has to be implemented
by any component that wants to subscribe to any of these events.

If a component does not implement the interface, an adapter class has to be pro-
vided that implements the listener interface and invokes the corresponding method on
the target component. Typically, such an adapter class is generated by the application
builder after the user has selected the event and the method to be invoked on the target
component. Unfortunately, the adapters generated are very simple and can only call
target methods that match the event’s signature or target methods that take no pa-
rameters at all. In the latter case, the event’s parameters are discarded. This problem,
however, can be easily solved using type-based adaptation. Type-based adaptation will
be presented in Chapter 5.

A component that can emit a specific event has to provide methods to allow other
components or classes to subscribe to the reception of the events within an event
set. These methods are shown in Table 2.3. Typically, multiple components can
subscribe to receive notification of events. If the subscription method can throw the

CHAPTER 2. COMPONENT MODELS 10

void addFooListener(Listener 1)
This method adds the listener 1 to the bean’s foo-event listeners.

void removeFooListener(Listener 1)
This method removes the listener 1 from the bean’s Foo-event listeners.

Table 2.3: Standard Methods to Subscribe to and to Unsubscribe from Events

TooManyListenersException, however, it is assumed that only a single class or com-
ponent can subscribe to the event set.

2.2.3 Methods

Methods are like any other Java methods which can be called from other components.
The methods of a bean do not have to adhere to any naming conventions. If only a
subset of methods should be made available, the methods provided by a bean can be
listed within the BeanInfo class.

2.2.4 Introspection

In addition to using the naming conventions presented so far, the JavaBeans component
model allows properties, events, and methods to be listed explicitly in a BeanInfo class.
If this class is provided, it will be used instead of deriving the properties, events, and
methods from the naming conventions. Using a BeanInfo class allows the developer of
a JavaBean to provide additional information such as an icon to represent the JavaBean
or a specific customizer that can be used to configure the JavaBean. The BeanInfo
class has the same name as the class it describes plus BeanInfo appended to it. The
complete description of the API of this class, is given in [Ham97|. A sample JavaBean
along with its BeanInfo class is shown in Appendix B.1.

An advantage of using separate classes for the meta-information and all of the
property editors and customizers is that those helper classes only need to be available
at design time, but not after the application has been generated by the development
environment.

2.3 Enterprise JavaBeans

While JavaBeans are intended for local component environments, Enterprise JavaBeans
are intended for distributed component environments. Even though, remote method

CHAPTER 2. COMPONENT MODELS 11

invocation (RMI) [Sun99a| can be used for the implementation of distributed applica-
tion environments, it burdens the programmer to implement repeatedly such common
services as support for security, persistence, and transaction management. To overcome
this situation, Sun Microsystems introduced the Enterprise JavaBeans (EJB) compo-
nent model that supports these services natively [MH00, DYKO1].

EJBs allow the developer to focus on the application logic without having to deal
with the typical issues present in distributed applications. Besides increasing produc-
tivity, EJBs also increase the interoperability of distributed applications, since each
Enterprise JavaBean uses the same type of transaction management. The EJB compo-
nent model has been adopted by many commercial and non-commercial implementors
such as BEA’s WebLogic server [BEAO1] or the JBoss group’s JBoss server [JBo.

2.3.1 Architecture

Figure 2.3 shows the architecture of the EJB component model. Each Enterprise Jav-
aBean is hosted by its own EJB container running within an EJB server. The container
acts as a proxy for the bean and thus is able to provide services such as security, persis-
tence, and transaction management. Within one container, however, multiple instances
of the same bean may exist.

Application Server
EJB-Container EJB-Container
\ Home | | Remote Home | | Remote)

O Component Instances

Figure 2.3: The Enterprise JavaBean Architecture

Depending on the functionality provided by the bean, we can differentiate between
session beans, entity beans, and, since EJB 2.0, message-driven beans. Session beans can
be seen as an extension of the client application, entity beans provide an object-oriented
view of data stored on persistent storage, and message-driven beans are asynchronous
message consumers. As we will describe in the following section, however, a typical
client interacts only with session beans.

CHAPTER 2. COMPONENT MODELS 12

On the client side an EJB is used like an RMI object, except that instead of a native
cast, the PortableRemoteObject is used to cast a remote object. If the client does not
know the methods provided by a bean, it can also use the javax.ejb.EJBMetaData
interface to query a bean’s capabilities. This functionality allows application builders
to discover information about a bean and to present it to the developer. Since several
clients can access the same EJB concurrently, the EJB server synchronizes the state of
these EJBs as necessary.

2.3.2 Beans

Session and entity beans both have to provide a home interface which acts as a factory
to create and remove instances of the corresponding bean and a remote interface which
declares the business functions (methods) that can be executed by the clients. Message-
driven beans, however, do not have to implement these interfaces because they directly
react to messages received by the Java Message Service, JMS [HBS99|.

EJBHome EJBRemote SessionBean

AddressBookHome AddressBook AddressBookBean

Figure 2.4: UML Diagram of an EJB Session Bean

While a bean’s home interface has to extend javax.ejb.EJBHome, a bean’s remote
interface has to extend javax.ejb.EJBObject. The relation between these classes is
shown in Figure 2.4 for a session bean. For entity beans, this relation looks analogously.

Session Beans

Session beans model a workflow and can be seen as an extension of the client application.
They are responsible for the management of processes and tasks. For instance, a
ShoppingCart bean might provide all the functionality necessary to select and buy
goods from an Internet super-store. Session beans are short-lived; their instances of
session beans are created and removed by their clients. A session bean’s home interface
extends the javax.ejb.EJBHome interface and provides methods to create and remove
beans as shown in Table 2.4.

The remote interface of a session bean has to extend javax.ejb.EJBObject and
declares the methods supported by the session bean. These methods can be executed
by clients having a reference to an instance of the bean.

The implementation class of the bean implements the javax.ejb.SessionBean
interface. While the implementation class implements the methods declared in the

CHAPTER 2. COMPONENT MODELS 13

Remote createMethod (arg;,args,...,arg,)
This method allows clients to create new beans. The arguments have
to be legal types for RMI-IIOP. These methods are mapped onto the
corresponding void ejbCreateMethod methods of the bean’s imple-
mentation class.

void remove (Handle handle)
This method allows the client to remove a bean identified by a specific
handle. This method is mapped onto the void ejbRemove() method
of the bean’s implementation class.

Table 2.4: Methods Declared in the Session Bean’s Home Interface

remote interface, it does not have to declare the remote interface in its implements
clause. Additionally, the bean provides the implementation for the methods declared
in the home interface as well as the callback methods shown in Table 2.5 for the bean’s
persistence management. If no special serialization is required, the implementation of
these methods may be left empty.

void ejbPassivate()
This method is called before the container passivates a session bean to
disk. It serves as a hook for state that cannot be serialized using the
standard serialization mechanism.

void ejbActivate()
This method is called after the container has been activated and is
used to initialize state that cannot be handled using the standard se-
rialization mechanism.

Table 2.5: Methods Declared in the SessionBean Interface

Session beans can be stateless or stateful. Stateful beans maintain a conversational
state between client calls. Depending on whether a state needs to be preserved between
client calls, the EJB server applies a different pooling algorithm to the instantiated
beans. While stateless beans can be reused for the execution of another client call,
stateful beans can only be reused after the client has released the session bean. An
example of a stateful session bean is shown in Appendix B.2.1.

CHAPTER 2. COMPONENT MODELS 14

Entity Beans

While a session bean can be seen as the extension of a client and executes on behalf
of a single client, an entity bean provides an object-oriented view of data stored in a
database. Although the data encapsulated by the entity bean can be accessed from
several different clients, they are typically accessed by session beans taking care of the
application’s business logic. Fach entity bean is identified by a primary key and its
data consistency is guaranteed by its container.

An entity bean can be either container-managed or bean-managed. Although the
database fields of a container-managed bean are handled by the container, the database
fields of a bean-managed bean need to be handled by the bean itself. Since the same
principles apply to both types of entity beans, we restrict ourselves to the discussion
of container-managed entity beans. A more detailed discussion of entity beans can be
found in [DYKO1].

The entity bean’s home interface has to provide the methods to create, remove, and
find an entity bean, as shown in Table 2.6. Additionally, the home interface of an entity
bean may declare home methods (static methods) that are not specific to an instance of
an entity bean. These methods are prefixed by ejbHome in the bean’s implementation
class and must not start with create, find, or remove.

The remote interface of an entity bean has to extend javax.ejb.EJBObject and
declares the methods supported by the entity bean. These methods can be executed
by clients having a reference to the bean.

The implementation class of the bean implements the javax.ejb.EntityBean inter-
face. Additionally, the implementation class may be abstract, if the accessor methods
for the bean’s properties should be provided by the bean’s container. While the imple-
mentation class implements the methods declared in the remote interface, it does not
have to declare the remote interface in its implements clause. Additionally, it provides
the following methods:

e The implementation of the methods declared in the home interface as indicated
in Table 2.6.

e The declaration of the accessor methods for the bean’s container-managed per-
sistent fields and relationship fields using the JavaBeans [Ham97| naming con-
ventions for properties. These methods must be public. They must also be
abstract if their implementation should be provided by the bean’s container.

e The implementation of the callback methods necessary for the persistence man-
agement (Tables 2.5 and 2.7). If no special persistence management is required,
the implementation of these methods may be left empty.

An example of a container-managed entity bean is shown in Appendix B.2.2.

CHAPTER 2. COMPONENT MODELS

Remote createMethod (arg;,args,...,arg,)
This method allows clients to create new beans. The arguments have to
be legal types for RMI-ITOP. These methods are mapped onto the cor-
responding void ejbCreateMethod and void ejbPostCreateMethod
methods of the bean’s implementation class.

Remote findByPrimaryKey(KeyType primKey)
This method looks up an entity bean on the basis of its primary key.
This method must be present for all entity beans and must not be

overloaded. The implementation for this method is generated by the
EJB server.

Remote findMethod (argy,args,...,arg,)
This method looks up an entity bean on the basis of the arguments
arg;. The arguments must be legal RMI-IIOP types. The code for
these methods is generated by the EJB server on the basis of the
queries provided by the bean’s deployment descriptor.

Collection findMethod (arg,,args,...,arg,)
This method looks up a set of entity beans on the basis of the ar-
guments. The arguments must be legal RMI-IIOP types. The code
for these methods is generated by the EJB server on the basis of the
queries provided by the bean’s deployment descriptor.

void remove(KeyType primKey)
This method removes an entity bean on the basis of its primary key.
This method is mapped onto the void ejbRemove() method of the
bean’s implementation class.

void remove (Handle handle)
This method allows the client to remove a bean identified by a specific
handle. This method is mapped onto the void ejbRemove () method
of the bean’s implementation class.

Table 2.6: Methods Declared in the Entity Bean’s Home Interface

15

CHAPTER 2. COMPONENT MODELS 16

void ejbLoad()
This method is called when the container needs to synchronize the state
of a bean. When the method is being called, the instance’s persistent
state has already been updated by the container. This method allows
the bean to update computed values that depend on database data.

void ejbStore()
This method is called before the database data will be updated on the
basis of the bean’s persistent state. The bean, however, should use the
accessor methods when updating the persistent state.

Table 2.7: Additional Methods Declared in the EntityBean Interface

Message-Driven Beans

Message-driven beans have been added in the EJB 2.0 specification for the integration
of the Java Message Service, JMS [HBS99|. Message-driven beans are similar to session
beans but simplify the development of an EJB that is asynchronously invoked to handle
the processing of an incoming JMS message. A client interacts with a message-driven
bean by sending a message to a JMS destination for which the bean is a listener. Since
a message-driven bean is never accessed by a client directly, it has neither a home nor
a remote interface.

A message-driven bean must implement the javax.ejb.MessageDrivenBean and
the javax.ejb.MessageListener interfaces. Thus, it has to implement the methods
shown in Table 2.8. An example of a message-driven bean is shown in Appendix B.2.3.

2.3.3 Packaging and Deployment

Enterprise JavaBeans are packaged into a .jar-file. This file consists of the bean’s
implementation classes as well as the bean’s deployment descriptor. The deployment
specifies the home and remote interfaces of a bean as well as the mapping of the
entity bean’s find methods to the corresponding database queries. Sample property
descriptors for all three types of beans are shown in Appendices B.2.1-B.2.3.

Deployment is the Enterprise JavaBeans term for installing the Enterprise Jav-
aBeans components into an Enterprise JavaBeans container. Typically, an EJB is
employed by placing its . jar-file into a deployment directory. Afterwards, the EJB
server reads the deployment descriptor(s) and installs the beans accordingly.

CHAPTER 2. COMPONENT MODELS 17

void setMessageDrivenContext(MessageDrivenContext ctx)
Sets the context of the bean.

void ejbCreate()
This method is called after a new instance of the message driven bean
has been created.

void ejbRemove ()
This method is called before the bean is removed by the container.

void onMessage(Message msg)
This method is called after the arrival of a JMS message.

Table 2.8: Methods Declared in the Entity Bean’s Home Interface

2.4 The CORBA Component Model (CCM)

CORBA focuses mainly on the description of interfaces and services. The CORBA
Component Model (CCM) [OMG99a, OMG99b, OMG99c¢|, however, takes the next step
and adds the ability to define CORBA Components. The CCM provides an Abstract
Component Model, a Packaging and Deployment Model, a Container Model, a mapping
to the EJB component model, and a model for the integration of persistence and
transactions. It specifies server-side components that may be used by clients or other
servers, hence allowing a distributed enterprise computing architecture. Unfortunately,
however, no implementation of the CCM exists so far. The following discussion is
therefore limited to the conceptual level of the CCM.

CORBA provides a myriad of features for building enterprise-scale applications. A
few patterns for building these applications, however, have widespread applicability.
If applications are built using these patterns, much of the work can be solved by the
design tools defined by the CCM (similar to the stub generation of IDL compilers).
While the CORBA component model is similar to the EJB component model, its key
advantage is language independence.

The typical use model is as follows:

Analysis/Design Phase: The CCM does not provide any assistance for this task.

Component Declaration: CORBA Components are defined using an extended IDL.
The IDL generates the stubs and meta-data comprising the client view of the
components.

CHAPTER 2. COMPONENT MODELS 18

Component Implementation: The Component Implementation Definition Lan-
guage (CIDL) is used to describe the server part of the component. It fulfills
a similar role to IDL but from the component implementer’s view. It enables
platform- and language-independent specification of features such as transactions,
persistence, and events.

Component Packaging: A component archive contains the component implementa-
tion and a component descriptor.

Component Assembly: This stage customizes the component and connects it to
other components. It is a description of a collection of prototypical components
along with their relationships. This task might be performed using a visual com-
position tool.

Component Deployment and Installation: Typically, a tool reads a component
archive or an assembly archive and installs the required components. The result
is a set of installed components.

Instance Activation: Once installed, the components are ready to be instantiated
using the standard CORBA ORB activation mechanism.

2.4.1 Component Specification

The CCM supports two levels of components: basic components and extended com-
ponents. While basic components are just a mechanism to componentize ordinary
CORBA objects, extended components make use of all the features provided by the
CCM.

Each component type has a component home that acts as its manager. Primary
keys may be associated with components by a component home. In the CCM, primary
keys are a means for clients to identify component instances and obtain references to
them. At execution time, a component instance is managed by a single home object.

A component is a collection of specific named features that can be described by an
IDL component definition and/or a corresponding structure in an Interface Repository.
The CCM describes a variety of these features:

Facets: A component may have multiple interfaces, each represented by a different
object reference. The advantage of facets is that they make possible the modu-
larization of components. If only a single facet is required by a client, only the
corresponding object has to be activated. CORBA components, however, still
have a single distinguished reference whose interface conforms to the component
definition and supports the component’s equivalence interface.

CHAPTER 2. COMPONENT MODELS 19

Receptables: Receptables help to describe the connections between components. Re-
ceptables may be simplex managing single or multiplex managing multiple object
references.

Event Sources and Sinks: The CCM supports a publish subscribe model which is
a subset of CORBA’s notification service. Event sources may be publishers and
emitters. Publishers have multiple subscribers and are the only publishing source.
Emitters have only one subscriber and listen to possibly several emitting sources.
An event sink describes the potential for a component to receive events of a
specified type. Event sinks do not differentiate between subscription (publish)
and connection (emit).

Primary Key: A component may expose a primary key which may be used by clients
to locate, create, and destroy the component instance associated with that pri-
mary key.

Home Interfaces: When a component type is deployed, an object called Home is
created which manages instances of that component type. The home objects
provide factory and finder operations needed to create and look up a component
instance plus any number of type-specific factory/finder operations defined.

Attributes and Configuration: The CCM supports the notion of dividing the com-
ponent life cycle into two different phases: the configuration and the operational
phase. The CCM provides features that enables the developer to distinguish be-
tween features intended for the configuration or the operational phase. Since this
distinction is somewhat arbitrary, however, the enforcement is left to the user.

Inheritance: The CCM uses the generic CCMObject interface to aggregate the generic
Navigation, Receptable, and Events interfaces and the CCMHome interface to
specify the capabilities of the component’s home object. The type-specific in-
terfaces that correspond to a specific component definition are generated on the
basis of the rules for component inheritance.

Components belong to one of the following categories:

Service: This component has only behavior. It is useful for tasks that require only
the single independent execution of an operation.

Session: This component has behavior and a transient state. Its state is preserved
while the client interacts with the component.

Process: A process component has a behavior and a persistent state not visible to its
clients. It is useful for modeling business processes rather than entities.

CHAPTER 2. COMPONENT MODELS 20

Entity: An entity component has behavior, a persistent state, and an identity that
can be accessed via its primary key. It is useful for modeling real things (e.g.,
customers or accounts).

Persistence and transaction management can either be provided by the CCM or
be implemented by the component itself. After the component has been implemented,
the component has to be compiled into a component package that may be loaded into
an application or into a tool (e.g., an application builder) and used to construct a
component that becomes a package itself.

2.4.2 Component Implementation

The Component Implementation Definition Language (CIDL) is used to describe the
implementation of the components and their homes. On the basis of that description,
the CIDL compiler generates the skeletons that automate many of the basic behaviors of
a component such as navigation, identity, inquiries, activation, and state management.
Finally, the component builder extends the skeletons to implement the application.
CIDL is a superset of the Persistent State Definition Language (PSDL). PSDL is
used to declare the persistent state of an object to enable the persistent state service
to transparently store and retrieve objects. CIDL adds support the specification of
an association between an abstract storage type and the form of an internal state
encapsulated by a component. The Component Implementation Framework (CIF) and
the container then cooperate to manage the component’s persistent state automatically.
The following terminology is used by the CORBA component model:

Executer: The programming artifact used to implement the component is denoted as
Executer. A monolithic executer is made up of a single programming artifact and
a segmented executer is made up of several programming artifacts, each repre-
senting a different part of the component’s state. Typically, each part corresponds
to a different facet. This enables a request to a facet to be serviced by bringing
up just that facet of the component.

Executer Definition: An Executer Definition defines the name of an Executer, the
segmentation it consists of, the generation of operation implementations manag-
ing stateful features such as receptables, and a delegation declaration to describe
the relationship between particular stateful features.

Composition: A component implementation is made up of several different elements
such as the Component Home, the Home Executer, and the Component Executer
as well as optionally an abstract storage home binding, a delegation specification,
and a proxy home.

CHAPTER 2. COMPONENT MODELS 21

Composition Structure: A minimal composition consists of a name for the compo-
sition, the component’s category (service, session, process, or entity), the home
type, a name for the generated home executer, and a name for the generated
component executer.

2.4.3 Container Model and Architecture

A component server is a process which provides an arbitrary number of component
containers. A container manages a specific component category and provides its runtime
execution environment. While external API types define the contract between the
component and its clients (IDL), container API types define the internal interfaces and
callback interfaces used by the component developer (CIDL).

The container is a server-side framework built on top of the ORB, the Portable
Object Adapter (POA), and a set of CORBA services. The interaction with the ORB,
POA, and CORBA services is defined by the CORBA usage model.

The usage model is controlled by policies which select between interaction patterns
with the POA and other CORBA services. It is defined in CIDL and augmented using
XML. The CCM predefines three different models which differ in their interactions
with the POA. The stateless model uses transient references with a POA server that
can support any object. The conversational model also uses transient references but
with a POA dedicated to a specific object. The durable model uses a persistent reference
with a POA dedicated to a specific object.

After a component has been deployed into a CCM server, the server creates a
container for the component. The container itself is created by a container manager
determining the appropriate set of POA policies, a container API type, and a set
of CORBA service bindings to be used by the container. All this information forms
the container specification. Container managers are themselves created as part of the
installation and deployment process. Figure 2.5 depicts this architecture.

The CCM defines seven different container categories (API types): four correspond-
ing to the four container categories, two for EJB container API types and an empty
container to support user-defined frameworks:

Service manages access to stateless components.
Session manages the session of components with a transient state.

Process manages stateful process components which encapsulate data access in the
server.

Entity manages stateful entity components which share data access responsibility be-
tween the client and the server.

EJBSession manages EJB session beans.

CHAPTER 2. COMPONENT MODELS 22

Container Manager

Session Entity EJB Other
Container Container Container Containe

Coll|C~lllo O
o a2l olll©

Q| — |D

| Transaction | Security | | Persistence| | Notification |

O Component Instances

Figure 2.5: The CORBA Container Architecture

EJBEntity manages EJB entity beans.

Empty provides no automatic management, but makes the standard CORBA 3.0 in-
terfaces available to the component implementation.

As for components, the CCM supports two levels of component containers: basic
and extended. However, this affects only object reference management and the avail-
ability of supporting CORBA services. For both levels of containers, references to these
services are obtained using resolve_initial_references.

Containers also support different component thread safety policies: serialized and
multithreaded. Basic components, however, only support the serialized threading pol-
icy.

Basic containers can use CORBA’s security, transaction, and naming service. For
basic CORBA component containers and the EJB container API types, the container
provider must manage the object reference creation. The containers provide access
to the factory and finder operations declared in IDL and interact with the Transac-
tion Service on behalf of the component. The containers rely on CORBA security to
implement access policies and apply it to all the container’s components.

Extended containers can also use the notification service as well as the persistent
state service. Extended containers are responsible for mapping the extended events of
a component (defined in IDL) to the CORBA Notification service and for delivering the
specified event types via a notification channel. Containers are responsible for setting

CHAPTER 2. COMPONENT MODELS 23

up the channels, accepting a component event, pushing it to a channel as a structured
event, and vice-versa (receiving a structured event and converting it to a component
event).

Persistence is supported by the process, entity, and EJBEntity containers which
provide access to the CORBA persistent state service in order to allow the component
developer to implement self-managed persistence. Entity containers also support a
get_primary_key operation.

Persistence may be managed by either the container (container-managed) or the
component itself (self-managed). In the case of self-managed, persistence the com-
ponent cooperates directly with the persistence provider. In the case of container
managed persistence, however, the container provider cooperates with the persistence
provider, and the component only provides the functions for loading and storing the
component’s state as well as the factory and finder operations. These can be generated
automatically, if the component’s state is described using the Persistent State Definition
Language (PSDL).

2.4.4 Client Programming Model

Clients do not have to be component-aware. No matter whether they are
component-aware or not, however, they resolve their initial references using
resolve_initial_references.

Component-unaware clients interact with CORBA components using the home in-
terface or one of the application interfaces but do not profit from the additional features
defined by the CCM. The home of a component either creates a new component or, if
the component has a primary key assigned to it, locates an existing component via a
finder.

Component-aware clients may use the features introduced by the CCM. They can
obtain references for the NameService, TransactionCurrent, SecurityCurrent, Notifica-
tionService, InterfaceRepository, and the HomeFinder services. They also can navigate
among multiple interfaces and emit and consume events using the component APIs
defined in the CCM. Security is provided via the CORBA security mechanism.

2.4.5 Component Assembly and Packaging

A component package is the vehicle for deploying a single component implementa-
tion. It includes one or more implementations of a component. Each implementation
implements the same component, but with characteristics that can differ in the im-
plementation language, operating system, or even runtime behaviors. In general, it
consists of a set of files and one or more XML descriptors containing the package’s
characteristics and their dependencies. The collection of files and descriptors may be
grouped together into a ZIP archive file or kept separately.

CHAPTER 2. COMPONENT MODELS 24

A component assembly package is the vehicle for deploying a set of interrelated
component implementations. It consists of a set of component packages and an assembly
descriptor which gives the components, partitioning constraints, and connections. It
is a template or pattern for instantiating a set of components and homes, and for
introducing them to each other.

2.4.6 Component Deployment

Components are installed on the target hosts using a deployment tool. The deployment
tool interprets the component’s deployment descriptor, selects the appropriate compo-
nent implementation, initializes the component’s properties and connects it to other
components. Much of this process, however, is left over as an implementation issue for
tool vendors.

2.5 Summary

On the basis of the explanations in the previous sections, we can identify two differ-
ent types of component models: desktop (or local) component models that allow the
specification of components for traditional software engineering and server-side (or dis-
tributed) component models suitable for distributed computing environments such as
provided by the Internet.

2.5.1 Desktop Component Models

Desktop component models provide software components designed for inter-operation
within the same address space. Components in the form of traditional program libraries
are ideal for software development with little or no tool support. Hence, components
of desktop component models are not distributed and are all available on the same
computer.

More advanced component models such as provided by JavaBeans, however, come
with a meta-description of the software component. This meta-description identifies
features (or characteristics) of the component models such as the available properties,
events, or methods. On the basis of this meta-description, application builders can
present developers with a list of available components as well as their features. Hence,
they can guide developers in the creation of new applications.

After the developer has finished defining the application, the application builder
links all the components employed by the user into a single program. In that sense,
desktop component models are very similar to software libraries. The program gener-
ated by the builder does not require any services from another computer as long as the
components employed are not internally dependent on such a service.

CHAPTER 2. COMPONENT MODELS 25

2.5.2 Server-Side Component Models

Server-side component models, on the other hand, describe components that provide
a specific service that can be requested from clients located on a different computer.
Server-side component models only provide a framework for the description of a service.
The framework then takes care of tasks such as persistence management, transaction
management, or the provision of the appropriate security services. These component
models, however, do not facilitate the programming of clients using such a service.

Client
.| Web Server Application Datab
| caritat Ereingd ~ T " T T Server | e = atabase
___—" | Servlet Enging
Client
AN
/7 \
Client Client
—= HTTP
- = RMI
--=> JDBC

Figure 2.6: Typical Web Service Architecture

Server-side components are most often used as application servers that can be ac-
cessed by clients and Web services. A sample such architecture is shown in Figure 2.6.
While this figure is based on the EJB component model, the principle applies equally
well to the CORBA component model.

The advantage of this architecture is that customers can access the service (for
instance, a banking application) via a Web interface provided by the servlet engine.
On the other hand, employees can interact with the banking service using a native
interface. Typically, native applications provide better performance and are not limited
to HTTP’s pull model.

While the above architecture simplifies program development, it needs improvement
from a performance point of view because of the additional network delay arising from
the separation of the servlet engine and the application server. For performance rea-
sons, most application servers can be executed within the same address space as the
servlet engine. This is why BEA WebLogic or JBoss are each shipped with a servlet
engine [BEAO1, JBo|. In this case, the RMI call can be replaced with a local method
call.

A drawback of the EJB or the CORBA component models is that they do not
provide any support for the implementation of the Web service. Hence, the application
has to be implemented twice: once as a Web service and once as a native application.

Chapter 3

Adaptation of Components

Although software components are in widespread use today, they are still used in ways
much like program libraries. This might be due to the fact that program libraries are
a kind of software component. The goal of today’s component technology, however,
should be the simplification of the composition of components. Such components are
frequently referred to as Commercial Off The Shelf (COTS) components. So far, the
composition process has only been simplified in the rare case that the interfaces of the
components match each other. Whenever this is not the case, the composition still has
to be performed programmatically by manually implementing the necessary glue code.

The composition process could be simplified if components could be adapted more
easily. This is the focus of many current research projects which we present in the
following sections. We categorized the projects into those focusing primarily on the
composition of components, on the separation of concerns, and on the optimization of
systems already built from components.

3.1 Adaptation for Composition

In the following sections, we present adaptation techniques that focus on the compo-
sition of components providing a specific functionality, such as an address book or a
spell checker.

3.1.1 Scripting Languages

The use of scripting languages, sometimes incorrectly referred to as composition or
configuration languages, is one of the oldest approaches used for the composition of
software components. While the components themselves are written in traditional
languages such as C or C++, the scripting language is used to plug the components
together.

26

CHAPTER 3. ADAPTATION OF COMPONENTS 27

Scripting languages are similar to traditional programming languages except that
they are typically interpreted instead of being compiled. Since scripting languages are
interpreted languages they are easier to use. Code can be tested immediately and de-
bugged more quickly, thus allowing a rapid prototyping approach. The programs do
not have to be recompiled after each bug fix and memory accesses are checked by the
interpreter which makes bugs immediately visible at run-time and hence, avoids de-
bugging nightmares encoutered in compiled languages such as C [Ous98|. Components
are made available to the scripting language dynamically by loading shared libraries or
statically by linking the interpreter with the component libraries.

The developer uses the scripting language only to specify how the components
interact with each other and how data structures exchanged between the components
have to be transformed. While scripting languages could be used to write application
code, they should only be used for small functions supplying application logic missing
in the original components. Writing a whole application with scripting languages is
discouraged because code written in scripting languages is frequently less structured
and less readable.

Although scripting languages are easy to use, they have certain disadvantages, too.
They are less efficient than compiled languages, such as C, which usually is of major
importance for number-crunching components, gaming environments, or other com-
ponents operating on huge data sets. Scripting languages do not provide low-level
functionality that might be necessary for the implementation of a database component,
for instance. Additionally, scripting languages use a dynamic type system which is
typical of interpreted languages and defers the detection of type errors until execution
time. Thus, components themselves are rarely implemented using scripting languages.

Today, many COTS components come with bindings for many popular scripting
languages. Since different developers use different scripting languages, however, it is
important for component developers to provide bindings for their components for all
the different scripting languages. Fortunately, this process can be somewhat simpli-
fied using generators such as SWIG [Bea96]. SWIG reads in a C or C++ header file
declaring the functions that need to be made available and generates the appropriate
bindings. In some cases, however, it is still necessary to implement additional code for
a finer-grained access to the component’s data structures.

Unix Shells

The various kinds of Unix shells such as the Bourne shell or C shell are the predeces-
sors of today’s scripting languages. These shells provide environment variables to store
state and provide simple control constructs such as if-statements or while-loops. Ad-
ditionally, they allow other programs to be executed and the output from one program
to be forwarded to the input of another program.

On the basis of that functionality and in combination with text manipulation pro-
grams such as sed (the stream editor), Unix shells can be used to compose existing

CHAPTER 3. ADAPTATION OF COMPONENTS 28

programs into more powerful ones. As an example, many programs executed at system
start-up or when the user logs in are still written using shell scripts.

Perl

Perl [WS91, WCOO00] is one of the oldest scripting languages and is still used by many
developers. Perl 1.0 was posted to the USENET newsgroup comp.sources in 1987 and the
first book [WS91| on Perl was published by O’Reilly & Associates in 1991. Compared
to shells, Perl provides more data types and a wide variety of commands to match and
operate on strings. This makes Perl the perfect choice for analyzing and manipulating
textual data. Typically, such tasks are present in Web applications that handle an
HTTP client request, access a database component, and return the result back as an
HTML document. Perl has been criticized, however, for its syntax which is concise but
cryptic and incomprehensible.

Tcl/Tk

Tecl [Ous94] is a very simple scripting language that operates solely on strings. For sim-
plicity reasons, other data types have been removed from the language. Even numbers
are stored using a string representation and converted to their binary representation
whenever necessary. Tcl provides elaborate string manipulation functions which make
it easy for the developer to use.

Tcl also provides a simple API that allows the user to write bindings for components
written in C or C+-+. An extension of Tcl is Tk, which provides a component to create
complete user-interfaces with buttons, text-boxes, and other frequently used widgets.
Typically, Tk is bundled together with Tcl and is commonly known under the name
Tecl/Tk. The reason for the success of Tcl/Tk seems to be its ease of use compared to
Perl and the fact that it was the first scripting language that allowed to creation of user
interfaces. Even many newer scripting languages such as Python use Tk underneath
for the actual handling of the user interface.

3.1.2 Composition Languages

Object-oriented programming languages while focusing on the object level, fall short
of providing a compositional view of an application [NM95|. Composition languages,
however, operate on a higher level of abstraction, hence providing a framework allowing
the composition of components. Conceptually, a composition language must lie between
Smalltalk and Perl.

A composition language must be flexible enough to cope with both objects and com-
ponents. Components must be pluggable, so the interfaces that a component provides
or requires need to be specified. Since components are frequently distributed, a com-
position language must be able to view objects as processes. This requirement rules

CHAPTER 3. ADAPTATION OF COMPONENTS 29

out the use of the A calculus as the formal basis for composition languages. According
to [NM95, SLI6, LSNA9T7|, however, the 7 calculus, a calculus of mobile processes, is a
good choice for the formal basis of composition languages.

Initial experimentations using PICT, a general-purpose programming language
based on the 7 calculus, as a composition language were presented in [SLI6|. While
P1cT was a good choice for initial experimentations, it was too restrictive for more
sophisticated examples. Hence PICCOLA, a new composition language, has been pre-
sented in [LSNA97, ALSNO1|. PiccoLA is a very small language which is able to
support a variety of component models through the definition of different component
composition styles [ALSNO1]. While PiccoLA allows the composition of components
the adaptation of the components still has to be done programmatically. So far, P1c-
COLA seems to be the only composition language available based on a formal model.

Another composition language, the Bean Markup Language (BML), has been pre-
sented in [WCD*01]. BML is a declarative language based on XML and allows devel-
opers to specify the composition of JavaBeans components. BML supports the config-
uration of JavaBean properties and the specification of the glue code to be executed in
terms of scripts. BML supports both the definition of applications and new JavaBean
components. An approach similar to BML is the Long-Term Persistence for JavaBeans
specification [Sun01] which provides a similar composition mechanism except that it
does not support the specification of glue code using scripts.

3.1.3 Wrapping

Wrapping is the traditional approach used to extend an existing class or to transform
the interface of a class into a new one. The basic forms of wrapping are subclassing
and aggregation (class- and object-based composition). An evaluation of these two
approaches can also be found in [HO99].

Subclassing

If the component to be adapted is instantiated by the developer, it is possible to use
inheritance to extend the component. The developer subclasses the wrapper from the
original class and uses the subclass instead of the original one. An advantage is that the
wrapped component may be passed back to the component library. If the component
is passed back to the original component library, however, it is important to adhere
to the Liskov substitution principle [Lis87, LW94|. Otherwise, the system’s reliability
cannot be guaranteed.

It is important to note that some restrictions apply. The class that needs to be
wrapped must not be final and only methods that have been declared virtual can
be overridden. If a method is overridden, the system will always execute the overriding
method. Thus, it is not possible to override a method selectively depending on whether

CHAPTER 3. ADAPTATION OF COMPONENTS 30

the subclass is handled by caller A or caller B. This problem, however, is addressed by
the Composition Filter approach presented in [ABV92].

Aggregation

As an alternative to inheritance, it is possible to use a wrapper that has an aggregate
relationship with the wrapped object. In this case, the wrapper provides the new inter-
face and translates all the requests into the API provided by the wrapped object. This
approach is also referred to as adapter design pattern and is presented in [GHJV95|.

The drawback of aggregation are that the type of the wrapper and of the aggregate
object are unrelated to each other and the wrapper can only be used for translation,
not to override methods of the original class. Additionally, it is necessary to wrap and
unwrap the wrapped objects whenever the aggregate object is required.

Composition Filters

The composition filter model [ABV92] is similar to Java’s object model but distinguishes
between internal and external objects and adds states and filters to an object. While
internal objects are owned by the object, external ones are not and can be shared with
other objects. Message invocations of objects are first evaluated by the filters controlled
by the states and then dispatched to an appropriate method. The selected method can
be one of the object’s methods, or a method of one of its internal or external objects.
Depending on the state of an object, different filters are active and hence different
aspects are provided to the object’s client.

Composite Adapters

Another approach based on wrapping is the composite adapter design pattern presented
in [SML99]. The goal of the composite adapters is to allow the independent development
of an application and the framework models the application uses, hence enabling an
application to use the framework in different configurations.

The idea of the composite adapter is to implement all wrapper classes adapting
the application classes to the framework as inner classes of a composite adapter class.
While the composite adapter class takes care of the instantiation of the wrapper classes,
the inner classes only implement the adaptation code. To simplify the implementation
of the adapters, a new scoping (adapter) construct is proposed.

3.1.4 The Software Bus

The software bus is an abstraction of a shared medium used by any two components to
communicate. The analogy to a hardware bus where components can be connected and
disconnected easily is intentional. While a software bus simplifies the communication

CHAPTER 3. ADAPTATION OF COMPONENTS 31

between the participants, it increases the system’s complexity, since theoretically every
participant can communicate with every other participant.

The software bus per se does not solve any of the adaptation problems. If one
component puts messages onto the bus that are not understood by the participants,
interoperation between the components is not possible. The problem is simply moved
from the interface or the data type level to the software bus’s message type level.

Polylith

The Polylith software bus approach presented in [Pur94| is similar to the composition
language approach but with a focus on distributed systems. Polylith uses a Module
Interconnection Language (MIL) to describe the externally visible interfaces of a mod-
ule. This language is similar to an IDL definition as used by RPC. On the basis of
this description an MIL compiler can generate bindings for the relevant module. These
bindings can be used to glue the modules together within the same address space or in
different address spaces in the case of a distributed computing environment.

If the modules are executed in a distributed environment, the software bus can
provide additional functionality. One example is the ability to share the information
exchanged between two modules with other modules such as debuggers. Another func-
tionality is to look up services to find a suitable target component.

An interesting aspect of Polylith is NIMBLE [PA90, PA91], a technique that enables
the external adaptation of a module. NIMBLE allows developers to describe how the
parameters in a procedure call need to be coerced to match the callee’s signature
without changing the source code of the modules involved. Based on the description of
the actual procedure call and the procedure provided by another module, the developer
specifies the translation which is instantiated by Polylith at run-time. Hence, NIMBLE
makes it possible to decouple the development of the program application and the
underlying libraries.

Bart

Other software bus implementations such as Bart use a publish/subscribe-style inter-
action between the components [Bea92|. Components may subscribe to messages from
the software bus and publish messages of their own type onto the software bus. When-
ever a component publishes a message, the software bus delivers the message to its
subscribers.

One of Bart’s layers allows components to share data in relational form. An inter-
esting feature of Bart is a glue language (SGL) similar to Prolog that allows developers
to define the relationship between data models in different components. The glue lan-
guage allows the transformation, filtration, and combination of tuples performing a
functionality similar to Polylith’s Module Interconnection Language (MIL) and NiM-

CHAPTER 3. ADAPTATION OF COMPONENTS 32

BLE. Programs written in SGL are compiled and executed in the process where the
data resides.

3.2 Separation of Concerns

Some programming problems cannot be solved easily using a procedural or object-
oriented programming style in combination with design patterns [GHJV95]. Such prob-
lems are typically associated with aspects (or concerns) that cross-cut several different
classes or software modules. Frequently, such concerns deal with performance, security,
or failure-handling problems.

A simple solution to this problem is the implementation of a monolithic compo-
nent that supports all of the relevant concerns using a configuration file. Currently,
XML [BPSM98]| is popular for this purpose. While this is sufficient for software com-
ponents with a small number of configuration options, it does not solve the problem
itself.

A better way to deal with these concerns is to separate them. Although the principle
of dealing only with a single concern at a time was already identified in [Dij76|, no
foolproof solution has yet been found. Today, several approaches exist that solve this
issue for various problem domains.

Efficient management of the different concerns is also interesting from a marketing
point of view, since it supports the generation of different products from the same code
base. Depending on the configuration that a customer wants, a different product can
be generated. Such a set of products typically is referred to as a product family [Par76|.
This is also interesting in terms of performance because the application does not have
to deal with concerns in which the user is not interested.

3.2.1 Configuration Languages

Configuration languages (sometimes also referred to as extension languages) are used
for the configuration of a software component. Configuration languages are similar to
scripting languages and are almost always interpreted or compiled at load time. Because
of this similarity, many scripting languages can be used as configuration languages as
well (e.g., Tcl or Python). Emacs lisp, used by the emacs [Sta99] editor, was one of the
first configuration languages and is still one of the most widely known. The potential
of configuration languages has also been presented in [Ous98|.

Configuration languages allow users to extend and adapt the functionality provided
by a component. The advantage is that instead of having to learn the internals of the
component, users only need to understand the extension language and the access points
provided by the component. These access points are available in the form of functions
and hooks and have to be provided by the component. While the functions are similar
to functions in any other programming language, hooks are callbacks that allow users

CHAPTER 3. ADAPTATION OF COMPONENTS 33

to specify their own code to be executed at certain points. Since the user only has to be
aware of these hooks and functions, configuration languages are a black-box adaptation
technique.

Configuration languages expose their full power when all the components within
the system can be configured using the same configuration language. This allows users
to place global definitions, such as defintions concerning the look and feel of all visual
components, into a central file that can be read by all components. Hence, the user
does not have to change each individual component to keep a common look and feel
across all of the components.

While configuration languages increase the flexibility of a component, this support
should be considered during the component’s design time. Retrofitting a software
component to support a configuration language frequently requires a complete redesign
of the component. Although configuration languages provide the maximum flexibility
while still maintaining the component’s black-box characteristics, they are difficult
to implement, since the developer of the component needs to select carefully which
functionality should be available to the configuration language.

3.2.2 Generic Programming

Generic Programming [JLMO0] is a programming design method that tries to separate
different aspects of the implementation using abstract interface specifications. These
interface specifications define the hooks available for adding new aspects and parame-
terizing the various parts of the system. Depending on the programming language used,
these interfaces can either be dynamic — using inheritance (dynamic polymorphism)
— or static — using templates (static or parametric polymorphism).

While inheritance enables the parameterization to be changed at run-time, tem-
plates provide better performance. Since many configuration options of an application
are known at compile time, parametric polymorphism should be used whenever possible.
Good examples of libraries using generic programming without limiting the user’s flex-
ibility are the C++ Standard Template Library (STL) [MS96] and the Boost Graph
Library [SLLO02|. The flexibility of the STL has also been shown by the Persistent
Standard Template Library |[Gsc0lb], a plug-compatible replacement for STL using
persistent memory.

When using templates it is necessary to have access either to the component’s source
code or to an intermediary object format identifying the template parameters. The user
of the component does not have to be aware of the component’s implementation details,
however, to be able to parameterize it. Hence, we consider generic programming a gray-
box adaptation technique.

CHAPTER 3. ADAPTATION OF COMPONENTS 34

3.2.3 Generative Programming

Similar to generic programming, generative programming separates concerns and as-
pects into different building blocks (or layers) with a well defined interface. Generative
programming, however, exploits the dependencies between the variabilities, separates
the problem space and solution space, and uses configuration knowledge to map be-
tween these spaces. Configuration knowledge is provided by generators that are able
to compose the building blocks according to the requirements specification of the pro-
grammer |[CE00].

Generative programming has also been used by GenVoca [BSST93, BCRWO00|, a
system that is able to compose building blocks describing basic data structures or syn-
chronization directives into more complicated data structures. As shown in [BCRWO00],
it is even possible to provide consistency checking for a given composition and to pro-
vide a textual description of the composed system. Since each aspect is encapsulated
within its own module, these modules appear as black-box entities to the developer.
Depending on the implementation of the generator, it has to be aware of the building
blocks’ implementation. For instance, if the final system should be optimized using
partial evaluation [DGT96|, the source code of the components has to be available.

3.2.4 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [KLM™97] is an approach that tries to separate
the development of a component and the associated concerns. This is achieved by the
modularization of the cross-cutting concerns. The core advantages of AOP are:

e The developer can ship different versions of the application (forming a product
family) without having to include all the concerns in all the different applications
and thus without compromising the application’s performance.

e The aspect or concern can be developed and maintained separately from the
original program, thus reducing the cost of development and maintenance.

The original approach of aspect-oriented programming [KLM*97] is to write the
application using a component programming language. This allows the developer to
capture the application logic on a higher level without having to deal with low level
issues such as performance optimizations. The low level optimizations are described
with an aspect language, thus separating the aspect from the application code. A
special compiler (weaver) is then used to weave the aspects described in the aspect
language into the original application.

Typically, the component programming language is an extension of a real program-
ming language. The extensions of the programming language allow the weaver to
identify certain structures in the original program. On the basis of the aspect program

CHAPTER 3. ADAPTATION OF COMPONENTS 35

the weaver can apply some transformations to the program, such as merging loops, that
a native compiler would have been unable to optimize.

The disadvantage of this approach is that a new compiler needs to be written for
the component language. A different approach using plain Java as component language
is taken by AspectJ.

Aspect]J

In contrast to the approach presented in [KLM™97], AspectJ [GHH™| uses the Java
Programing Language |[AG97| as component language. Thus the programmer of the
core application does not have to learn a new programming language, nor is it necessary
to write a new compiler or extend an existing one for the component language.

The aspect programming language of AspectJ, however, is an extended version of
the Java Programming Language. New constructs had to be added to allow the user
to specify point-cuts. A point-cut specifies the location in the core application where
an aspect has to be woven into. This allows an aspect to be added to a component
available in source form even if the aspect has not been foreseen by the developer of
the component.

aspect TraceMyClasses {
pointcut myClasses() : within(MyClassl) || within(MyClass2);
pointcut myConstructs() : myClasses() && executions(new(..));
pointcut myMethods() : myClasses() && executions(* *(..));

/* catch calls */
static before(): myConstructs() {
System.err.println(thisStaticJoinPoint.getSignature(O+" {");

¥

static after(): myConstructs() {
System.err.println("} "+thisStaticJoinPoint.getSignature());
}
}

Figure 3.1: Defining Point-Cuts in AspectJ

A sample aspect program illustrating how an aspect has to be woven into an appli-
cation is shown in Figure 3.1. The aspect programming language uses a kind of regular
expression for method calls for the specification of the point-cuts. The constructs shown
in Figure 3.1 specify an aspect that requires some code to be added before and after
each invocation of the constructors of classes MyClass1 and MyClass2.

While AspectJ provides more flexibility to programmers, it is a white-box adapta-
tion technique since it requires knowledge about the implementation of the program to

CHAPTER 3. ADAPTATION OF COMPONENTS 36

be adapted. In [Kic96]|, this approach is presented as an open implementation. This
principle is in direct contrast to the open-closed [Mey88, LW94| principle.

AspectJ is not an aspect-oriented programming language in the sense defined pre-
viously, since it only allows the addition of new code to existing classes. It does not
allow enhanced transformation on the abstract syntax tree, which would be necessary
for the application of user-defined optimizations.

COMPOST

COMPOST [LH00, ALNHO1] is a program transformation environment whose goal
is the adaptation and composition of components into applications. COMPOST is
similar to AspectJ but provides the ability to perform arbitrary code transformation,
hence operating on a lower layer. The core layer of the COMPOST environment is
the RECODER [Lud01], a source-to-source transformation library for Java programs.
COMPOST is still a work in progress, however, and so far only simple code transfor-
mations, such as consistently renaming methods in a software engineering project, are
supported. In future releases, the authors plan to support the weaving of new aspects
into a program, or the refactoring of a program to enable performance optimizations
(see also Section 3.3.2).

3.3 Performance Adaptation

Components should be general and reusable in a large set of different applications. Un-
fortunately, this comes at the cost of performance. Sometimes components are simply
too bloated for a specific application, especially when only a small functionality pro-
vided by them is necessary. In other cases, components might suffer from performance
problems because they have not been optimized to interact with each other, or simply
because the compiler is missing some information of how to optimize their interaction.

3.3.1 Simplicissimus

The Simplicissimus project tries to optimize the performance of systems composed from
multiple components or libraries. Simplicissimus is especially suited for libraries making
use of templates and written for C++. Today, many such libraries exist, such as the
Matrix Template Library (MTL), or the BOOST Graph Library (BGL). While these
libraries provide good performance if used in combination with the compiler’s built-in
types, they perform poorly if used in combination with user-defined types. This is due
to the fact that, unlike for built-in types, the compiler is unaware of many optimizations
possible for user-defined types.

The approach taken by Simplicissimus [SGMLO1| is to allow library developers to
specify optimizations possible for the types defined within their libraries. This specifi-

CHAPTER 3. ADAPTATION OF COMPONENTS 37

cation can be read in by the compiler and used for subsequent optimizations. Typical
optimizations are the mathematical transformation of a term or the elimination of
temporary variables by means of special purpose functions instead of operators. For
instance, a = p x ¢ stores p * ¢ in a temporary variable and copies it to a using C+-+’s
assignment operator. If a user-defined type provides a mul(a, p,¢) function, however,
it would be more efficient to use this instead of the previous expression. Simplicissimus
allows compilers to take advantage of such optimizations for user-defined types. So far,
the system has been implemented for the GNU C++ and the Pro64 compilers.

3.3.2 COMPOST

As explained in Section 3.2.4, COMPOST is a term-rewriting tool that can be used
to optimize existing compositions. By analyzing the composition of the components,
it is possible to identify the parts of a component that are unneccessary for the final
application. For instance, a doubly linked list that is only used as a stack does not
require methods such as insert() or delete(). Removing these methods reduces the
size of the application but does not significantly improve the system’s performance.
The goal of COMPOST is to go one step further and simplify the data structure used
by the component. Thus, in the case of the doubly linked list, COMPOST should be
able to convert the list into a singly linked list, hence improving the performance of the
push_front() and pop_front() [Goo0l] methods.

Chapter 4

Towards A Classification of
Adaptation Techniques

In the previous chapters, we presented a set of adaptation techniques and their inner
workings. In this chapter we compare the characteristics of these adaptation techniques
to be able to put the different approaches in relation to each other and to select an
appropriate adaptation algorithm for solving a given problem.

4.1 Objectives of Adaptation

Adaptation and composition techniques attempt to achieve one or more of three objec-
tives. The first objective is the adaptation of different components for their composition.
Hence, the focus here is the inter-operability of components providing different parts of
an application or a system. Adaptation is necessary because the components are typi-
cally implemented independently by different vendors, so it is unlikely that components
will be able to interact with each other directly (for instance, a word processor and a
dictionary component). This objective is mainly addressed by composition languages,
the software bus architecture, and type-based adaptation, which is our approach that
will be explained in Chapter 5.

Separation of Concerns

Performance Optimization

Composition

Figure 4.1: Objectives of Adaptation

38

CHAPTER 4. TOWARDS A CLASSIFICATION 39

The second objective is to allow the developer to exchange or add to the set of
aspects (or concerns) that a component exhibits. Such an aspect could be support for
persistence, security, or transaction management. While such support can be accom-
plished using configuration files, it is not always a good choice from a performance
point of view. Other approaches are the modification of the source code itself. Al-
though these techniques are more complicated to implement, their advantage is that
they produce slim components providing only the necessary functionality. In [CE00],
the first objective is referred to as horizontal composition and the second as vertical
composition.

Finally, the third objective is addressed by adaptation techniques that focus on
the optimization of a composed system. Depending on the optimization technique, it
may be applied to horizontal and vertical adaptation and composition techniques. For
instance, Simplicissimus [SGMLO01| enables the compiler to optimize horizontal com-
positions, while partial evaluation supports the optimization of vertical compositions
by fusing different aspect definitions. Term-rewriting tools, on the other hand, enable
vertical and horizontal systems to be optimized |Goo01].

4.2 Adaptation Transparency

Another important issue is whether an adaptation technique operates on the compo-
nent’s source code, hence requiring white-box components, or whether it uses only the
interfaces exported by a component in which case it is able to adapt black-box com-
ponents. While components can be easily categorized as white-box or black-box, this
is not the case for adaptation techniques. Many adaptation techniques fall somewhere
inbetween and are referred to in the literature as gray-box adaptation techniques. Since
the terms black-box, gray-box, and white-box are not always used consistently in the
literature, we will stick to the following definitions:

Black-Box Adaptation: The implementation of the components is entirely concealed
from the adaptation technique and the component is accessed only via its inter-
face. Hence, knowledge of the component’s source code is not required.

Gray-Box Adaptation: The implementation of the component is concealed from the
developer. Hence, the developer does not have to understand the source code. The
toolkits and compilers performing the adaptation of the component, however, do
have access to the source code and are allowed to modify it and use this knowledge
for further optimizations.

White-Box Adaptation: The implementation of the components has to be known
to both the developer and the tools working on the source code. Replacing a
component with a newer version might break existing adaptations [Gsc0la].

CHAPTER 4. TOWARDS A CLASSIFICATION 40

Most black-box adaptation techniques use some form of wrapping for the adaptation
of the component. This is due to the fact that only the interfaces provided by the
component are available and that, if one ignores binary adaptation techniques, the
component’s implementation cannot be modified by the adaptation technique.

Gray-box and white-box adaptation are typically chosen by adaptation techniques
that deal with the vertical composition or the separation of concerns. This is due
to the fact that the different concerns are relatively small compared to the size of
a component and encapsulating each concern into a different class would lead to a
prohibitively expensive system.

Gray-box adaptation is used by generic programming as provided by the C++ pro-
gramming language [Str97]. C+-+ templates provide the component’s source code to
the compiler as well as the type and the template parameters a component can be
parameterized with. This allows the compiler to instantiate different versions of the
component and optimize its performance. A somewhat similar approach is taken by
generative programming, where the different concerns are implemented by different
modules. These modules are composed by a generator which knows the different con-
figurations possible. Although these adaptation techniques require availability of the
source code, the developer does not have to deal with it. The source code is only neces-
sary for the compiler or generator to be able to understand and compose the individual
modules.

While the adaptation of black-box and gray-box adaptation techniques is transpar-
ent to the developer, the adaptation of white-box adaptation techniques is not. Hence,
white-box adaptation has also been described as open implementation by [Kic96]. An
adaptation technique that is based on white-box adaptation is AspectJ, an aspect-
oriented programming language. White-box adaptation techniques unfortunately have
some weaknesses that still need to be resolved.

For the integration of an aspect, the programmer needs to be familiar with the
implementation of the component itself. AspectJ describes where a given aspect has
to be woven into a core application by specifying the method calls where the aspect
needs to be woven in. Thus, AspectJ provides a white-box adaptation technique where
knowledge about the component’s implementation is crucial.

When a component is being enhanced, however, it is likely that its internal structure
will change and that the invocation of methods that an aspect relies on will be moved
or changed. This is typically done either by renaming a method, by splitting the
functionality provided by a single method into two different methods, or by adding
more functionality to an existing method. Depending on how an aspect has been
defined, it is possible that the point-cuts defined in AspectJ no longer apply and thus
the aspect might only be woven partially into the enhanced component. Since AspectJ
is a relatively new programming language, more research is necessary to identify how
an aspect should be defined and how the compiler can identify whether an aspect can
be applied cleanly to a newer version of the core program.

CHAPTER 4. TOWARDS A CLASSIFICATION 41

4.3 Application Domain

Not every adaptation technique can be applied to every component model since most
techniques assume a specific granularity of components. Server-side component models
such as the CORBA Component Model or the Enterprise JavaBean component model
focus on large-grained application-oriented components. These component models only
specify the interfaces that a component implements. This is due to the fact that the
same instance of a server-side component can be used by many clients at the same time,
which requires the component to provide a stable interface. Thus, these components
can only be composed using black-box adaptation techniques, even though white- and
gray-box techniques can be used for the development of a family of such components.

On the other hand, desktop component models exist in both black-box and white-
box form, so that, depending on the component model, gray- and white-box adaptation
techniques such as AspectJ, COMPOST, or C+-+ templates can be used. Additionally,
unlike for server-side components, the implementation of desktop components may be
changed. This is due to the fact that the instance of a modified component will only
be used locally by other components within the same application.

4.4 Adaptation Time

Depending on the technique used, the adaptation of components can be performed dur-
ing different phases of the product development process. We can differentiate between
the following times of adaptation:

Design time: The adaptation of the component is manifested as part of the system’s
design. This is the case for wrapping or generative programming, for instance.
Wrappers have to be taken care of during the design of the system and gen-
erative programming generates the required components from the requirements
specification [BCRWO00].

Compile time: The adaptation of the component takes place during the compilation
of the component. This is typically the case for aspect-oriented programming
where the aspects are woven in by a special compiler or by performance optimiza-
tion techniques that analyze the components used by the application.

Run time: The adaptation occurs during the component’s execution. This is the
case, for instance, for configuration languages and type-based adaptation. The
configuration code specified by a configuration language is typically loaded into a
component during its run-time. In the case of type-based adaptation, the adap-
tation is performed when the client requests another component from a naming
or trading service whose type was not known during design time or compile time.

CHAPTER 4. TOWARDS A CLASSIFICATION 42

4.5 Degree of Automation

Almost all of the adaptation techniques presented in Chapter 3 require the programmer
to perform the adaptation manually by specifying how the component has to be trans-
formed. Although tools such as SWIG automate the generation of language bindings
for scripting languages, the script code still has to be implemented by hand.

With the current state of the art in computer science, automated composition is
only possible if the semantics of two components does not have to be understood by the
computer. Hence, the computer does not have to decide on the basis of the interface
or implementation of the components alone whether and how two components can be
composed. Additionally, automated adaptation can only be used in combination with
black-box and gray-box adaptation techniques. It cannot be used in combination with
white-box adaptation techniques since they require knowledge by the developer, which
stands in contradiction to the requirement for an automated adaptation process.

Generic programming is an adaptation technique that takes the above limitations
into account and supports the automated adaptation for vertical composition. Knowl-
edge of the different configurations is encapsulated in the generator [BCRWO00].

Type-based adaptation, on the other hand, is the first adaptation technique that
supports automated adaptation for horizontal composition while taking today’s limi-
tations into account. The idea is to provide a repository of reusable adapters and an
algorithm that chooses the best adapter. The adapter repository stores the adapters
together with the required meta-information to provide for efficient selection of the
adapters required. This allows the adaptation process to be reduced to the selection of
appropriate adapters, which in turn is a simple graph problem of finding the best path.

4.6 Summary

Table 4.1 gives a brief classification of the various adaptation techniques and their
characteristics. On the basis of this table we can determine that all the horizontal
composition techniques are based on black-box adaptation. This is due to the fact
that component implementation and component composition occur at different design
stages and that the component integrator should not have to deal with the component’s
implementation. Performance optimization techniques, on the other hand, are based on
gray-box adaptation since they typically require the availability of the system’s source
code.

The second column of the table shows that only black-box adaptation techniques
can be used in combination with server-side components. This is due to the fact that
a server-side component must not be modified after it has been instantiated, since it
might be accessed by other clients. Only during the design and the implementation of
such a component can gray- and white-box adaptation techniques be used.

CHAPTER 4. TOWARDS A CLASSIFICATION 43
Adaptation Objective App. Adaptation Adaptation | Automated
technique of Adapt. | Domain time Transparency
Scripting composition | both design time black no
Language
Composition composition | both design time black no
Language
Software Bus composition | both run time black no
Type Based composition | both design time black supported
Adaptation & run time
Wrapping composition | both design time black no

& SOC*
Configuration SOC both run time black no
Languages
Macros SOC desktop | compile time white no
Generic SOC desktop | design time gray no
Programming
Generative SOC desktop | design time gray supported
Programming
AOP SOC desktop | compile time gray & no

white

COMPOST perf.-opt. | desktop | compile time gray yes
Simplicissimus perf.-opt. | desktop | compile time gray yes

2SO C=Separation of Concerns

Table 4.1: Classification of Adaptation Techniques

CHAPTER 4. TOWARDS A CLASSIFICATION 44

Additionally, we can see that almost all white- or gray-box adaptation techniques
are applied when the application is compiled. Generative programming is the only
exception to this. Generative programming generates a component based on its re-
quirements specification. Since a generator could also be viewed as a special compiler
operating on the component’s specification, we could also have said that the adaptation
occurs during the component’s compile time. Design time, however, is more appropri-
ate in this case, since the requirements specification is, unlike source code, part of the
component’s design time.

Finally, the classification shows that automated composition is not possible for
white-box adaptation techniques. As we explained previously, white-box adaptation
and automated composition are contradicting terms. Automated adaptation requires
the adaptation to be performed automatically, hence without requiring any knowledge
from the user. On the other hand an adaptation technique is defined as a white-
box technique if it requires the developer to have knowledge about the component’s
implementation.

Chapter 5

Type-Based Adaptation

Most component models such as the CORBA Component Model (CCM) [OMG99a,
OMG99b, OMG99c¢|, the JavaBeans component model [Ham97|, the Enterprise Jav-
aBeans (EJB) component model [MH00, DYKO01|, COM [EE98|, or .NET, rely on
black-box components with well-defined and publicly available interfaces. Depending
on the developer’s knowledge of these interfaces, the components can be composed to
interact with each other. In a dynamic distributed system |Grii00| such as the Internet,
one component might request, for example, a weather service from a naming or trading
service. If the two components have not been designed to interact with each other,
there is currently no means for them to do so.

In this chapter, we show how this problem can be addressed using type-based adap-
tation. Type-based adaptation builds on the type that a component provides and the
type that it ezpects from another component. The type of a component is provided by
all the component models we have presented so far and we will show how to extract the
type expected by a component in Sections 5.4 and 5.5. Since a type defines a contract
that has to be fulfilled by the component and its clients [Mey92|, it is sufficient to
have the component’s type information plus a repository of adapters specifying how
the individual types need to be translated.

Type-based adaptation does not rely on any additional description of the semantics
of the component as could be provided by semantic description frameworks such as the
DARPA Agent Markup Language (DAML) [DAMO02]. Semantic description frameworks
are not yet readily available and rely heavily on standardization, as we will explain in
Section 5.2.

5.1 Fundamentals

Programming languages use types for different purposes: to help programmers identify
programming errors in an early stage of the software development cycle, to classify
an instance of an object, to describe its characteristics and its possible uses, and oth-

45

CHAPTER 5. TYPE-BASED ADAPTATION 46

Reflexiveness:
'-A
FA< A
Transitivity:
''rA<:B T'B<:C
r'HFA<:C
Subsumption:

'ra:A THA<: B
I'a:B

Figure 5.1: Basic Subtyping Rules

ers. Many programming languages distinguish between built-in types, classes, and
interfaces [Weg90|. Similar to programming languages, almost all component models
available today use types to distinguish the functionality provided by different compo-
nents. Hence, we present the necessary type theory before presenting the adaptation
model underlying type-based adaptation

On the set of available types, we can define the subtype relation (<:) such that
A <: B denotes A as a subtype of B. The subtype relation indicates that any variable
of type A can be viewed as type B if A <: B (subsumption). The subtype relation
is reflexive, antisymmetric, and transitive [AC96]. These basic rules of subtyping are
shown in Figure 5.1 for the environment I' that consists of typing assumptions for
variables, each of the form v : T.

A function type F' with input parameters of the types P; with 1 < ¢ < k and output
parameters of the types (); with 1 < j <[can be written as follows:

F:=P XPyx- -+ xXP,—Q1xXQyXx--XQ,

Now we can define the subtyping rule for function types. By subsumption we can
pass input parameters of type P/ with 1 < ¢ < k and P/ <: P, and output parameters
of type Q! with 1 < j <[l and Q; <: Q) to a function of type F. A function type F'is a
subtype of F" (F' <: F") if F" can be substituted with F'. This is the case if a function
of type F' accepts for each input parameter a superset and for each output parameter
a subset of the set of types accepted by F”.

" . I 1/ I " " "
F':=P' xP)x:---xP, = Q] XxQy x---XxXQ

Hence, F' has to accept input parameters of type P/ (with P; <: P!) and output

7)

parameters of type @} (with Q) <: @);). We can observe that the input parameters are

CHAPTER 5. TYPE-BASED ADAPTATION 47

r-A<:A I'B<: B
II'FAx B<: A x B

THP"<:P TFQ<:Q"
THP—Q<:P"— Q"

Figure 5.2: Subtyping Rule for Functions

contravariant (P <: P;) and that the output parameters are covariant (Q; <: Q).
Parameters that are both input and output parameters (i.e., they occur on both sides
of the function) are invariant. The subtyping rule for function types simplified on the
basis of the subtyping rule for tuple types (x) is shown in Figure 5.2.

On the basis of the above definitions, we can define an object as a set of attributes
identified by a label /; and having type 7; with 1 < 7 < n. An object type can be
written as follows:

O:={l;:T;} ie{l,...,n}

The subtype relationship between two objects specifies that an object O having a
superset of the attributes of an object O’ is a subtype of O’ (O <: O'). According
to the subtype relationship defined for function types, the attributes [; in O may be
replaced with subtypes if constants are represented as () — 7" and variables as T — T.
Again, input parameter types are contravariant, constants and output parameter types
are covariant, and variables are invariant. For instance, O is a subtype of the following
objects O" and O":

O :={l;: T;} withie{l,...,n—m}

O":={l; : T} with T; <: T/ and i € {1,3,5,...,n}

Analogously to object types, we can define an interface type I with the difference
that the individual attributes 7; are restricted to function types. Additionally, these
function types must have a parameter of type I that is both an input and output param-
eter. The subtyping rule of Figure 5.3 also applies to interface types and combination
of interface and object types.

Finally, by extending the environment I" with the definition for the subtype relation
(<:) such that T',u <: v F u <: v we can define the subtype relationship for recursive
types. This allows us to use type-based adaptation on recursive types, as used, for
instance, by a linked list.

Nu<:vFET<:S weFV(S,T) veFV(T,T)
I puT < po.S

CHAPTER 5. TYPE-BASED ADAPTATION 48

DFT,<:T! YieJ JCI
CEA{l TPl < {l; - T/ }iET

Figure 5.3: Subtyping Rule for Object and Interface Types

So far, we have only considered structural equivalence between types. In typical
object-oriented programming languages as used by today’s component models, a type
is also identified by a name such that for two types to be equal not only their structure
but also their names have to be equal. Now we can define the type of a component as
a collection of interface or object types and an implementation thereof. A component
C provides a set of interfaces I; such that C' <: I;. In the case of a desktop component
model a component C' may also be of an object type O.

Therefore, a component has a given type and is bound to the contract [Mey92]|
defined by the types it implements. Using the rule of subsumption we can identify that
a subtype of a component has to fulfill the same requirements as its supertype. This
rule leads to the Liskov substitution principle [LW93, LW94| that states that a program
accepting a type 1 has to exhibit the same behavior when operating on a type 7" being
a subtype of T'.

5.2 Adaptation Model

In all the component models we have discussed, the functionality provided by a com-
ponent is specified using a type or a set of types that is implement by one or more
programming artifacts. For type-based adaptation, only the type information about a
component is of importance. The mapping information from one type to another has
to be carried out by a human capable of understanding the different types that need to
be mapped. A human has to decide whether two types may and can be translated into
each other, and, if so, to specify their translation. Only the presence of this information
makes automatic adaptation possible.

To provide the mapping information, type-based adaptation uses adapters. These
adapters algorithmically describe how to translate different types into each other. The
adapters can be written in a typical programming language such as C+-+ or Java. De-
pending on the application domain, the types that an adapter translates vary. In the
case of server-side components, the interfaces provided and expected by the compo-
nents are the only type information required. In the case of an IDE the adapters may
also operate on a per-method level, specifying how a given method has to be mapped
into another method. These adapters also have to take the mapping of the method’s
parameter types into account. For a detailed discussion of type-based adaptation for

CHAPTER 5. TYPE-BASED ADAPTATION 49

server-side and desktop component models, please refer to Sections 5.4 and 5.5. An
adapter a that maps a type T,qn into a type Tj, can be written as follows:

a: Tfrom - T:‘,o

An adapter can be implemented either by simulation or by type conversion. If the
adapter a simulates T}, based on Tfyopm, then the source component (or client) interacts
with the adapter a providing 7}, and the adapter in turn interacts with the target
component providing T't,,,. Hence, the adapter is active as long as the client interacts
with the target component.

Alternatively, the adapter may convert the data provided by the target component
providing 7', into a translated component providing 7;,. In this case the adapter
performs the conversion when the source component initiates the interaction with the
target component, and afterwards the source component (or client) interacts directly
with the conversion.

An important aspect of type-based adaptation is that the adapters are stored in
a repository with some meta-information about the adapters, such as the types they
translate. On the basis of the adapter’s meta-information it is possible to retrieve an
adapter that maps one type into another type. Additionally, adapters can be concate-
nated (chained) on the basis of their meta-description stored in the repository. Using
subsumption we can define the concatenation operator (o) between different adapters
as follows:

U'ka:Tiom > T I‘I—b:T]’cmm>7¥o FI—TtO<:TJ’cmm
L'Eaob: Trom > T,

Our approach can be seen as an extension of the adapter pattern [GHIJV95, MSLO00|.
The difference, however, is that the adapters are first-class objects described on their
own and that there is an adapter repository which has full knowledge about the adapters
available and the transformations they describe. The repository stores such informa-
tion as the interfaces that the adapters translate, and optionally their performance
characteristics or whether the quality of the the information provided by a component
deteriorates in translation from, for example, a gif-image to a jpeg-image. On the
basis of this information the adaptation process can be automated.

In fact, code that needs to be written for these adapters already exists in many
of today’s software systems in the form of wrappers or in the form of subclasses, the
basic form of wrapping. Unfortunately, in such code, the adapter is part of a bigger
component and thus cannot exist on its own, especially when subclassing is being used.
To be used in combination with the adapter repository, such code has to be factored
out into a separate class, the adapter. Afterwards, it can be used in combination with
the adapter repository and thus can be reused in other systems where similar interface
transformations are necessary.

CHAPTER 5. TYPE-BASED ADAPTATION 50

Adapter Repository
A B i c
AOL Credit Card Flooz
Addressbook Payment Payment
D MSN E Yahoo F Foo
Addressbook Addressbook Clearing House

Figure 5.4: A Sample Adapter Repository

As shown by the sample adapter repository in Figure 5.4, an adapter repos-
itory forms a directed graph G where the interfaces are represented by the ver-
tices (V(G) = {A,B,C,D,E,F}) and the adapters by the edges (E(G) =
{AD,DA, AE, EA, BC, FC}) between the interfaces they can translate. If a required
adapter is missing, adapters can be combined. For instance, the missing adapter DFE
can be provided using DA o AE. To find a suitable combination of adapters a simple
shortest path algorithm is sufficient. Additionally, the algorithm can be tuned to pre-
fer adapters having specific characteristics by applying different weights to each edge
(adapter). For instance, if the user will not accept any deterioration of quality during
the adaptation, the weight of adapters that lead to deterioration can be set to co.

A different approach to the adaptation problem is the use of a semantic descrip-
tion framework that supports the description of the interfaces, its methods and data
structures using a common ontology. Such an approach might be implemented using
DAML [DAMO02]. We claim, however, that this approach only adds another level of
indirection since no commonly accepted ontology for the semantic description exists.
Different ontologies will be unavoidable since companies are unwilling to release any
information about their products in their early development states. Such information
would be crucial for the standardization of a common ontology.

5.3 Requirements

The requirements of type-based adaptation depend heavily on the application domain
it is applied to. For distributed systems such as a distributed object system or the
world-wide Web it has to be designed differently than for a development environment.
This is due to the difference in the granularity (method vs. interface level) of the
systems’ object models.

CHAPTER 5. TYPE-BASED ADAPTATION 51

In any case an implementation will consist of the following parts:

1. An Adapter Description defining the adapter’s properties and characteristics.
2. A Package Format that comprises an adapter and its description.
3. An Adapter Repository storing the adapters.

4. An Adaptation Component finding an optimal translation chain of adapters.

5.3.1 Adapter Description

The description of an adapter has to specify the interface that the adapter translates
from and the interface that it maps to. The description should be able to supply
additional information about the adapter such as the performance complexity or other
properties.

This description can be maintained by the adapter class itself and accessed using
introspection as employed by the JavaBeans component model [Ham97|. Alternatively,
the description can be stored externally using a configuration file. The adapter reposi-
tory should support both choices since this keeps the adapters simple and enables the
repository to be ported to other application domains easily where the use of introspec-
tion might not be possible. For the configuration file, XML [BPSM98, Har01] can be
used. XML has the advantage that existing tools can be used to parse the adapter spec-
ification. Only a document type definition [BPSM98| or XML Schema that describes
the syntax of the adapter’s specification has to be provided.

A sample adapter description is shown in Figure 5.5. The SampleAdapter
converts from a fictitious com.yahoo.AddressDatabase interface to a fictitious
com.amazon.AddressBook interface. The specification also indicates that the adapter’s
implementation is provided by the at.ac.tuwien.infosys.tba.SampleAdapter class
and that the transformation will not result in the loss of any information provided by
the original component. Thus, when the adapter is applied, some information about
an address might be lost.

5.3.2 Packaging

To simplify the adapter’s installation and transfer to another site, all the class and
resource files required for the adapter should be put into a single archive. In general, we
recommend using a format similar to the format already exploited by one of the existing
component models. For instance, an implementation that is based on Java should use
a jar-archive for its implementation. In the case of the CORBA Component Model a
zip-file containing the adapters and their specification files should be preferred.

O ~J O U = W N +—

el e e e e el
© 00 1O Ul W N — O ©

CHAPTER 5. TYPE-BASED ADAPTATION 52

<?xml version="1.0"7>
<!DOCTYPE adapter-description PUBLIC
"http://www.infosys.tuwien.ac.at/Staff/tom/babelfish.dtd">
<adapter name="SampleAdapter'>
<mapsfrom>
<interface>com.yahoo.AddressDatabase</interface>
</mapsfrom>
<mapsto>
<interface>com.amazon.AddressBook</interface>
</mapsto>

<implementation type='"classname">
at.ac.tuwien.infosys.tba.SampleAdapter
</implementation>

<lossless>false</lossless>
</adapter>

Figure 5.5: Adapter Working on the Interface Level

5.3.3 The Adapter Repository

The adapter repository is responsible for storing all the available adapters and their
meta-information. The more adapters are stored within the repository, the more power-
ful type-based adaptation is. The adapter repository itself is straightforward since any
data structure that can store a graph with parallel edges (multiple edges connecting the
same two nodes) is sufficient. Since the graph will consist of a large number of blocks
(independent components within the graph) of semantically equivalent interfaces, an
adjacency list that stores all the out-edges for a given vertex v should be used.

5.3.4 The Adaptation Component

Whenever it is necessary to perform an adaptation the adaptation component can be
queried for an adapter or a combination thereof to perform the required translation.
Hence, the adaptation component has to provide lookup methods as shown in Table 5.1
that can be used by the client component or component infrastructure whenever a
component needs to be adapted. The first method returns an already instantiated chain
of adapters and the second method returns an Adapter object describing a combination
of adapters. The Adapter object provides methods that can wrap a service with the
according adapter.

CHAPTER 5. TYPE-BASED ADAPTATION 53

Object getAdapter(Object from, Class type_to)
Instantiates an adapter that provides the interface type_to to the
client and interacts with the service represented by from. The object
returned is the adapted object.

Adapter getAdapter(Class from, Class type_to)
This method looks up an adapter or combination of adapters that
provide the interface type_to to its clients and interacts with a
service providing interface from. The object returned is a factory
that can be used to create instances of the adapter.

Table 5.1: Methods Provided by the Adaptation Component

If the lookup of the required adapter is performed transparently by the component
infrastructure, it gives the user the impression of having automatic composition at
hand. Only if no adapter or chain thereof exists must the developer provide a new
adapter for the composition to succeed. After the adapter has been provided, it can be
added to the adapter repository and made available to other users of the adaptation
component.

For the lookup of the adapters in the repository, Dijkstra’s shortest path algorithm
is the best one currently available. Dijkstra’s algorithm has a complexity of O(|E(G)|)
which typically is much smaller than O(]V(G)[?) [BH89| with E(G) denoting the set
of edges and V(G) the set of vertices of the graph G.

5.4 Requirements for Server-Side Component Models

In this section we present the requirements of type-based adaptation for server-side
components that have not already been presented in Section 5.3. For server-side compo-
nent models such as the CORBA component model (CCM) or the Enterprise JavaBeans
component model (EJB), the type of a component is represented by the interfaces it
implements. This is due to their RPC interaction style using stubs for the communi-
cation with server-side components. Thus, the implementation of an adapter A that
translates from interface I,y to an interface Iy, is straightforward.

In a distributed system as used for server-side components, the components are
distributed over multiple computers, each implementing a different service as shown in
Figure 5.6(a). Typically, when one component needs a service from another it queries
a name server or trader for the service using a well known identifier. The naming
service returns a reference which the client casts to a specific interface as shown in

CHAPTER 5. TYPE-BASED ADAPTATION o4

Figure 5.7. Now the client can interact with the service returned by the naming service.
If the service requested by a client does not match the interface expected by the client,
however, an exception will be thrown and the client will be unable to communicate
with the service.

One approach to solve this problem is to implement a proxy service as shown in
Figure 5.6(b). In state-of-the-art distributed systems, however, such a proxy server
cannot be operated transparently since the proxy ps has to register using a different
identifier. If ps were to register using the identifier of s, all other clients that expected
the native interface of s would fail or have to be changed. Additionally, each proxy
server incurs an additional network delay. Hence, this solution is expensive, especially
if multiple translation servers are necessary.

In a distributed object system, the client’s source code looks as depicted in Fig-
ure 5.7. On this basis we can ascertain that the narrow operation (a system-independent
cast operation) is a perfect choice for the integration of type-based adaptation. At this
point of execution the interface provided by the server is available as part of the ob-
ject reference and the interface expected by the client is passed as an argument to the
narrow operation. Additionally, it allows us to plug type-based adaptation into an
existing system transparently by upgrading the middleware layer only.

5.4.1 Trading Services

Trading services allow clients to look up a service on the basis of certain properties
or just the interface it provides. For instance, a tourist office might request any
component that implements the at.ac.tuwien.Weather interface to display weather
information on its Web site. If the trading service supports type-based adaptation,
it is possible to return a different component as long as it can be translated into
at.ac.tuwien.Weather. This is especially of interest if no component implementing
the interface required by the client is registered at the trading service and the client is
interested in any component providing the service rather than in a specifc component.
Hence, clients can benefit from a trading service that is aware of type-based adaptation.

The trading service needs to be able to infer whether a service implementing a
different interface can be transformed to the interface requested by the client. To allow
this functionality, a trading service should provide methods similar to those presented
in Table 5.2 in addition to those it already provides. If the trading service implements
a query language that includes support for the selection of a specific interface, that
query language should be extended accordingly.

5.4.2 Adapter Location and Usage

Both clients and trading services should be aware of type-based adaptation. A straight-
forward approach would be to locate an adaptation component and repository at each

© 00~ & Ot = W N~

10

CHAPTER 5. TYPE-BASED ADAPTATION 55

1.register(s—ident,s—addr)
Trader Server s

2.lookup(s—ident) Ause s

Client

(a) Standard Access to a Service

Server s

1.register(s-ident,s—ad

2.register(ps—ident,ps—addr)
Trader ProxyServer
3.lookup(s—ident)

4.lookup(ps—ident) 5.use ps

Client

(b) Access of a Server via a Proxy Server

Figure 5.6: Accessing a Service in a Distributed Component System

try {
Context ctx=getInitialContext();
Object dobj=ctx.lookup("CookieServer");
DemoHome ch=(CookieHome)
PortableRemoteObject.narrow(dobj,CookieHome.class);
Cookie c=ch.create();
System.out.println(c.getCookie());
} catch(Exception e) {
e.printStackTrace();

Figure 5.7: Typical Client Code in a Distributed Component System

CHAPTER 5. TYPE-BASED ADAPTATION 56

Reference lookup(Class type_to)
Looks up a service that provides the interface type_to to its clients
or can be translated to that interface.

Reference lookup(Ident ident, Class type_to)
Looks up a service identified by ident and provides the correspond-
ing adapter converting the interface to the interface denoted by
type_to, if possible.

Table 5.2: Methods provided by the Trading Service

site. While placing an adaptation component at each site is possible, using different
isolated repositories poses a problem since much of the power of type-based adaptation
would be lost. Thus it is necessary to provide a centralized adapter repository or to
link the adapter repositories to each other.

For systems that are based on Java and thus simulate a homogeneous environment,
mobile code can be used and the necessary adapters can be downloaded from a special
repository either by the client or by the server. A similar approach for the use of
mobile code is taken by Jini [Sun99b|. Jini does not, however, focus on the adaptation
of interfaces but on shielding the wire protocol from the service’s clients. The client
requests, for instance, a proxy for a printer implementing the printer service and uses
Java method calls to interact with the proxy which in turn talks to the printer using a
proprietary protocol.

Another difference to the non-distributed application scenario is that each compo-
nent might be available for a different architecture, thus resembling a heterogenous
system and complicating the adaptation problem. This problem can be resolved using
one of the following approaches (the exact choice depends on the final implementation):

1. Distribute fat binaries that include the code for each architecture.
2. Distribute the adapters in source form and compile them on the target platform.

3. Use an interpreter or virtual machine for the execution of the adapters.

5.4.3 Security Considerations

Since type-based adaptation unfolds its maximum flexibility if the adapters can be
exchanged between the participants, security becomes a major concern. This can be
solved by executing the adapters within a safe sandbox environment. The Java Virtual
Machine [LY99], for instance, can provide a perfectly safe sandbox environment that

CHAPTER 5. TYPE-BASED ADAPTATION 57

does not allow the downloaded code to execute arbitrary instructions. Fortunately,
much work exists in the context of Java and Mobile Agents [Gon98, Gon99, BDS00,
HKKO00] that can be reused for an implementation of type-based adaptation.

Additionally, it has to be determined where the adapters should be executed and
hence whose computing resources should be used. We recommend the adapters to be
executed by the party that wants the components to interact with each other. Typically,
this is the client requesting a service. This places the control of the adaptation process
as well as the security risks with the party benefiting from the composition. Thus,
service providers do not suffer any disadvantage.

5.5 Requirements for Desktop Component Models

Although the principle of type-based adaptation remains the same for Desktop Com-
ponent Models and IDEs, there are some fundamental differences. Mobile code, for
instance, is of lesser importance for a development environment than for a distributed
system because all the components are available locally. Also, security is of little con-
cern for desktop component models since the adapter repository is developed locally
or adapters are bought like other software components, with the same guidelines for
components as for adapters.

5.5.1 Granularity of Adaptation

A key difference to server-side component models is the different type system provided
by desktop component models. Since all well-known server-side component models are
based on RPC, RMI [Sun99a], or a variant thereof, the interfaces they implement are
the only type information available. This is because of their interaction style that uses
stubs for the communication with server-side components.

Classes

Desktop Component Models, however, have a more complicated type system since their
types can be interfaces, classes, or even built-in types. Hence, an adapter A should not
only be able to translate from an interface I,,,, to an interface I;, but instead from any
type Tyrom to any type T, where T may also be type tied to an implementation such as
a class. Depending on whether the adapter adapts a component to provide the type
of another component or whether the adapter converts the information provided by a
specific component, different challenges arise.

If an adapter adapts a component to provide the type of another component, the
interface [, cannot be replaced by a type T}, tied to an implementation. This is due to
the fact that an adapter can only provide such a type by subclassing the original class
providing T},, hence requiring the availability of T;,. If T;, were available, however,

CHAPTER 5. TYPE-BASED ADAPTATION 58

T}, could be used directly. Additionally, 7T}, must not be a built-in type since a user-
defined class cannot provide the same functionality as a built-in type. This is due to the
fact that in most programming languages it is not possible to subclass a built-in type.
These limitations only arise for T}, and not for T't,op, since T'tyqp, is the component that
is available and whose interface does not have to be emulated. If the purpose of the
adapter is to convert the information provided by a component, both Iy, and I;, may
be of any type.

Methods

While server-side component models are composed on the basis of the interfaces they
exhibit, this is rarely the case for desktop component models. In a typical IDE, events
are mapped onto method calls. In the case of the JavaBean component model, for in-
stance, the listener methods of similar events such as mouse-related events are grouped
into an event set and the signatures of the methods responding to these events (listener
methods) are specified by a listener interface (Figure 5.8).

(;jégHEEﬁi}g, public cl ass FooAdapter

i mpl ements FoolLi stener {
Target t;
public void setTarget(Target t) {
this.t=t;

}

public void _event Handl er (FooEvent argl) {

t. doSonet bifig(ar gl) ; Target
g et

L Listener method
— Target method

Figure 5.8: Adaptation on Method Basis

If a component b has to execute an action whenever an event occurs in a component
a, then b has to implement the whole listener interface, or the IDE has to generate an
adapter class implementing the listener interface and calling the target method. Since
we cannot generally assume that a component b has been written with another com-
ponent a in mind, typically the latter will be the case. When this happens, however,
the IDE is limited to the generation of an adapter calling a method m that is type-
compatible with the listener method [defined in the listener interface such that m <: I.
Hence, the target method has to have the same number of parameters and each param-
eter of the target method has to be a supertype of the appropriate listener method’s
parameter. Other alternatives are the invocation of methods having no parameter at
all, or letting the programmer supply the relevant adapter.

CHAPTER 5. TYPE-BASED ADAPTATION 59

If we want to simplify the above using type-based adaptation, the adapters have
to operate on a per-method granularity as well, hence influencing the description and
implementation of the adapters.

5.5.2 The Adaptation Component

The adaptation component needs to provide the same functionality as the adaptation
component in a distributed component system but has to be able to operate on method
signatures as well. Hence, in addition to the methods shown in Table 5.1, it has
to provide another set of these methods operating on a per-method level. Since the
components are available to the IDE and are composed by the IDE, the adaptation
component should obviously be an integral part of the IDE.

Another difference because of the per-method granularity is that there will be many
different matches of possible adapters. The adaptation component should therefore be
able to describe the individual chains of adapters and allow the programmer to choose
an appropriate adapter from the different possibilities. Depending on whether all the
different adapter chains or just the n shortest adapter chains should be computed,
Dijkstra’s algorithm needs to be extended to keep track of alternative paths.

5.5.3 Adapter Description

Since IDEs offer a much finer granularity of composition and allow the user to specify
the interaction between components on an event/method level, the adapter description
presented in Section 5.3.1 needs to be extended. The extended adapter description
shown in Figure 5.9 also supports the specification of the method signatures expected
and provided by an adapter.

Additionally, the implementation of the adapter should be specified differently.
While it is possible to use a class for the adapter’s implementation, it barely makes
sense because the IDE has to generate an adapter implementing the listener interface
of the component generating the event in any case. Since the listener interface is only
seldom known during the adapter’s implementation, it cannot be specified as part of
the adapter. Thus, the adapter’s source code should be part of the adapter’s XML
description.

5.5.4 Performance Considerations

Though performance is of lesser importance with today’s computers, it should not be
ignored entirely. The communication between desktop components is much cheaper
than the communication between server-side components because desktop components
are typically executed within the same process. This leads to a tighter coupling between
desktop components, hence making it more important to optimize their composition,
especially if multiple adapters need to be chained.

CHAPTER 5. TYPE-BASED ADAPTATION

<?xml version="1.0"7>

<!DOCTYPE adapter-description PUBLIC
"http://www.infosys.tuwien.ac.at/Staff/tom/babelfish.dtd">

<adapter name="PaintAdapter">
<mapsfrom>
<returns>void</returns>
<arguments>
<arg>java.awt.events.MouseEvent</arg>
</arguments>
<exceptions/>
</mapsfrom>
<mapsto>
<returns>void</returns>
<arguments>
<arg>java.awt.Point</arg>
</arguments>
<exceptions/>
</mapsto>

<implementation type="code'">
// ... source code of the adapter ...
</code>

<lossless>false</lossless>

<behavior>false</behavior>

<sender-state>none</sender-state>

<editor>at.ac.tuwien.infosys.tba.PaintAdapterEditor</editor>

<description>
This adapter provides a method taking a mouse event, extracts the
mouse cursor’s current position as a point, and executes a method
taking a point as argument.

</description>

</adapter>

Figure 5.9: Adapter Working on the Signature Level

60

CHAPTER 5. TYPE-BASED ADAPTATION 61

Fortunately, several techniques exist that can be reused for type-based adaptation.
If several adapters need to be chained, the method invocations of the adapters may
be inlined. This instructs the compiler to merge a large number of method calls into
a single one and thus significantly lowers the performance penalty. Alternatively, if
many arguments are constant, which is typically the case for computer generated code,
partial evaluation [DGT96| can be used to simplify the adapters. Partial evaluation
can help to eliminate a considerable number of redundant computations. The exact
optimization techniques to be used, however, will depend on the final implementation.

Chapter 6

Evaluation

We performed a set of experiments to evaluate the applicability and feasibility of type-
based adaptation for different application domains. In the first experiment, we added
support for type-based adaptation to a server-side component model and implemented a,
set, of server-side components. In the second one, we added type-based adaptation to the
Component Workbench (CWB) [Obe01, Obe02], an extensible integrated development
environment developed at the Technische Universitdt Wien. In the third system, type-
based adaptation was implemented for agent systems. Before presenting the individual
systems, however, we will present the relevant application domain without support
for type-based adaptation. This allows us to explain more clearly the benefits of using
type-based adaptation and how to add this support to the different application domains.

6.1 Server-Side Component Models and Web Services

Typically, server-side components are used as the back-end of Web services. The use
case [FS98| in Figure 6.1 shows an Internet Superstore where the User browses and
selects the products available. After the User has selected the products he wishes
to buy, he selects the shipping address from an Address Book Service with which he
manages his addresses. When the User wishes to pay for the products, the payment is
performed via a Payment Component that charges the User’s account.

Almost all of today’s Internet stores have an internal address book service. This
is inconvenient, however, because the User has to manage a different address book for
each store he wishes to buy goods from. He would prefer to use an external address
book service to manage his addresses and simply instruct the Internet Superstore (or
any other Web site using an Address Book Service) to use the address book provided
by that service.

As long as the Address Book Service implements exactly the interface expected by
the Internet Superstore, this is possible today. If not, the components are unable to
interact and the benefits of the above approach are lost. With multiple service providers

62

CHAPTER 6. EVALUATION 63

Internet Super—Store

i @ <<actor>>

- ~

User <<include>> - - S _<<include>>

/ AN

|
|
|
Product : Address <<actor>>
Selection | Selection Address Book Service
|
|
|

<<include>>

!
<<actor>>
Payment i
@ Clearing House

Figure 6.1: Internet Shopping Application

it is unlikely that they all will implement the same interface. This is where type-based
adaptation comes in. Type-based adaptation allows for the transparent and automatic
adaptation of the interface of one service (e.g., the Address Book service) to match
the interface required by another (e.g., the Internet Superstore). To verify these claims
we implemented our own address book component and tried to integrate it into two
existing applications.

6.1.1 Address Book Component

We decided to use EJBs for the implementation of the address book compo-
nent [DYKO1]. For the applications to be used in combination with our own address
book component we downloaded and installed the petstore and e-bank Web applications
from Sun Microsystem’s Web site.

Our first step was to add support for type-based adaptation to the EJB com-
ponent model. As explained in Section 5.4 this requires the modification of the
narrow() function. The EJB component model uses the narrow() function of
Java’s javax.rmi.PortableRemoteObject, which supports the delegation of this
function to a delegate class. The delegate class merely has to implement the
javax.rmi.CORBA.PortableRemoteObjectDelegate interface and has to be specified
by the javax.rmi.CORBA.PortableRemoteObjectClass system property. Hence, we
decided to use this mechanism for the integration of the adaptation component.

Secondly, we implemented our own address book component and extended both
the petstore and e-bank applications to allow customers to specify an external address
book component. Instead of having to type in the shipping and mailing addresses
over and over again, the customer specifies once the URL of an external address book
component. Afterwards, the Web application contacts the address book component
specified by the customer instead of the internal one.

CHAPTER 6. EVALUATION 64

Additionally, we implemented a set of adapters to convert between the different
address book components. With type-based adaptation, the interface provided by the
external address book component is adapted to the interface expected internally by the
petstore application and equally to the e-bank application. Then, the application can
present a list of the mailing and shipping addresses to the customer.

In both of the applications above, the adaptation was performed as expected. In
this implementation, however, the adaptation component poses a minor security risk to
the operator of the Web application. Since the Web application looks up the address
book component indicated by the customer and we have implemented the adaptation
component as part of the narrow() function, the adapters are executed by the Web
application.

For security reasons, however, the adapters should be executed by the Web browser.
Otherwise, the customer might be able to inject malicious code if he has access to the
adapter repository. Additionally, executing the adapter within the Web browser allows
the customer to control what addresses are transferred to the Web application and
thus safeguards the customer’s privacy. Since this issue does not directly relate to the
adaptation problem, it will be addressed in future versions of our implementation.

6.1.2 Weather-Service Component

The availability of an automated adaptation facility is also important for services pro-
viding information such as a weather service. For instance, a travel agent may want to
display weather information for the travel destinations it offers. The travel agency does
not care what weather service component it uses as long as it provides information for
one of its travel destinations. Obviously, the travel agency is neither willing nor able
to change its applications whenever a new destination is added that is not covered by
its current weather services or worse after one of these weather services fails.

We therefore implemented a set of different weather services providing access to
weather information along with a set of adapters able to convert between them. Fi-
nally, to see whether type-based adaptation is able to provide a means of transparent
adaptation of the different weather services, we implemented a Web application that
retrieves weather information from a weather component and displays the information
on a Web site.

Our system was able to adapt the different weather components transparently. In
some cases, however, the adapters were unable to provide some information expected
by the client. This is due to the fact that an adapter cannot generate information that
is not provided by the component it adapts. A solution to this problem would be to
allow adapters to contact several different services to collect the required information
such that an adapter can be represented as follows:

a:Ty xTy =T,

CHAPTER 6. EVALUATION 65

6.2 Desktop Component Models

Type-based adaptation can be used not only in combination with server-side compo-
nent models but also in combination with desktop component models as employed by
Integrated Development Environments (IDE). In an IDE, the Developer typically se-
lects the components he wishes to use, configures the components via some property
sheets and defines their interaction by selecting an event that a component can generate
and specifying what has to be done when the event occurs. Usually, the Developer has
to write code to set up the connection (i.e., to allow the component to interact with
another component). Otherwise, the interaction between the components is limited
[Ham97].

m <<actor>>
Application Development
Development Environment
[N

-

Developer e ! AN

-

I N
- |
<<|nclude>> - | <<|nc|ude>> ~ <<|nclude>>

Componen Componen Com osition
Selectlon Conflguratlo p

Figure 6.2: Integrated Development Environment

Type-based adaptation alleviates this problem by allowing the Developer to reuse
connectors that have been written previously. It allows the IDFE to understand the
purpose of the connectors and enables the IDE to present the Developer with a set
of connectors that could be reused for each newly created connection. For instance, a
connector toggling a certain property can be reused in different applications to toggle
a configuration option in a dialog or in a drawing application to indicate whether the
pen is drawing or not.

For the implementation of this experiment, we added type-based adaptation to the
Component Workbench (CWB) [Obe01], an extensible integrated development environ-
ment. This integration shows the benefits from using type-based adaptation in IDEs
as well as the flexibility of the CWB.

6.2.1 The Component Work Bench

During the implementation of the AgentBean Development Kit (see Section 6.3.2), we
realized that a modular component construction toolkit that can be tuned to various
different application domains was still missing. This insight was the motivation for
the implementation of the Component Workbench (CWB) [Obe01, Obe02], a flexible

CHAPTER 6. EVALUATION 66

IDE that supports the composition of various component models such as JavaBeans or
Enterprise JavaBeans. Before we present the integration of type-based adaptation into
the CWB, it is necessary to present the architecture of the CWB itself.

Architecture

Figure 6.3 shows the architecture of the CWB [Obe01]. The CWB uses a set of user
interface modules that interact with a scenario. The scenario represents the current
application to be assembled and in turn interacts with component wrappers. Each
component in the CWB is wrapped using a component wrapper allowing the CWB
to support components of multiple different component models. For each component
instantiated by the developer using the CWB a component wrapper is instantiated. All
the component wrappers implement a generic component model that is internally used
by the CWB. On the basis of this architecture, the CWB even supports the integration
of server-side components.

Component Workbench

Ul-Module 1 Ul-Module 2

e

Ul-Module n

Scenario Connector Factory
l l l l creates l creates
JavaBeans COM EJB
Event Event
Component Component - Component .
Wrapper Wrapper Wrapper Connector Connector

M 1 i i j
{

Component 1

Component 2| aas Component n

Figure 6.3: Connectors of the Component Workbench

The interaction between different components is managed by connectors that are
instantiated by a connector factory when the developer selects two components to
interact with each other. The connector factory supports different types of connectors
in a similar way as the AgentBean Development Kit [Gsc00a]. On the basis of this
design, we were able to integrate type-based adaptation into the CWB without changing
the CWB itself.

CHAPTER 6. EVALUATION 67

Type-Based Adaptation Support

In the CWB, components are composed by means of connectors. Since the CWB
supports different kinds of connectors, we implemented a new kind of connector using
type-based adaptation. To connect two components using type-based adaptation, the
developer only has to select the new kind of connector. Unlike for server-side component
models the adapters may also operate on the following levels:

Interface Level: On this level, type-based adaptation transforms different compo-
nents on the interface level. The implementation does not differ from the imple-
mentation of type-based adaptation for server-side component models.

Method Level: On the method level, adapters operate on method signatures instead
of interfaces. This is important if an event is connected to a specific method of
the target component and not to the target component as a whole.

Argument Level: In this case, adapters are applied to the individual arguments of a
method call. Providing adaptation on this level can be convenient if no adapters
are found on the method level because it allows the developer to generate an
adapter based on lower-level adapters.

Depending on the level on which the adaptation should be performed, the developer
has to select different parts of the components to be connected. On the interface level, it
is necessary to select a source component, a target component, and optionally a source
event set. On the argument level it is necessary to specify a source event and a target
method as well. Additionally, the developer may specify constraints, that have to be
fulfilled by the interaction patterns returned by the adapter repository, independently
of the level on which the adaptation is performed.

On the basis of the developer’s input, the adaptation component is able to com-
pute a set of possible interaction patterns between two components. Since type-based
adaptation operates on a lower level, it is likely that more than a single adapter will
match. To allow the developer to distinguish the different matches, we generate a short
description based on the adapter descriptions for each interaction pattern. After the
developer has selected the desired interaction pattern, the connection wizard displays
a subgraph of the adapter repository and the interaction pattern chosen. A graph
showing the possible interaction patterns between a text field and a SOAP based prime
tester component as well as the one selected by the developer (displayed with stronger
lines) is shown in Figure 6.4.

Since a developer uses the IDE, it might be possible to use more powerful adapters
supporting the specification of behavior in addition to the type-mappings. For an
evaluation of the usefulness of such an extension, however, it is necessary to gain more
experience with this new adaptation technique. Hence, in our current implementation,
this feature can be deactivated.

CHAPTER 6. EVALUATION 68

=| Component Workbeich ==
File Edit Action |
Name | | [JButton|JTextField|JLabel|PrimeTester|abc|

JButtonl All properties -
soap:Spheon]SAOPStatisticsPortTypel Name Value ATLr..
ITextField1 _ ul javax.swing....

UiClassiD TextFieldUl
accessibleC... |javax.swing....
action
actionCom..
actionMap Jjavax.swing....
actions [Ljiavax.swin...
alignmentx 0.5

4| Cnmennenl Conneclion
Connect full Component EventSet 1o single target component

Source Coamponent
avax. swing. [TextField
TextFieldl

Source Eventset
ava awt.event Actionlistener

Target Component
soap:Spheon]SAOPStatisticsPortType
soap:Spheon)SAOPStatisticsPaortTypel

I«

Component JButtenl has been =
Component seap:spheonlSAQPST:
Component 1TextFieldl has be

< Backl || Next = " Finish || ..Cancel

Figure 6.4: Type-Based Adaptation Connection Wizard for the Component Workbench

Sample Applications

For the first application, we used a SOAP prime tester component that we found on
the Internet and implemented our own component that checks whether a given number
is a prime. Additionally, we implemented some adapters that translate between the
two components and some user interface elements such as text-fields and buttons. This
allowed us to compose a small application using the new type-based adaptation con-
nectors (Figure 6.4) without having to type a single line of code. The final application
allows users to enter a number and test whether it is a prime number or not.

Type-based adaptation is also supported on a per-method basis. In this case, the
developer has to select a specific source event instead of a source event set. This com-
bination allowed us to implement a simple drawing application, again without having
to write a line of code. The implementation of the application is based on a set of
standard components and standard adapters. We only had to select the components
and the adapters. All the adaptation necessary between the components was performed
by the adapters found in the adapter repository.

CHAPTER 6. EVALUATION 69

6.3 Mobile Agent Systems

Before describing the experiments we performed in this application domain, we will give
a short introduction to mobile agents and the terminology used. After this introduction,
we will explain how agents can be constructed and how the construction process can
benefit from type-based adaptation. Agents can benefit from type-based adaptation
not only during their construction but also during their execution. Since agents are
repeatedly executed on different agent execution platforms it is unlikely that each
platform will provide exactly the same services to agents, hence requiring each agent
to adapt to local services.

6.3.1 Mobile Agent Definitions

Throughout this case study we will adopt the definitions of the OMG’s Mobile Agent
System Interoperability Framework (MASIF) [MBB*98|:

e An agent is defined as a computer program that acts autonomously on behalf of
a person or an organization.

e An agent system is a platform that can create, interpret, execute, transfer and
terminate a mobile agent. An agent system is associated with an authority for
whom the agent system acts.

e A place is a context within the agent system that provides a uniform environment
in which an agent can execute. It is associated with a particular agent system. A
place provides the means for managing mobile agents, enforcing security policies
and accessing local resources.

e Mobile agents are agents that move from place to place to perform a given task.
Usually, the itinerary of the mobile agent is determined by the mobile agent
itself. Since this case study focuses on mobile agents, we will refer to mobile
agents simply as agents.

In the following we will only consider weak mobility [FPV98|, which defines the
ability to transfer code and initialization data, but not the execution state. The agent,
however, may explicitly decide to store its execution state within its attributes.

6.3.2 The AgentBean Development Kit

For the construction of mobile agents, we have defined a component-based agent model
that allows us to simplify their design and implementation. For many network and
systems management tasks, we can identify categories of components and patterns for
interconnecting them in order to perform the task. For the AgentBean Development
Kit (ADK) |[GFP99|, we used the following three categories of interrelated components:

CHAPTER 6. EVALUATION 70

Performer
getValue 1.3.6.1.2.1.1.1 i Reporter
(sysDescr) in store all results in a

SNMP MIB-Il table

" SNMPData/collectEvent
DidMove/pollData

Navigator

visit nodes
matterhorn.ibm.com
weisshorn.ibm.com
taeschhorn.ibm.com

Figure 6.5: Example Illustrating the Three Component Categories

Agent Components

& o &

Navigator Performer Reporter

[

Visual
Design | 4% ’\

Tool

Agent Design | ‘:\é

v

Agent
Constructor

Agent

Figure 6.6: Based the ADK the Developer Combines Components to Build the Agent

CHAPTER 6. EVALUATION 71

Navigator: The components in this category are responsible for determining and man-
aging the itinerary of the agent. The itinerary may be static, i.e., consisting of a
list of nodes to visit which was determined at the time the agent was designed or
instantiated, or dynamically based on the agent’s previous computations and the
current environment.

Performer: The components of the performer category carry out the management
tasks that should be executed at the host of the currently visited place. An agent
may contain one or more components linked together to perform a task.

Reporter: The components of this category manage the delivery of the agent’s results
to the designated destinations. A reporter component may, for instance, send a
message to some display tool or aggregate the results and deliver them upon its
return to the agent authority.

Although we have evaluated this agent model in the domain of network and systems
management [GFP99], it can also be applied to the design of agents for handling tasks
in other disciplines and is not restricted to network and systems management. The
concept of components allows a modular definition, facilitates creation of agents and
encourages further reuse. Instead of creating an agent from scratch, the designer of an
agent can glue the required components together. This is compliant with the fact that
the creator frequently wants to focus on the business logic of the agent and does not
want to bother with the technical details of agent creation.

The interaction between components is based on event/action-based communica-
tion. An event generated by one component may trigger an action by another com-
ponent. Figure 6.5 shows an example of the model, namely a simple mobile agent for
collecting configuration information. The navigator component provides a list of nodes
to be visited sequentially. Upon arrival at a place the navigator generates a DidMove
event which triggers the performer’s polling action. The performer reads the value of
the system description from a local Management Information Base (MIB) [Sta93| and
generates an SNMPData event that is recorded by the reporter. After the events have
been processed by all the components, the navigator continues with its itinerary.

This component model supports a construction process as outlined in Figure 6.6.
To support this process, we built the AgentBean Development Kit (ADK), a visual
design tool that allows the selection of components from a list. The agent creator uses
these components to compose the agent and specifies their interaction. Finally, the
tool generates the source code for the agent. The advantage of this approach is that it
enables IDEs to be used for the construction of agents. Our initial implementation of
the ADK is based on Sun’s BeanBox [Sun98a| model. With the ADK, an agent can be
created in a straightforward manner on a business logic level. A system administrator
who wants to create an agent does not have to be concerned with writing the code
himself.

CHAPTER 6. EVALUATION 72

Use of Type-Based Adaptation

One limitation we encountered with this model [GFP99|, however, was that the events
that a component can generate have to match the event-receptors of the target com-
ponent; otherwise, visual composition is not possible. Because JavaBeans map events
onto interfaces, this problem can easily be solved using type-based adaptation. Since
the CWB uses an event/action-based interaction style between the component and al-
ready supports type-based adaptation, we propose extending the CWB to support the
creation of mobile agents as well.

6.3.3 The Calendar Agent

In another application, we have implemented two different adaptation approaches for
the calendar agent [Jak02|. The calendar agent is a mobile agent available for the
AgentBean Development Kit [GFP99| that can be used to schedule appointments. The
calendar agent moves from host to host and queries whether a certain user has an
appointment at a given time. Since different users use different calendar managers to
handle their appointments, the calendar agent must be able to adapt to the different
calendar managers. For the calendar manager, we have implemented two adaptation
approaches: the bridge pattern [GHJV95] and type-based adaptation.

For the bridge pattern approach, we have defined an abstract calendar interface
that is used by the calendar agent. To be able to use a specific calendar manager in
combination with the calendar agent, we had to implement an adapter that interacted
with the calendar manager and provided the abstract calendar interface. Currently, we
have implemented adapters for the ical, cm, and the KOrganizer calendar managers.
Since these calendars do not provide a Java interface natively, we also implemented a
Java component wrapping each of these calendars and providing a native Java interface.

Using the bridge pattern design required us to implement only a single adapter for
each calendar manager, hence limiting the number of adapters to the number of calendar
managers. While implementing this approach, we identified several limitations [Jak02]:

e The interface of a calendar manager may undergo changes from one version of
the program to another. In some cases, it may be easier to write an adapter
that transforms one interface into another rather than into the abstract calendar
interface.

e Sometimes an adapter transforming one interface into another will already be
available. With the bridge design pattern, however, a new adapter would have to
be implemented.

e The adapters translating the interfaces of the calendar manager program are
rarely reusable by different programs. This is due to the fact that the programs
are unlikely to use the abstract interface defined for the calendar agent.

CHAPTER 6. EVALUATION 73

After we implemented the calendar agent using the bridge pattern, we reimple-
mented it using type-based adaptation. Although both versions of the agent worked
perfectly fine and were able to adapt to the individual execution environments, we
discovered that type-based adaptation can be used in combination with the bridge
pattern approach. Since type-based adaptation is not dependent on the interfaces in-
volved, we can put the adapters that implement the bridge pattern into the adapter
repository, hence providing the same functionality. If additional adapters are available
which translate one calendar manager interface into another, they can be added to the
adapter repository as well. Type-based adaptation is then able to make use of these
adapters by chaining them with one of the adapters providing the abstract calendar
interface.

6.4 Summary

Type-based adaptation allows the intercommunication of components providing seman-
tically the same functionality but using different types. As we have shown in the previ-
ous sections, the adaptation can be performed automatically and support for server-side
component models can be added transparently. Such an adaptation technique is impor-
tant for Web services using server-side components for their back-end processing. On
the one hand, Web service providers can offer a wider range of back-ends to be used in
combination with their Web service and on the other hand, their back-ends can also be
used in combination with other Web services. The advantage for users is that they can
pick the back-end components that best fit their needs instead of being locked in to the
components used by a single Web service. An example would be to use mapquest.com
with the address book from yahoo.com.

In another experiment we showed that type-based adaptation can be easily inte-
grated into IDEs. Although type-based adaptation cannot support a fully automated
composition process for IDEs, it guides the developer when composing the individual
components. Type-based adaptation shows the developer a set of possible adaptations
for the components he wishes to compose. If one of these adaptations is suitable, the
developer only has to select it. Otherwise, a new adapter has to be implemented.

In our last experiment we used type-based adaptation in the context of agent sys-
tems. In this experiment we also compared it to the bridge pattern. This comparison
showed that type-based adaptation is more powerful, since its adapters do not have to
adhere to a single interface definition.

Other experiments that might be interesting are the evaluation of type-based adap-
tation in the context of software maintenance or bridging between different component
technologies. In the context of software maintenance, type-based adaptation might also
be ideal for maintaining compatibility to older versions of a system when the interface
of a component changes. In the Java Programming Language, this problem has been
solved by allowing developers to declare a method as deprecated [AG97, LY99]. When

CHAPTER 6. EVALUATION 74

the developer uses a deprecated method, the compiler emits a warning message. While
this approach allows the deprecated method to access the component’s internal state,
the legacy code necessary to maintain compatibility to older systems is still part of the
component.

Type-based adaptation allows the decoupling of the component’s legacy code from
its implementation by providing a separate adapter implementing the legacy code. Now,
the old and new versions of the interface can be used simultaneously without the user’s
noticing it. After all the users have upgraded to the new interface, the adapter can be
easily thrown away without the need to change the component again. This allows the
developer to focus on the new version of the system without having to worry about
legacy code that only provides compatibility to older versions of the system.

Another application domain for type-based adaptation is the integration of a com-
ponent into different component environments. To identify interfaces across different
components, however, a uniform type identifier consisting of the component model as
well as the interface has to be introduced. In this case, the adapters not only provide
the code for translating between two different interfaces but also the bridge code neces-
sary to translate one protocol into another. Before we are able to attack this problem,
however, it is necessary to gain more experience with type-based adaptation.

Chapter 7

Related Work

Most of the work relating to type-based adaptation has already been presented in
Chapter 3. We therefore limit the following discussion to the differences between that
work and type-based adaptation.

The NIMBLE [PA90] language which is part of the Polylith [PA91] system also tries
to attack the adaptation problem. The NIMBLE language allows developers to describe
how the parameters in a procedure call need to be coerced to match the callee’s signature
without changing the source code of the modules involved.

NIMBLE, however, does not support the chaining of the interface translation. Hence,
adapters defined by NIMBLE cannot be reused and the developer of the system has to
specify adapters for all the different and valid compositions. Additionally, NIMBLE
operates only on a per-procedure basis and does not take into account the relationships
between procedures as defined by an interface.

An approach similar to NIMBLE is conciliation [SGS98|, which also supports the
adaptation of independently developed components. The advantage of conciliation is
that it takes the components’ object-oriented view into account. Conciliation operates
on three layers: the component layer, the method layer, and the data layer. The data
layer specifies how the individual methods are supplied to the client, the method and
component layers define how the data layer is mapped onto the component specification,
and the component layer specifies the possible groupings of class instances that must
be available at run-time.

Hence, conciliation’s data and method layer represent the information provided by
the adapters used by type-based adaptation. They also take into account the interface
layer which would be located between the method and component layer. Depending
on the application domain, however, the information provided by the adapters can be
limited to the method layer, which can be useful for IDEs, where lower-level composition
mechanisms are necessary. The information provided by conciliation’s component layer
are provided by the adapter’s meta-description.

Type-based adaptation supports the chaining of adapters, which means that more
complex adapters can be generated from smaller ones. The advantage of this approach

75

CHAPTER 7. RELATED WORK 76

is that not all possible combinations of adapters have to be provided, although all pos-
sible adaptations of the existing adapters and combinations thereof can be performed.
Additionally, adapters can be reused for different components providing the same in-
terface. Conciliation, on the other hand, does not support the chaining of conciliators.
This is due to the fact that conciliators are generated from the description of all three
layers (data, method, and component), hence operating on the components themselves
rather than on the interfaces they provide.

Conciliation registers the conciliators as components in the Microsoft Windows reg-
istry and sets the component’s treatAs key. This instructs Windows to instantiate the
conciliator instead of the component. In the Windows registry, however, conciliators
are statically hardcoded into the system and hence always the same conciliators are
used. In contrast, the adapter chains generated by type-based adaptation allow dif-
ferent adapters to be used in different situations. Since the adapters are chosen at
composition time, adapters can be implemented as pieces of mobile code to be down-
loaded on demand. This is especially of interest if the system has to be deployed on a
large scale. Thus, type-based adaptation gives the user more flexibility.

Another interesting adaptation approach is that of Jini which uses proxies respon-
sible for interacting with a given device. Whenever a client wants to interact with a
device, it downloads the device’s Java proxy and interacts with it. The proxy provides
a Java interface and uses the appropriate wire protocol to interact with the device,
hence shielding the application from having to deal with the device’s wire protocol.
This allows Jini to access devices from different environments as long as an appropriate
proxy exists. An architectural overview of Jini can be found in [Sun99b].

Similar to type-based adaptation, Jini [FPV98| uses mobile code for its proxies
that shield the application from the wire protocol. Jini’s lookup service serves as a
repository of services. Entries in the lookup service are objects to be executed in a
Java Virtual Machine environment. These objects can be downloaded as part of the
lookup operation and act as local proxies to the services that placed the code into the
lookup service. Apart from shielding devices from its wire-protocol, however, Jini does
not address the adaptation of software components.

The composite adapter design pattern presented in [SML99| also uses adapters.
While type based adaptation focuses on the adaptation of the intercommunication be-
tween server-side components, this pattern focuses more on the software engineering
side by trying to make possible the independent development of an application and
the framework model the application uses. The idea of the composite adapter is to
implement all wrapper classes adapting the application classes to the framework as an
inner class of a composite adapter class. While the composite adapter class takes care
of the instantiation of the wrapper classes, the inner classes only implement the adap-
tation code. To simplify the implementation of the adapters, a new scoping construct
(adapter) is proposed. While the composite adapters operate on a lower level than

CHAPTER 7. RELATED WORK 7

type-based adaptation and do not support automated adaptation, it might be possible
to employ composite adapters for the adapters used by type-based adaptation.

Composition filters [ABV92| support the specification of filters that can be compared
to the adapters used by type-based adaptation. The composition filter model is similar
to Java’s object model but distinguishes between internal and external objects and
adds states and filters to an object. While internal objects are owned by the object,
external ones are not and can be shared with other objects. Message invocations of
objects are first evaluated by the filters controlled by the states and then dispatched to
an appropriate method. The selected method can be one of the object’s methods, or a
method of one of its internal or external objects. Depending on the state of an object,
different filters are active and hence different aspects are provided to the object’s client.
Composition filters thus operate on a much lower level than type-based adaptation.

DAML |[DAMO02| is a meta description language that can be used for semantic
descriptions. While such a language is not enough to describe how different interfaces
need to be translated, it can be used for providing the meta description of the adapters
themselves. Such meta description can provide information about the interfaces the
adapters are translating, whether their transformation leads to any deterioration of
quality such as a conversion from a gif-image to a jpeg-image, or whether they also
provide additional behavior.

Chapter 8

Conclusions

We have described type-based adaptation, a novel adaptation technique that supports
the automated adaptation and composition of software components. This adaptation
technique is important in the area of distributed systems such as the Internet. It allows
users to specify only the components that need to interact with each other and adapts
and composes them transparently. So far, type-based adaptation is the only adaptation
technique that achieves this criterion.

Type-based adaptation is based on a repository that stores prebuilt adapters plus a
meta-description of the transformations that the adapters perform, thus providing all
the information necessary for the adaptation process. We have shown in Chapters 5
and 6, that this information is sufficient for the automated adaptation of software com-
ponents. Although to some extent the adapter repository can be compared to semantic
description frameworks [DAMO02|, such frameworks only provide a richer description
of the components to identify whether two components provide the same functionality
semantically and fall short in providing the necessary translation.

An advantage of type-based adaptation is that compared to a more traditional
wrapping approach, it does not require adapters for all the different combinations of
interfaces; to do so requires O(n?) (with n being the number of components) adapters,
which would be prohibitively expensive. Type-based adaptation is able to chain the
adapters stored in the adapter repository, hence requiring only O(n) adapters. If ad-
ditional adapters are available, however, type-based adaptation can take advantage of
these adapters and can adapt the components more efficiently.

We have shown state-of-the-art component models and adaptation techniques. We
have shown that component models can be classified as desktop (or local component
models) and as server-side component models and that adaptation techniques address
three objectives: adaptation for composition, the separation of concerns, and perfor-
mance adaptations. While many adaptation techniques have already been developed,
none of these techniques supports automated adaptation for the composition of soft-
ware components. Additionally, we have presented our classification criteria for the

78

CHAPTER 8. CONCLUSIONS 79

evaluation of adaptation and composition techniques. These criteria allow researchers
to put different adaptation techniques into relation to each other.

8.1 Contributions

We have demonstrated that type-based adaptation increases the flexibility of dynamic
distributed systems. Type-based adaptation allows users to select the combination of
components to be used without having to deal with compatibility issues between them
because it enables the component interfaces to be adapted transparently. The presented
technique has a wide area of applicability, including Web services using server-side
component technologies as back-ends.

Type-based adaptation simplifies the construction of applications using Integrated
Development Environments (IDEs). Since it stores the adapters that have been written
by the developer, the adapters can be reused more easily. With the meta-description
stored about the adapters, IDEs that support type-based adaptation can guide the
developer in the composition of the components, hence requiring less glue code to be
implemented.

In a related project which was part of the WebMon project [GEGW01, GEG'02],
type-based adaptation also served as the basis for the dynamic interface adaptation
technique [GGO1] developed at Hewlett-Packard Laboratories. WebMon is a tool that
gathers performance data about clients, Web servers, and back-end application servers
and supports the correlation of this data. To make it possible to correlate the data gath-
ered we had to adapt the interfaces provided by the server-side components. Since we
did not have access to the client’s source code, we used a modified version of type-based
adaptation to pass additional correlation information while maintaining compatibility
between the clients and the adapted components.

We have also shown several criteria that can be used for the classification of adap-
tation techniques. These criteria were identified on the basis of a variety of case studies
we have performed and systems we have implemented [GH99, GFP99, Gsc00b, Gsc01b,
GEGWO01, GscOlal. On the basis of our classification criteria, a developer can decide
which adaptation technique should be used to solve a problem at hand.

8.2 Future Research Directions

Type-based adaptation has been evaluated using a set of controlled experiments. Since
these experiments look promising, we plan to evaluate how type-based adaptation per-
forms in a globally used system, such as an Internet Superstore, with many different
users and several components to choose from. This would allow us to correct any re-
maining weaknesses in our reference implementation and demonstrate the strengths of
our adaptation technique more clearly.

CHAPTER 8. CONCLUSIONS 80

An interesting experiment is the evaluation of type-based adaptation in the context
of software maintenance or bridging between different component technologies. In the
context of software maintenance, type-based adaptation can be used for maintaining
compatibility with older versions of a system when the interface of a component changes.

Type-based adaptation could also be used for the integration of components imple-
mented for different component models (bridging). To identify interfaces across compo-
nent model boundaries a uniform type identifier consisting of the component model as
well as the interface has to be introduced. Then the adapter would not only provide the
code for translating between two different interfaces but also the bridge-code necessary
to translate one protocol into another.

Currently, type-based adaptation is used for the automated adaptation of software
components. We are in the process of evaluating its potential to adapt components that
do not provide all of the functionality requested by a client. It is indeed a powerful
functionality beyond what we have shown in this dissertation if we can use adapters to
provide the missing functionality by combining several different software components.
Our initial experiments in this directions show promising results.

Appendix A

Glossary

Currently, there is no consistent terminology that describes software components and
their different kinds of reuse. The following glossary presents the definition used within
this thesis of terms that are used ambiguously within the literature.

Adaptation: This is the process of modifying a component to allow it to interact with
another component. This can either be performed by modifying the component
itself or by enclosing the component within a wrapper that provides the required
interface. Typically, a component is adapted to be composed with another com-
ponent.

Binary Adaptation: Binary adaptation refers to the process of modifying the binary
form of a component. Typically, binary adaptation is used if the source code of
a component is not available.

Black Box Adaptation: This refers to an adaptation technique that does not require
knowledge of the component’s implementation. Wrapping is a traditional black
box adaptation technique.

Component: A software component is a piece of software that exhibits well-defined
interfaces, does not require knowledge of its implementation, is easier to reuse
than to reimplement and can be used for the implementation of other software
systems.

Component Model: A component model defines the basic architecture of a compo-
nent, specifying the structure of its interfaces and the mechanism by which it
interacts with its container and with other components. The component model
provides guidelines for creating and implementing components that can work to-
gether to form a larger application.

Composition: Composition refers to the process of generating larger software systems
from components. Since software components are developed independently, their

81

APPENDIX A. GLOSSARY 82

interfaces are rarely plug-compatible. Hence, components frequently need to be
adapted to be able to interact with each other.

Contravariance: Given an expression expr with a type parameter T', T is said to be
contravariant with regards to expr[T] if expr[T] <: expr[T'| & T <: T.

Covariance: Given an expression expr with a type parameter 7', T is said to be
contravariant with regards to expr[T] if expr[T] <: expr[T'| & T <: T".

Gray Box Adaptation: This term refers to an adaptation technique that requires the
availability of the component’s source code for the adaptation to be performed.
However, the developer himself is not required to know anything about the com-
ponent’s implementation. Examples of gray-box adaptation techniques are C+-+
templates or performance optimizers such as Simplicissimus.

Invariance: Given an expression expr with a type parameter T, T is said to be in-
variant with regards to expr|[T] if expr(T| <: expr[T'| < T =T'.

White Box Adaptation: In contrast to black-box and gray-box adaptation tech-
niques, white box adaptation techniques require the component’s source code
to be available and the developer to understand the component’s implementa-
tion. This is the case for most aspect-oriented programming languages available
today because specifying how an aspect has to be integrated into a component
requires detailed knowledge of the component’s implementation.

0O O Ul W+

Appendix B

Examples

B.1 JavaBeans

B.1.1 Bean Class

package at.ac.tuwien.infosys.examples. jb;

class DrawingArea implements Serializable {
private Color _color;
private boolean _drawing;

/* color property */
public void setColor(Color c) { _color=c; }
public Color getColor() { return _color; }

/* pen is drawing */
public void setDrawing(boolean b) { _drawing=b; }
public boolean isDrawing() { return _drawing; }

/* mouse listener */
public void addMouseListener(MouseListener 1) { /x ...

public void removeMouselListener (MouseListener 1) { /x ...

B.1.2 BeanlInfo Class

package at.ac.tuwien.infosys.examples. jb;
import java.beans.*;

public class DrawingBeanInfo extends SimpleBeanInfo {
public PropertyDescriptor[] getPropertyDescriptors() {
try {
PropertyDescriptor rv[]={

*/ }
*/ }

new PropertyDescriptor("color",DrawingArea.class),

83

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

N3O W

1

APPENDIX B. EXAMPLES 84

new PropertyDescriptor("drawing",DrawingArea.class)
s
return rv;
} catch (IntrospectionException e) { throw new Error(e.toString()); }

3

public EventSetDescriptor[] getEventSetDescriptors() {
try {
EventSetDescriptor mouse=new EventSetDescriptor(DrawingArea.class,
"mouseEvent",
java.awt.event.MouselListener.class,
"mouseEvent") ;
mouse.setDisplayName ("mouse movement") ;
EventSetDescriptor[] rv={mousel};
return rv;
} catch (IntrospectionException e) { throw new Error(e.toString()); }

3

public BeanDescriptor getBeanDescriptor() {
BeanDescriptor back = new BeanDescriptor(DrawingArea.class);
back.setValue("hidden-state", Boolean.TRUE);
return back;

3

public java.awt.Image getIcon(int iconKind) { return null; }

B.2 Enterprise JavaBeans

The following two examples only show the most interesting excerpts of an ad-
dress book implementation. The complete source code can be downloaded from
http://www.infosys.tuwien.ac.at/Staff/tom/addressbook/.

B.2.1 Session Bean Example

Home Interface

package at.ac.tuwien.infosys.ejb;

public interface AddressBookHome extends javax.ejb.EJBHome {
AddressBook create()
throws java.rmi.RemoteException, javax.ejb.CreateException,
AddressBookException;

Remote Interface

package at.ac.tuwien.infosys.ejb;

—
O O 00 ~JO UL Wi

11
12
13
14

APPENDIX B. EXAMPLES

public in
public

terface AddressBook extends javax.ejb.EJBObject {
int createAddress(AddressDetails address)

throws java.rmi.RemoteException, AddressBookException;

public

java.util.ArrayList getAddressesOfLastName(String lastname)

throws java.rmi.RemoteException, AddressBookException;

public

AddressDetails getAddress(int id)

throws java.rmi.RemoteException, AddressBookException;

/...
}

additional address manipulation methods ...

Bean Class

package at.ac.tuwien.infosys.ejb;

public cl
/* cons
public

public static final String ADDRESS_EJBHOME="java:/comp/env/ejb/address";

ass AddressBookBean implements javax.ejb.SessionBean {
tant declaration */
static final String ADDRESS_DATABASE="java:/DefaultDS";

/* attributes */
private AddressHome addressHome=null;

/* cont
public

public
try {
Ini

0bj

ainer interface */
AddressBookBean() {}

void ejbCreate() throws AddressBookException {

tialContext initial=new InitialContext();
ect obj=initial.lookup(ADDRESS_EJBHOME) ;

addressHome=(AddressHome)

} cat
thr
}
}

public
public

public
public

PortableRemoteObject.narrow(obj, AddressHome.class);
ch (Exception e) {
ow new AddressBookException("lookup of address home failed");

void setSessionContext(SessionContext sc) {}
void ejbRemove() {}

void ejbActivate() {}
void ejbPassivate() {}

/* remote interface */

public
throws

/...

int createAddress(AddressDetails address)
AddressBookException {
error handling ...

85

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
92
93
o4
95
o6
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

APPENDIX B. EXAMPLES

}

try {

int id=nextAddressID();

addressHome.create(new Integer(id),
address.getFirstName(), address.getLastName(),
address.getStreet (), address.getCity(),
address.getState(), address.getZIP(),

address.getCountry(), address.getTelephone());

return id;
} catch(Exception e) {
e.printStackTrace();
throw new AddressBookException("cannot create address");
X
3

public ArraylList getAddressesOfLastName(String lastname)

throws AddressBookException {
// ... error handling ...
try {

Collection addresses=addressHome.findByLastName(lastname) ;
ArrayList details=new ArrayList();

for(Iterator i=addresses.iterator();i.hasNext();) {
details.add(((Address)i.next()).getDetails());
}

return details;
} catch(Exception e) {
throw new AddressBookException("cannot retrieve address ids");

}
}

public AddressDetails getAddress(int id)
throws AddressBookException {
try {
return fetchAddress(id).getDetails();
} catch(Exception e) {
throw new AddressBookException('"cannot retrieve address");

}
}

// ... additional address manipulation methods ...

86

Deployment Descriptor

The deployment descriptor for the address book session bean is shown as part of the deployment

descriptor for the address entity bean.

APPENDIX B. EXAMPLES

B.2.2 Entity Bean Example

Home Interface

1 package at.ac.tuwien.infosys.ejb;

2

3 public interface AddressHome extends javax.ejb.EJBHome {

4 public Address create(Integer id, String firstname, String lastname,
) String street, String city, String state,

6 String zip, String country, String telephone)
7 throws java.rmi.RemoteException, javax.ejb.CreateException,

8 AddressBookException;

9
10 public Address findByPrimaryKey(Integer id)
11 throws java.rmi.RemoteException, javax.ejb.FinderException;
12
13 public Collection findByLastName(String lastname)
14 throws java.rmi.RemoteException, javax.ejb.FinderException;
15 3}

Remote Interface

1 package at.ac.tuwien.infosys.ejb;

2

3 import java.rmi.RemoteException;

4

O public interface Address extends javax.ejb.EJBObject {

6

7 public String getFirstName() throws RemoteException;

8 public void setFirstName(String firstname) throws RemoteException;
9
10 public String getLastName() throws RemoteException;
11 public void setLastName(String lastname) throws RemoteException;
12
13 // ... other attributes ...
14
15 public AddressDetails getDetails() throws RemoteException;
16 public void setDetails(AddressDetails address) throws RemoteExceptiomn;
17
18 }

Bean Class

1 package at.ac.tuwien.infosys.ejb;

2

3 public class AddressBean implements javax.ejb.EntityBean {
4 public Integer id;

5 public String firstName, lastName, street, city;

6 public String state, zIP country, telephone;
7

8

private javax.ejb.EntityContext ctx;

87

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
93
o4
95
o6
o7
o8

APPENDIX B. EXAMPLES

/* container interface */

public void setEntityContext(javax.ejb.EntityContext ctx) { this.ctx=ctx; }

public void unsetEntityContext() { t

public void ejbLoad() {}
public void ejbStore() {}

public void ejbActivate() {}
public void ejbPassivate() {}

/* home interface */

public Integer ejbCreate(Integer id, String firstname, String lastname,

String stre

String zip, String country, String telephone)

throws AddressBookException {

if (id.intValue()<=0) throw new AddressBookException("illegal primary key");
this.id=id;

this.firstName=firstname; this.lastName=lastname;

this.street=street; this.city=city;

this.state=state; this.zIP=zip;

this.country=country; this.telephone=telephone;

return id;

public void ejbPostCreate(Integer id, String firstname, String lastname,

String str

String zip, String country, String telephone) {}

public void ejbRemove() {}

/* business methods */

his.ctx=null; }

et, String city, String state,

eet, String city, String state,

public String getFirstName() { return firstName; }

public void setFirstName(String firstname) { this.firstName=firstname; }

public String getLastName() { return lastName; }
public void setLastName(String lastname) { this.lastName=lastname; }

// ... other attributes ...

public AddressDetails getDetails() {

return new AddressDetails(id.intValue(), firstName, lastName, street,

city, st

ate, zIP, country, telephone);

public void setDetails(AddressDetails address) {

firstName=address.getFirstName() ;
street=address.getStreet();
state=address.getState();
country=address.getCountry() ;

lastName=address.getLastName () ;
city=address.getCity();
zIP=address.getZIP();
telephone=address.getTelephone() ;

88

59
60

—
O O 00O U= WN

W W LN N RNDINDNNRNNDN RN R e
R—OOX TR WN R O WO -1 Uk W

33
34
35
36
37
38
39
40
41
42
43
44
45

APPENDIX B. EXAMPLES

}
}

Deployment Descriptor

<?7xml version="1.0"7>

<IDOCTYPE ejb-jar PUBLIC
’-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
*http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<description>The Ultimate Adress Book Application</description>
<display-name>AddressBook</display-name>
<enterprise-beans>
<session>
<description>Address Book</description>
<display-name>AddressBookEJB</display-name>
<ejb-name>AddressBookEJB</ejb-name>
<home>at.ac.tuwien.infosys.ejb.AddressBookHome</home>
<remote>at.ac.tuwien.infosys.ejb.AddressBook</remote>
<ejb-class>at.ac.tuwien.infosys.ejb.AddressBookBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
<ejb-ref>
<ejb-ref-name>ejb/address</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-link>AddressEJB</ejb-link>
<home>at.ac.tuwien.infosys.ejb.AddressHome</home>
<remote>at.ac.tuwien.infosys.ejb.Address</remote>
</ejb-ref>
<resource-ref>
<res-ref-name>jdbc/AddressDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
</session>
<entity>
<description>Address Management</description>
<display-name>AddressEJB</display-name>
<ejb-name>AddressEJB</ejb-name>
<home>at.ac.tuwien.infosys.ejb.AddressHome</home>
<remote>at.ac.tuwien.infosys.ejb.Address</remote>
<ejb-class>at.ac.tuwien.infosys.ejb.AddressBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>address</abstract-schema-name>

89

APPENDIX B. EXAMPLES 90

46 <cmp-field><field-name>id</field-name></cmp-field>

47 <cmp-field><field-name>firstName</field-name></cmp-field>
48 <cmp-field><field-name>lastName</field-name></cmp-field>
49 <cmp-field><field-name>street</field-name></cmp-field>
50 <cmp-field><field-name>city</field-name></cmp-field>
o1 <cmp-field><field-name>state</field-name></cmp-field>
92 <cmp-field><field-name>zIP</field-name></cmp-field>

93 <cmp-field><field-name>country</field-name></cmp-field>
04 <cmp-field><field-name>telephone</field-name></cmp-field>
55 <primkey-field>id</primkey-field>

56 <query>

57 <query-method>

58 <method-name>findByLastName</method-name>

99 <method-params>

60 <method-param>java.lang.String</method-param>

61 </method-params>

62 </query-method>

63 <ejb-ql>

64 <! [CDATA[WHERE lastName = 71]1>

65 </ejb-ql>

66 </query>

67 </entity>

68 </enterprise-beans>

69 <assembly-descriptor>

70 <container-transaction>

71 <method>

72 <ejb-name>AddressBookEJB</ejb-name>

73 <method-intf>Remote</method-intf>

74 <method-name>*</method-name>

75 </method>

76 <trans-attribute>Required</trans-attribute>

7 </container-transaction>

78 <container-transaction>

79 <method>

80 <ejb-name>AddressEJB</ejb-name>

81 <method-intf>Remote</method-intf>

82 <method-name>*</method-name>

83 </method>

84 <trans-attribute>Required</trans-attribute>

85 </container-transaction>

86 </assembly-descriptor>

87 </ejb-jar>

B.2.3 Message Driven Bean Example

Bean Class

1 package org.jboss.docs. jms.mdb.bean;

2

© 00O Ut WhN +—

APPENDIX B. EXAMPLES

public class HelloMDB
implements javax.ejb.MessageDrivenBean, javax.jms.MessageListener {
private javax.ejb.MessageDrivenContext ctx = null;

public HelloMDB() {}

public void setMessageDrivenContext (javax.ejb.MessageDrivenContext ctx)
throws javax.ejb.EJBException {
this.ctx = ctx;

public void ejbCreate() {}
public void ejbRemove() { ctx=null; }

public void onMessage(javax.jms.Message message) {
System.err.println("Bean got message" + message.toString());
}
}

Deployment Descriptor

<?xml version="1.0"7>
<!DOCTYPE ejb-jar>
<ejb-jar>
<enterprise-beans> <message-driven>
<ejb-name>HelloTopicMDB</ejb-name>
<ejb-class>org.jboss.docs. jms.mdb.bean.HelloMDB</ejb-class>
<message-selector></message-selector>
<transaction-type>Container</transaction-type>
<message-driven-destination>
<destination-type>javax.jms.Topic</destination-type>
<subscription-durability>NonDurable</subscription-durability>
</message-driven-destination>
</message-driven> </enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>HelloTopicMDB</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>NotSupported</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

91

Bibliography

[ABV92]

[AC96)

[AG7]

[ALNHO1]

|ALSNO1]

[BCRW00]

[BDS00]

[Bea92]

[Bea96|

Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An object-oriented
language-database integration model: The composition-filters approach. In
Ole Lehrmann Madsen, editor, ECOOP’92 European Conference on Object-
Oriented Programming, pages 372-395. Springer-Verlag, 1992.

Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag,
1996.

Ken Arnold and James Gosling. The Java Programming Language (Java
Series). Addison-Wesley, 2nd edition, December 1997.

Uwe Assmann, Andreas Ludwig, Rainer Neumann, and Dirk Heuzeroth.
Compost, September 2001. http://i44www.info.uni-karlsruhe.de/~compost/.

Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nier-
strasz. Piccola — a small composition language. In Howard Bowman and
John Derrick, editors, Formal Methods for Distributed Processing, an Object
Oriented Approach. Cambridge University Press, 2001. to appear.

Don Batory, Gang Chen, Eric Robertson, and Tao Wang. Design wiz-
ards and visual programming environments for genvoca generators. IEEFE
Transactions on Software Engineering, 26(5):441-452, May 2000.

Dirk Balfanz, Drew Dean, and Mike Spreitzer. A security infrastructure for
distributed java applications. In Proceedings of 2000 IEEE Symposium on
Security and Privacy, pages 15-26. IEEE, May 2000.

Brian W. Beach. Connecting software components with declarative glue. In

Proceedings of the 14th International Conference on Software Engineering,
pages 120-137. ACM, 1992.

David M. Beazley. Swig: An easy to use tool for integrating scripting
languages with ¢ and c++. In Proceedings of the Fourth USENIX Tcl/Tk
Workshop. USENIX, July 1996.

92

BIBLIOGRAPHY 93

IBEAO]

[BHS9)

[BPSMO8]

[BSST93]

[CEO0]

[Cox90]

IDAMO2

[DGTY6]

[Dij76]

[DYKO1]

[EE9S]

[FPV93]

[FS98]

|Galog|

BEA. BEA Weblogic Server and Weblogic Express: Introduction to BEA
Weblogic Server, June 2001.

Fred Buckley and Frank Harary. Distance in Graphs. Addison-Wesley, 1989.

Tim Bray, Jean Paoli, and C. Michael Sperberg-McQueen. Extensible
markup language (XML) 1.0. Technical Report REC-xml-19980210, W3C,
February 1998.

Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas. Scalable soft-
ware libraries. In Proceedings of the ACM SIGSOFT °93: Symposium on
the Foundations of Software Engineering, pages 191-199, December 1993.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

B. J. Cox. Planning the software industrial revolution. IEEE Software,
7(6):25-33, November 1990.

The darpa agent markup language homepage (daml), January 2002.
http://www.daml.org/.

Olivier Danvy, Robert Gliick, and Peter Thiemann, editors. Partial Evalu-
ation. Lecture Notes in Computer Science. Springer-Verlag, 1996.

Edsger Wybe Dijkstra. A Discipline of Programming. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1976.

Linda G. DeMichiel, L. Umit Yalcinalp, and Sanjeev Krishnan. Enter-
prise JavaBeans Specification, Version 2.0. Sun Microsystems, April 2001.
Proposed Final Draft 2.

Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Press,
1998.

Alfonso Fuggetta, Gian P. Picco, and Giovanni Vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering, 24(5):342-361, May
1998.

Martin Fowler and Kendall Scott. UML Distilled. Addison-Wesley, June
1998.

Mark Galassi. Guile Programmer’s Manual, July 1996. For use with Cygnus
Guile 1.0.

BIBLIOGRAPHY 94

IGEG*02]

IGEGWO1]

[GFP99)

[GGO1]

[GHY9]

[GHH*|

[GHIVO5]

[Gon98]|

[Gon99|

[Goo01]

[Grii00]

[Gsc00a]

Pankaj K. Garg, Kave Eshghi, Thomas Gschwind, Boudewijn Haverkort,
and Katinka Wolter. Enabling network caching of dynamic web objects. In
Proceedings of the Performance TOOLS2002 Conference. Springer-Verlag,
2002. To be published.

Thomas Gschwind, Kave Eshghi, Pankaj K. Garg, and Klaus Wurster. Web
transaction monitoring. Technical Report HPL-2001-62, Hewlett-Packard
Laboratories Palo Alto, March 2001.

Thomas Gschwind, Metin Feridun, and Stefan Pleisch. Adk—building mo-
bile agents for network and systems management from reusable compo-
nents. In Proceedings of the Agent Systems Application and Mobile Agents
99 Conference, pages 13-21. IEEE Computer Society, October 1999.

Thomas Gschwind and Pankaj K. Garg. Dynamic interface adaptation,
October 2001. Invention disclosure.

Thomas Gschwind and Manfred Hauswirth. Newscache—a high-
performance cache implementation for usenet news. In Proceedings of the
1999 USENIX Annual Technical Conference, pages 213-224. USENIX, June
1999.

Bill Griswold, Erik Hilsdale, Jim Hugunin, Mik Kersten, Gregor Kiczales,
and Jeff Palm. The AspectJ homepage. http://www.aspectj.org/.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1st edition, January 1995.

Li Gong. Secure Java Class Loading. IEEE Internet Computing, 2(6):56—61,
November/December 1998.

Li Gong. Inside Java 2 Platform Security: Architecture, API Design, and
Implementation. Addison-Wesley, 1999.

Gerhard Goos. Optimizations with COMPOST, February 2001. Personal
communication.

Andreas Griinbacher. Dynamic distributed systems. Master’s thesis, Tech-
nische Universitdt Wien, June 2000.

Thomas Gschwind. The agentbean development kit, 2000. http://-
www.infosys.tuwien.ac.at/ADK/.

BIBLIOGRAPHY 95

[GscO0b|

[Gsc01a]

[Gsc01b]

[Ham97]

[Har01]
[HBS99]

[HKKOO]

[HO99)

[1SO98]

[Jak02]

[Jaz95]

[JBo]
[JLMO0]

Thomas Gschwind. Comparing object-oriented mobile agent systems. Tech-
nical report, Technische Universitat Wien, May 2000. Presented at the 14th
European Conference on Object-Oriented Programming (ECOOP2000),
Workshop on Mobile Object Systems: Operating System Support, Secu-
rity and Programming Models.

Thomas Gschwind. Aop and software maintenance. Technical Report TUV-
1841-01-07, Technische Universitdt Wien, May 2001.

Thomas Gschwind. PSTL—the persistent standard template library for
c++. In Proceedings of the 6th USENIX Conference on Object-Oriented
Technology Systems (COOTS 2001), pages 147-158. USENIX, January
2001.

Graham Hamilton, editor. JavaBeans. Sun Microsystems, http://-
java.sun.com/beans/, July 1997.

Elliotte Rusty Harold. XML Bible. Hungry Minds, Inc, 2nd edition, 2001.

Mark Hapner, Rich Burridge, and Rahul Sharma. Java Message Service.
Sun Microsystems, November 1999.

Manfred Hauswirth, Clemens Kerer, and Roman Kurmanowytsch. A secure
framework for java. In Proceedings of the 7th ACM Conference on Computer
and communications security, pages 43-52. ACM, 2000.

George T. Heineman and Helgo M. Ohlenbusch. An evaluation of compo-
nent adaptation techniques. Technical Report WPI-CS-TR-98-20, Worces-
ter Polytechnic Institute, Computer Science Department, March 1999.

ISO/IEC. ISO/IEC14882: Programming Languages—C++, 1st edition,
July 1998.

Stefan Jakl. The calendar agent. Master’s thesis, Technische Universitét
Wien, 2002. To be published.

Mehdi Jazayeri. Component programming—a fresh look at software com-
ponents. In Wilhelm Schéfer and Pere Botella, editors, Proceedings of the
5th European Software Engineering Conference, pages 457-478. Springer-
Verlag, 1995.

JBoss Group. The jboss homepage. http://www.jboss.org/.

Mehdi Jazayeri, Riidiger G. K. Loos, and David R. Musser, editors. Generic
Programming. Lecture Notes in Computer Science. Springer-Verlag, 2000.

BIBLIOGRAPHY 96

[Kic96]|

[KLM*97]

[LHOO]

[Lis87]

[LSNA97]

[Lud01]

[LW93]

[LW94]

[LY99]

[MBB*98|

[Mey88|

Gregor Kiczales. Beyond the black box: Open implementation. IEFE
Software, 13(1):8-11, January 1996.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Mehmet Aksit and Satoshi Matsuoka, editors,
Proceedings of the 11th European Conference on Object Oriented Program-
ming (ECOOP’97), pages 220-242. Springer-Verlag, 1997.

Andreas Ludwig and Dirk Heuzeroth. Metaprogramming in the large. In
Net.Objectdays 2000 Tagungsband, 2nd International Conference on Gener-
ative and Component-Based Software ENgineering, pages 443-452, October
2000.

Barbara H. Liskov. Data abstraction and hierarchy. ACM SIGPLAN No-
tices, 23(5):17-34, May 1987.

Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz, and Franz Acher-
mann. Towards a formal composition language. In Gary T. Leavens and
Murali Sitaraman, editors, Proceedings of the ESEC’97 Workshop on Foun-
dations of Component-Based Systems, pages 178-187, September 1997.

Andreas Ludwig. RECODER Technical Manual, April 2001.

http://recoder.sourceforge.net/doc/manual.html.

Barbara H. Liskov and Jeannette M. Wing. Specifications and their use
in defining subtypes. In Proceedings of Object-Oriented Programming, Sys-
tems, Languages, and Applications '93, September 1993.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages and Systems,
16(6):1811-1841, November 1994.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 2nd edition, April 1999.

Dejan Milojicic, Markus Breugst, Ingo Busse, John Campbell, Stefan Co-
vaci, Barry Friedman, Kazu Kosaka, Danny Lange, Kouichi Ono, Misuru
Oshima, Cynthia Tham, Sankar Virdhagriswaran, and Jim White. MASIF,
The OMG Mobile Agent System Interoperability Facility. In Kurt Rother-
mel and Fritz Hohl, editors, Proceedings of the Mobile Agents’98. Springer-
Verlag, September 1998.

Bertrand Meyer. Object Oriented Software Construction. Prentice Hall,
1988.

BIBLIOGRAPHY 97

[Mey92]

[MHO0]

[MS96]

[MSLO00]

[NMO5)|

[NT95]

[Obe01]

[Obe02]

[OMG99a]

[OMGO9b)

[OMG99c|

[Ous94]
[Ous9s|

[PA9O]

Bertrand Meyer. Applying “design by contract”. ~IEEE Computer,
25(10):40-51, October 1992.

Richard Monson-Haefel. Enterprise JavaBeans. O'Reilly & Associates, 2nd
edition, March 2000.

David R. Musser and Atul Saini. STL Tutorial and Reference Guide.
Addison-Wesley, 1996.

Mira Mezini, L. Seiter, and Karl Lieberherr. Component integration with
pluggable composite adapters. In Mehmet Aksit, editor, 2000 Symposium
on Software Architectures and Component Technology: The State of the Art
in Research and Practice. Kluwer Academic Publishers, 2000.

Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a composition
language. In Proceedings of the ECOOP ’9j workshop on Models and Lan-
guages for Coordination of Parallelism and Distribution, pages 147-161.
Springer-Verlag, 1995.

Oscar Nierstrasz and Dennis Tsichritzis. Object-Oriented Software Compo-
sitton. Prentice Hall, 1995.

Johann Oberleitner. The component workbench: A flexible component
composition environment. Master’s thesis, Technische Universitidt Wien,
October 2001.

Johann Oberleitner. The component workbench. http://-
www.infosys.tuwien.ac.at/cwb/, February 2002.

Object Management Group. CORBA Components— Volume I, August
1999. OMG TC Document orbos/99-07-01.

Object Management Group. CORBA Components— Volume II: MOF-based
Metamodels, August 1999. OMG TC Document orbos/99-07-02.

Object Management Group. CORBA Components— Volume III: Interface
Repository, August 1999. OMG TC Document orbos/99-07-03.

John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

John K. Ousterhout. Scripting: Higher-level programming for the 21st
century. IEEE Computer, 31(3):23-30, March 1998.

James M. Purtilo and Joanne M. Atlee. Improving module reuse by inter-
face adaptation. In Proceedings of the International Conference on Com-
puter Languages, pages 208-217, March 1990.

BIBLIOGRAPHY 98

[PA91|

[Par76|

[Pur94]

[Ros99|
[Sam97]

[SGMLO1|

[SGS98]

[SLI6]

[SLL02]

[SML99]

[Sta93]

[Sta99]

[Str97]

James M. Purtilo and Joanne M. Atlee. Module reuse by interface adapta-
tion. Software — Practice and Experience, 21(6):539-556, June 1991.

David Lorge Parnas. On the design and development of program families.
IEEE Transactions on Software Engineering, 2(16):1-9, March 1976.

James M. Purtilo. The polylith software bus. ACM Transactions on Pro-
gramming Languages and Systems, 16(1):151-174, 1994.

Guido Van Rossum. Python Reference Manual, February 1999.

Johannes Sametinger. Software Engineering with Reusable Components.
Springer-Verlag, 1997.

Sibylle Schupp, Douglas P. Gregor, David R. Musser, and Shin-Ming Liu.
User-extensible simplification—type-based optimizer generators. In Rein-
hard Wilhelm, editor, International Conference on Compiler Construction,
Lecture Notes in Computer Science, pages 86-101. Springer-Verlag, 2001.

Glenn Smith, John Gough, and Clemens Szyperski. Conciliation: The
adaptation of independently developed components. In Gopal Gupta and
Hong Shen, editors, Proceedings of the 2nd International Conference on
Parallel and Distributed Computing and Networks. TASTED, 1998.

Jean-Guy Schneider and Markus Lumpe. Modelling objects in PICT.
Technical Report TAM-96-004, University of Berne, Software Composition
Group, 1996.

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph
Library: User Guide and Reference Manual. Addison-Wesley, 2002.

Linda Seiter, Mira Mezini, and Karl Lieberherr. Dynamic component glu-
ing. In Ulrich Eisenecker and Krzysztof Czarnecki, editors, First Interna-
tional Symposium on Generative and Component-Based Software Engineer-
ing, Lecture Notes in Computer Science, pages 134-164. Springer-Verlag,
1999.

William Stallings. SNMP, SNMPv2, and CMIP: The Practical Guide to
Network-Management Standards. Addison-Wesley, 1993.

Richard Stallman. GNU Emacs Manual. Free Software Foundation, 13th
edition, February 1999. Updated for Emacs Version 20.7.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd
edition, 1997.

BIBLIOGRAPHY 99

[Sun98a

[Sun98b]

[Sun99a]

[Sun99b]

[Sun01]

[Szy97]

[WCD+01]

[WCO00]

[Weg90|

[Weg93|

[WS01]

Sun Microsystems. The bean development kit, July 1998. http://-
java.sun.com/beans/software/bdk download.html.

Sun Microsystems. Reflection, 1998. http://java.sun.com/j2se/1.3/docs/-
guide/reflection/.

Sun Microsystems. Java Remote Method Invocation Specification, December
1999. http://java.sun.com/products/jdk/1.3/docs/guide/rmi/.

Sun Microsystems. Jini Architectural Overview, 1999. Technical White
Paper.

Sun Microsystems. JSR-000057 Long-term Persistence for JavaBeans™
Specification, November 2001. http://jcp.org/jsr/detail /57 jsp.

Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, January 1997.

Sanjiva Weerawarana, Francisco Curbera, Matthew J. Duftler, David A.
Epstein, and Joseph Kesselman. Bean markup language: A composition
language for javabeans components. In Proceedings of the 6th USENIX
Conference on Object-Oriented Technology Systems (COOTS 2001), pages
173-187. USENIX, January 2001.

Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl.
O’Reilly & Associates, 3rd edition, July 2000.

Peter Wegner. Concepts and paradigms of object-oriented programming.
OOPS Messenger, 1(1):7-87, August 1990.

Peter Wegner. Towards component-based software technology. Technical
Report CS-93-11, Brown University, 1993.

Larry Wall and Randal L. Schwartz. Programming Perl. O’Reilly & Asso-
ciates, 1st edition, January 1991.

Curriculum Vitae

Thomas Gschwind <tom@infosys.tuwien.ac.at>

Address
Institut fiir Informationssysteme
Technische Universitdt Wien
Argentinierstrafe 8/E1841
A-1040 Wien, Austria
Tel: +43(1)58801-18412

Date of Birth
December 26, 1973

Education
PhD Student, Technische Universitaet Wien, since 1997. Working on the adapta-
tion and composition of software components with focus on distributed systems.

Master of Science, Technische Universitaet Wien, June 1997, with highest dis-
tinction.

The Thesis (Grade A) A Cache Server for News’ describes how cache servers can
contribute to a new and optimized architecture for USENET News. It presents a
prototype cache implementation (NewsCache) and the implementation of a per-
sistent object library for this purpose.

Graduated from Gymnasium Wien III, Wien, June 1992, with distinction (Sub-
jects: Mathematics, German, English, Physics, Computer Science).

More Information
Upon request.

100

