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Abstract

Minimal perfect hash functions are used for memory efficient storage and fast
retrieval of items from static sets. We present an overview of previous solutions
and analyze a new algorithm based on random graphs for generating order
preserving minimal perfect hash functions. We show that the new algorithm
is both time and space optimal in addition to being practical. The algorithm
generates a minimal perfect hash function in two steps. First a special kind of
function into a random graph is computed probabilistically. Then this function
is refined deterministically to a minimal perfect hash function. The first step
uses linear random time, while the second runs in linear deterministic time.

Key words: Data structures, probabilistic algorithms, analysis of algorithms,
hashing, random graphs

1 Introduction

Consider a set W of m words each of which is a finite string of symbols over an
ordered alphabet Σ. A hash function is a function h : W → I that maps the set of
wordsW into some given interval of integers I, say [0, k−1], where k is an integer, and
usually k ≥ m. The hash function, given a word, computes an address (an integer
from I) for the storage or retrieval of that item. The storage area used to store items
is known as a hash table. Words for which the same address is computed are called
synonyms. Due to the existence of synonyms a situation called collision may arise
in which two items w1 and w2 have the same address. Several schemes for resolving
collisions are known. A perfect hash function is an injection h : W → I, where W
and I are sets as defined above, k ≥ m. If k = m, then we say that h is a minimal
perfect hash function. As the definition implies, a perfect hash function transforms
each word of W into a unique address in the hash table. Since no collisions occur
each item can be retrieved from the table in a single probe. A hash function is order

preserving if it puts entries into the hash table in a prespecified order.
Minimal perfect hash functions are used for memory efficient storage and fast

retrieval of items from a static set, such as reserved words in programming languages,
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command names in operating systems, commonly used words in natural languages,
etc. Aspects of perfect hashing are discussed in detail in [Meh84, §III.2.3], [GBY91,
§3.3.16], [LC88] and [FHCD92]. It is clear that generating a perfect hash function
takes at least linear time in the number of keys (all keys must be read). The generated
program is space optimal if it can be stored in O(m + log log u) bits (see [Meh82,
Meh84], [Mai83] or [GBY91]), where u is the size of universe U from which keys in
W have been selected. If the function is also to be order preserving, extra space
is required: O(m logm + log log u) bits are necessary and sufficient. This result
can be derived by observing that only 1 out of m! mappings is order preserving.
Since at most (u/k)m

( k
m

)

subsets are mapped perfectly [Meh82, Meh84] therefore a

perfect hash function is order preserving for just (u/k)m
( k
m

)

/m! subsets of universe U .
Consequently the number of distinct order preserving perfect hash functions must
be at least H ≥ m!

(u
m

)

/((u/k)m
( k
m

)

), and the length of a program that evaluates
any order preserving perfect hash function is Ω(log |H| + log log u) = Ω(m logm +
log log u), where the log log u term is an initial cost due to the size of the universe
(cf. [Meh84, p. 129]). The upper bound for the size of a program can be proved by
explicitly constructing an order preserving perfect hash function of size O(m logm+
log log u). This has been done in [Cha84, CC88] and in this paper (a similar bound
is given in [FCDH91] using a different argument). The generated program is time
optimal if the evaluation of the perfect hash function takes O(1) time. Fast, space
efficient algorithms for generating minimal perfect hash functions are desired. The
resulting hash functions should also be fast and space efficient.

Various algorithms with different time complexities have been presented for
constructing perfect or minimal perfect hash functions. Early methods had ex-
ponential time complexity, after which algorithms with apparently polynomial time
performance were developed. We analyze an algorithm based on random graphs for
finding order preserving minimal perfect hash functions of the form:

h(w) =
(

g(f1(w)) + g(f2(w))
)

mod m

where f1 and f2 are functions that map keys into integers, and g is a function that
maps integers into [0,m− 1]. We show that the expected time required by the gen-
eration algorithm is O(m), which is optimal. The generated program evaluates the
hash function in constant time, also optimal. It requires O(m logm+ log log u) bits
space for both generation and evaluation, which is optimal for an order preserving
function (for character keys, by virtue of the mapping used, the log log u term is
bounded by logm and thus can be omitted). In some ways, the logm component
of the space requirements is little more than a theoretical measure. If we assume
32 bit unsigned integers for storage, then the O(m logm) space requirements can be
readily implemented using about 2m dlog232 me words. This means that the logm
component has no effect till m exceeds a trillion, so is unlikely to have any impact
in practice.

Fox et al. concentrate on minimizing the space required for generating minimal
perfect hashing functions. In a recent paper Fox, Chen and Heath [FCH92] present
an algorithm capable of generating a minimal perfect hash function which requires
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about 2.7 bits per key and exhibits apparently linear time. However no mathematical
proof of the time complexity is provided. We emphasize fast algorithms with proofs
of linear expected time. Our algorithm can generate an order preserving minimal
perfect hash function for one million keys (character strings of length 18) in about
82 seconds on a Sun Sparc station 2, using about 2.1m words space. An initial
description of our method has appeared in [CHM92] and a generalization is in
[MWCH92].

2 Previous solutions

2.1 The searching problem

Hashing belongs to a wide class of searching algorithms. Straightforward solutions
to the searching problem are linear and binary search. In linear search, keys are
stored in a sequence. To locate a key we compare it with stored keys until we find
the matching key or allm keys have been examined. Any key can be located in O(m)
time. This is generally regarded as being unacceptable. An obvious improvement
is to sort the keys into an ordered sequence and use a binary search. This reduces
searching time to O(logm) steps. Other access methods are offered by various kinds
of tree structures (for an overview see [GBY91, Chapter 3]). For example digital trees
or tries are recursive tree structures which use decomposition of the key to direct
the branching. They allow almost constant access time (actually fast logarithmic) at
the expense of significant memory space. These straightforward solutions outperform
many previously published methods based on perfect hashing.

2.2 Number theoretical solutions

Various solutions based on “simple” numeric computations have been found. These
solutions involve the determination of a small number of numeric parameters (some-
times just one) which are incorporated into a formula involving the keys to determine
the hash values. In many of these methods, keys are assumed to be integers, and no
conversion from character keys to integers is given. (This is relatively straightforward
if large integers are acceptable, in which case character strings can be treated as
numbers using a base equal to the size of the character set. However, large integers
may increase the complexity of the associated calculations.)

Thus, Sprugnoli [Spr77] presented two algorithms for generating perfect (but not
minimal) hash functions. His first method finds the smallest hash table for the given
hash function, but can produce very sparse tables and has exponential run time.
His second method is faster, but it is not guaranteed to work for all sets. Some
remarks on implementation may be found in [AA79]. Sprugnoli suggested that his
methods may be applied for small sets with, say, 10 to 12 elements. For larger sets
he suggested segmentation, discussed in the next section.

Jaeschke [Jae81] proposed a method for creating minimal perfect hash functions
and proved it always works. Unfortunately, the algorithm for finding its major
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parameter has exponential time complexity and is impractical for sets with more than
about 20 elements. Also, the parameter can be as large as O(2m). Chang [Cha84]
developed a scheme for generating minimal perfect hash functions, based on the
Chinese remainder theorem. Unfortunately it requires a prime number function for
the keys, and no general such function is known. Chang implemented an algorithm
for finding the major parameter in O(m2 logm) time. This is polynomial time, in
contrast to the exponential time required by Jaeschke’s algorithm. However it is
polynomial time in terms of the number of arithmetic operations, but the number
of bits to represent the parameter is O(m logm). Even for quite small sets the
parameter can be very large. For example, for the set of the first 64 primes it is
approximately 1.92× 10124, requiring 413 bits in binary representation.

Chang and Lee [CL86] modified Chang’s approach to make it directly applicable
to character keys. However, they made an assumption that each key can be uniquely
identified by a pair of characters, which is false for some small, ordinary sets. They
provided an algorithm which computes associated parameter values and proved that
the resulting function is indeed a minimal perfect hash function. They reported
success with several nontrivial (but relatively small) sets of words. As in the previous
algorithm, parameter values can be large.

Trying to overcome drawbacks of Chang’s algorithm, Chang and Chang [CC88]
proposed a new minimal perfect hashing scheme. The method removes the first
impediment of Chang’s algorithm, where either the keys have to be relatively prime
or a prime number function is required for W . Also the method for parameter com-
putation is quite straightforward, and Chang and Chang show that the computation
time required is O(m log(maxiwi)) arithmetic operations. Unfortunately, again, the
parameter value tends to be very large, and the number of bits required to store it is
O(m logm). Evaluation of the hash function takes roughly O(m log(maxiwi)) time.
Since maxiwi must be at least m and, generally, is much greater, this is a factor
of m times worse than binary search on an ordered array and logarithmically worse
than linear search on an unsorted sequence. Another variation of Chang’s solution
was proposed by Winters [Win90b]. He used the fact that in order to be able to
use Chang’s scheme [Cha84] integer keys do not need to be prime, merely relatively
prime and presented a method which transforms an arbitrary set of nonnegative
integers into a set of nonnegative and relatively prime integers. In addition, he
proposed a probabilistic method to convert an input set {w1, w2, . . . , wm} into a set
{x1, x2, . . . , xm}, such that maxi xi = O(m2). This conversion is useful if the values
of elements are large, compared with their number (for example, if the original
keys are character strings treated as numbers using the natural base). Also, in the
transformation of an input set into a set of relatively prime integers, differences of
elements are used, so the conversion allows a reduction in the size of the parameters
of the hash function.

Unfortunately, the major parameter produced by the algorithm is enormous. In a
section about complexity analysis of the algorithm, Winters proved that the number
of bits required to represent it is O(m3 logm) and the time necessary to compute
it is roughly O(m4 logm). Although the algorithm is guaranteed to stop after a
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polynomially bounded number of arithmetic steps, the magnitude of the parameter
makes the solution absolutely impractical. The time required to evaluate the hash
function for one key is approximately m2 logm times worse than the time required
for a simple linear search through an unordered sequence.

To reduce the magnitude of the parameter Winters [Win90a] suggested a new
scheme based on a quotient/remainder splitting of the input set of keys. In the
first phase of his method the magnitudes of the keys are reduced so that each key is
bounded bym2. Then the input set is split into a number of subsets until each subset
size is less than 3 (or any other predefined constant). For these subsets minimal
perfect hash functions are generated. The author proves in [Win90a] that the struc-
ture requires O(m logm log logm) bits, and can be constructed in O(m2 log logm)
time. The evaluation of such a constructed hash function takes O(log logm) +O(1)
operations. The method certainly improves on the technique presented in [Win90b],
but its space and time requirements make it rather unattractive.

2.3 Perfect hash functions with segmentation

Sprugnoli [Spr77], for sets larger than about 12 elements, suggested the distribution
of keys into smaller sets be done by using an ordinary, first-stage hash function which
hashes keys into buckets. For all keys in a bucket, a perfect hash function is generated
and its description is stored in the bucket. With this approach, Sprugnoli was able
to generate a minimal perfect hash function for the 31 most common English words.

Segmentation requires two probes, one to determine the bucket and obtain the
information for the second hash function for that bucket, and a second to access
the table location containing the key. But it offers an advantage: the perfect hash
function is constructed for small subsets, thus significantly improving the chance of
success.

Fredman, Komlós and Szemerédi [FKS84] described another segmentation based
method for generation of a perfect hash function for integer keys. They assumed that
the input setW is a subset of a universe U , U = {1, . . . , u−1} where u is a prime. By
careful choice of parameters they showed how to generate a perfect hash function of
size 13m in expected linear time. They also showed how to generate a function of size
6m in O(m3 log u) deterministic time, improved to O(m3+m logm log log u) random
time by Mehlhorn [Meh84]. Jackobs and van Emde Boas [JvEB86] reduced the space
requirement of the FKS scheme to O(log log u+m log logm)-bits, while maintaining
O(1) access time. Slot and van Emde Boas [SvEB84] showed that a variation of the
FKS-scheme can be made space optimal, i.e. stored in O(log log u+m) space, at a
cost ofO(m) evaluation time. Finally, Sis and Siegel [SS90b] using a nontrivial coding
showed how to implement the FKS scheme in optimal space, with O(1) evaluation
time. The last three methods are for the most part of theoretical importance only, as
they are hard to implement and constants associated with the evaluation of the hash
functions are prohibitive. A similar scheme, which allows both insertion and deletion
of keys proposed by Cormack, Horspool and Kaiserswerth [CHK85] uses m + O(1)

space, but may require O
(

mm

(m−1)!

)

time to construct a perfect hash function.
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Another method is due to Du, Hsieh, Jea and Shieh [DHJS83]. It is based on
rehashing and segmentation. (However Lewis and Cook [LC88] indicate it has four
serious drawbacks.) Yang and Du [YD85] modified the approach by introducing a
backtrack search to enhance the success rate. They indicated substantial improve-
ment in performance over the previous solution. However, for sets with more than
50 keys the probability of success even for this method tends rapidly to 0.

2.4 Algorithms based on restricting the search space

Cichelli [Cic80] presented a simple heuristic method for generating hash functions
for sets of character keys. His hash function is h(w) = length(w) + g(w[1]) +
g(w[length(w)]), where function g is a parameter of the hash function. Building
the hash table requires determining a function g to make h(w) a minimal perfect
hash function. This is done by exhaustive search with backtracking, which is sped
up by considering the keys in such an order that backtracking is avoided as much as
possible.

Cichelli’s method is simple and efficient. Unfortunately, mainly because of the
exponential time for the searching step, the algorithm works well only when the set of
words is fairly small. A Monte Carlo study of Cichelli’s method [BF83] showed that
the probability of generating a minimal perfect hash function tends quickly to 0 for
m > 30. Several attempts have been made to overcome these drawbacks, including:
Cook and Oldehoeft [CO82]; Cercone, Boates and Krause [CBK85]; Haggard and
Karplus [HK86]; Brian and Tharp [BT89]; Gori and Soda [GS89]. However all of
these work well only for relatively small sets.

Sager [Sag85], in an optimization of Cichelli’s method, presented the mincycle

algorithm for generating minimal perfect hash functions. Sager introduced better
mapping functions and proposed a quite effective ordering heuristic which, for certain
parameters of the hash function, may guarantee polynomial average time behavior
of the searching step. The pseudo-random mapping functions “seem to work well”
for sets of up to several hundred keys. However experiments show that for larger
sets they are impractical, as they fail to map distinct keys differently. Sager did
not give a general scheme for choosing mapping functions if those provided fail. His
ordering heuristic uses a dependency graph, Gd, to represent dependencies between
hash values of keys. With a graph theoretical approach, the ordering step tries
to choose a sequence of the keys which minimizes the amount of backtracking in
the searching step. The ordering heuristic is not necessarily optimal, but performs
reasonably well in most cases.

Based on experimental results, Sager claimed his algorithm runs in O(m4) time.
He gave no proof of this claim but mentioned a formal proof which shows that,
for certain parameters for which the running time of the algorithm is O(m6), the
ordering step can always be expected to dominate the searching step. The mincycle
algorithm certainly improves on Cichelli’s method, but experimental evidence shows
that it is impractical for sets with more than about 500 words. This limitation is
addressed in subsequent improvements whose structure is similar to the mincycle
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algorithm, with enhancements to each step making them applicable for much larger
sets.

Fox, Heath and Chen [FHC89] and Fox, Heath, Chen and Daoud [FHCD92] made
effective use of randomness and introduced more complicated mapping functions
which are guaranteed to work. They observed that the average degree of the vertices
in the dependency graph is low and suggested a faster technique for selecting words
by choosing vertices according to degree. Their ordering technique is much faster
than that used by Sager but the quality of ordering, measured with respect to the
amount of backtracking executed in the searching step, is worse. The backtracking
is then effectively reduced by introducing a randomness in the exhaustive search.

The searching step of the algorithm differs slightly from that proposed by Sager,
but from an algorithmic point of view it has similar characteristics. Fox, Heath and
Chen generated minimal perfect hash functions for sets with up to 420000 words.
(Their algorithm took 1624 seconds on a Sequent Symmetry for 420878 words.) Also
based on experimental results, they asserted that the searching step requires O(m)
time on average to complete its task. As the ordering step needs O(m logm) time,
they claimed that their algorithm runs in O(m logm) expected time. In [FHCD92],
because of a small factor associated with the m logm term in the ordering step, they
made a claim that the algorithm runs in “practically” O(m) time. Nevertheless, in a
strict mathematical sense the ordering step has O(m logm) time complexity. There
is no strong theoretical evidence that the searching step has the claimed expected
linear time complexity. Moreover there are classes of dependency graphs for which
the algorithm will fail, although the probability of generating such a graph is very
small.

Independently, Czech and Majewski [CM92] proposed a different modification
of the mincycle algorithm. They observed that the output of the ordering step
may be viewed as a spanning tree T of Gd. The spanning tree is built so that
the total length of fundamental cycles L(T ) is minimized, so they have to search
for a spanning tree that generates fundamental cycles with minimum length. Un-
fortunately, this problem is known to be NP-complete [DPK82], but Deo, Prabhu
and Krishnamoorthy discussed some approximate solutions. Based on those ideas,
Czech and Majewski developed a heuristic method which gives a lower L(T ) value
for Gd. After a spanning tree is built, an ordering procedure is executed. At each
step it selects a word for which the corresponding edge lies on a maximal number of
shortest fundamental cycles of Gd with respect to T . This technique, much faster
than the one introduced by Sager, finds an ordering of the keys with virtually the
same quality as Sager’s. Czech and Majewski also modified the searching step by
introducing backtrack pruning. The time complexity of the ordering step is O(m2)

and can be reduced to O
(

L(T )2

m logm
)

. As the ordering step always dominated the

searching step, they claimed that its complexity determines the time complexity of
the algorithm.

This method, like Fox, Chen and Heath’s solution, reduces the time complexity
of the mincycle algorithm. Czech and Majewski generated minimal perfect hash
functions for sets with up to 32768 words, in times which compared favorably.
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However, in this case too, there is no mathematical proof given that the expected
time complexity of the searching step is bounded by a polynomial function of m.

2.5 Algorithms based on sparse matrix packing

Recently two polynomial time algorithms based on sparse matrix packing have been
proposed. The main idea is that, once we have two selector functions α(w) and
ω(w) into integers such that the ordered pair (α(w), ω(w)) is unique for each key, a
very simple method can be used to construct a minimal perfect hash function. The
pair (α(w), ω(w)) is used to address entries in two-dimensional array. As each pair
points to a unique location, it is enough to store at this location the value of the hash
function for the associated key. Such a hash function may require O(m2) space. To
reduce the space requirements, a sparse matrix packing algorithm is used (compare
[Meh84, p. 108–118]). For a matrix with O(m) elements and O(m2) size there exist
several packing techniques which can compress it into linear space in O(m2) time.

Brain and Tharp [BT90] designed such an algorithm for generating a perfect
hash function with specific selector functions. They reported success with 5000
words chosen from the standard UnixTM dictionary. Another algorithm based on
sparse matrix packing was described by Chang and Wu [CW91]. Basically their
method differs from that of Brain and Tharp in the packing procedure. This method
may lead to slight improvement in packing, but requires a more complicated hash
function. As in the first method, the time complexity is O(m2).

3 Optimal solutions

In order to generate a minimal perfect hash function we first compute a special
kind of function from the m keys into a graph with n = O(m) vertices and m
edges. The special feature is that the resulting graph must be acyclic, a property
we achieve probabilistically. Then we refine this function (deterministically) to a
minimal perfect hash function. Note that this replaces the three step (Mapping,
Ordering, Searching) approach used in other algorithms by a two step process, which
is simpler to implement and to analyze. A version of the algorithm is presented in
[CHM92], in more detail.

The expected time for finding the hash function is linear in the number of keys.
The new algorithm, based on random graphs, finds minimal perfect hash functions
of the form:

h(w) =
(

g(f1(w)) + g(f2(w))
)

mod m

where fi : W → {0, . . . , n − 1} and g : {0, . . . , n − 1} → {0, . . . ,m − 1}. The
fi functions are auxiliary hash functions selected from a class of universal hash
functions. Function g is implemented as a table lookup. Consequently the evaluation
time depends on how quickly the auxiliary functions can be computed. We will see
that it can be done in fast constant time.

Consider the following problem. For a given undirected graph G = (V,E), |E| =
m, |V | = n find a function g : V → [0,m−1] such that the function h : E → [0,m−1]
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defined as:
h
(

e = {u, v} ∈ E
)

=
(

g(u) + g(v)
)

mod m

is a bijection. In other words, we are looking for an assignment of values to vertices
so that, for each edge, the sum of values associated with its endpoints modulo the
number of edges is a unique integer in the range [0,m− 1].

This problem is not always solvable if arbitrary graphs are considered. Easy
examples are complete graphs on 8k + 5, k ≥ 0 vertices, K8k+5, or unicyclic graphs
on 4k + 2 vertices, C4k+2, for k > 0. However, if the graph G is acyclic, a very
simple procedure can be used to find values for each vertex, as follows. Associate
with each edge e a unique number h(e) ∈ [0,m−1], in any order. For each connected
component choose a vertex v. For this vertex set g(v) to 0. Traverse the graph using
a depth-first search (cf. [Tar72]) (or any other regular search on a graph), beginning
with vertex v. If vertex w is reached from vertex u, and the value associated with
the edge e = {u,w} is h(e), set g(w) to (h(e) − g(u)) mod m. Apply this method
to each component of G. (Notice that we have reversed our original problem, by
defining the values of the function h first and then searching for suitable values for
function g.)

To prove the correctness of the method it is sufficient to show that the value of
function g is computed exactly once for each vertex. This property is clearly fulfilled
if G is acyclic. The solution to this graph problem becomes the second part of our
algorithm for generating the minimal perfect hash function, called the assignment
step, and is achieved in deterministic linear time.

Now we are ready to present an algorithm for generating a minimal perfect
hash function. The algorithm comprises two steps: mapping and assignment. In
the mapping step the input set is mapped into a graph G = (V,E), where V =
{0, . . . , n − 1}, with n determined later, E = {{f1(w), f2(w)} : w ∈ W}, and fi :
U → {0, . . . , n − 1}. The step is repeated until graph G is acyclic. Once this has
been achieved the assignment step is executed. Generating a minimal perfect hash
function is reduced to the assignment problem as follows. As each edge e = {v1, v2} ∈
E corresponds uniquely to some key w, such that fi(w) = vi, 1 ≤ i ≤ 2, the search for
the desired function is straightforward. We simply set h(e = {f1(w), f2(w)}) = i− 1
if w is the i-th word of W , yielding the order preserving property. Then values of
function g for each v ∈ V are computed by the assignment step, which solves the
assignment problem for G. The function h is an order preserving minimal perfect
hash function for W .

To complete the description of the algorithm we need to define the mapping
functions fi. Ideally the fi functions should map any key w ∈W randomly into the
range [0, n−1]. Total randomness is not efficiently computable, however the situation
is far from hopeless. Limited randomness is often as good as total randomness
[CW79a, CW79b, KU86, SS89, SS90a]. A suitable solution comes from the field
originated by Carter and Wegman [CW77] and called universal hashing. A class of
universal hash functionsH is a collection of generally good hash functions from which
we can easily select one at random. For most classes suggested in the literature the
selection is a simple (quasi-random) generation of a few, usually numeric, parameters
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which completely characterize any member of H. A class is called k universal if any
member of it maps k or less keys randomly and independent of each other. Carter
and Wegman [CW79a] suggested a polynomial class of universal hash functions,
Hdn = {fa : U → {1, . . . , n}, a = (a0, a1, . . . , ad) ∈ U

d+1} where

fa(w) =

(

d
∑

i=0

aiw
i mod u

)

mod n.

To select a member of Hdn we need to generate d+ 1 random numbers in the range
[0, u− 1]. Carter and Wegman prove that Hdn is (d+1)-universal. (For the purposes
of our method we require u to be greater than n.)

An alternative class R(t, n, d), in some senses more random than Hdn, was in-
troduced and analyzed by Dietzfelbinger and Meyer auf der Heide [DM90]. Here
R(t, n, d) = {f : U → {0, . . . , n − 1}, f = f(φ, ψ, b1, . . . , bt) for some ψ ∈ Hdt ,
φ ∈ Hdn, b1, . . . , bt ∈ {1, . . . , n}}, and f = f(φ, ψ, b1, . . . , bt) is defined by

f(w) =
(

φ(w) + bψ(w)
)

mod n.

This class is (d + 1)-universal, as well, but if t = mδ, 0 < δ < 1, many of its
probability bounds are the same as for random functions (cf. [DM90]). Another class,
FM,G, using explicit and randomized constructions of expanders, was suggested by
Siegel [Sie89] (expanders are defined and discussed in [Bol85, Chapter 13]). Siegel’s
functions need linear space and construction time and constant evaluation time, if
the universe has size mk for some constant k. A drawback is that both evaluation
time, construction time and space contain a factor exponential in k. Finally, in 1992
Dietzfelbinger, Gil, Matias and Pippenger [DGMP92] proved that polynomials of
degree d ≥ 3 are reliable, meaning that they perform well with high probability.
An advantage that this class offers is a compact representation of functions, as each
requires only O(d log u) bits of space. Any of the above specified classes can be used
for our purposes. Our experimental results indicate that polynomials of degree 3
or the class defined by Dietzfelbinger and Meyer auf der Heide [DM90] are the best
choices.

The above suggested classes perform quite well for integer keys. Character keys
however are more naturally treated as sequences of characters. For that reason we
define one more class of universal hash functions, Cn, designed specially for character
keys. (This class has been used by others including Fox, Heath, Chen and Daoud
[FHCD92].) We denote the length of the key w by |w| and its j-th character by w[j].
A member of this class, a function fi : Σ

∗ → {0, . . . , n− 1} is defined as:

fi(w) =





|w|
∑

j=1

Ti(j, w[j])



 mod n

where Ti is a table of random integers modulo n for each character and for each
position of a character in a word. Selecting a member of the class is done by selecting
(at random) the mapping table Ti. The class is analyzed in the next section.
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By treating each character w[j] as a number we obtain an equivalent class, where
fi is defined as:

fi(w) =





|w|
∑

j=1

Ti(j)× w[j]



 mod n.

These can be stored in somewhat less space at the expense of greater time for
hash function evaluation on common machine architectures (since table lookups are
replaced by multiplications). In fact we can characterize suitable functions by as
little as one random number, at the expense of greater computation time. However,
as we shall see, our space requirements are dominated by the space for storing the
function g, so this hardly seems worthwhile.

The above defined classes allow us to treat character keys in the most natural
way, as sequences of characters from a finite alphabet Σ. However this approach
has an unpleasant theoretical consequence. For any fixed maximum key length L,
the total number of keys cannot exceed

∑L
i=1 |Σ|

L = |Σ|(|Σ|L − 1)/(|Σ| − 1) ∼ |Σ|L

keys. Thus either L cannot be treated as a constant and L ≥ log|Σ|m = Ω(logm)
or, for a fixed L, there is an upper limit on the number of keys. In the former
case, strictly speaking, processing a key character by character takes nonconstant
time. Nevertheless, in practice it is often faster and more convenient to use the
character by character approach than to treat a character key as a binary string.
Other hashing schemes use this approach, asserting that the maximum key length
is bounded (for example [Sag85, HK86, Pea90, FHCD92]). This is an abuse of the
RAM model [AHU74, pp. 5–14], however it is a purely practical abuse. Notice that
in the RAM model we assume that we can multiply, divide, etc. two numbers b
bits long in constant time. However this is only true if b is bounded by a constant.
Otherwise we need at least O(b) time to compute the result. Hence there is an
intrinsic connection between the uniform cost measure in the RAM model and the
assumption that processing strings character by character takes constant time. We
make this assumption, keeping in mind that it is a convenience that works in practice.
It can be avoided by use for character keys of the approach that we proposed earlier
in this section. This gives a theoretical validation of the claims we make. In practice
the schemes designed specially for character keys have superior performance.

To avoid self-loops, we modify the definition of f2. When it is computed, we
check if f2(w) = f1(w). If so, we set f2(w) = (f2(w) + r(f2(w))) mod n, where r
generates a “random” number in the range [1, n − 1], dependent on its argument.
For n = O(m) the size of g is O(n logm) bits, which is optimal for the class of
order preserving minimal perfect hash functions. To store the mapping functions
fi we need O(log u) bits if the fi’s are selected from Hdn, O(mδ logn + log u) bits if
fi ∈ R(m

δ, n, d), O(αnε) bits, for fixed ε < 1 and α depending on u, if fi ∈ FM,G

and O(|Σ|L logn) bits if fi ∈ Cn. In any of the above cases the size of a program
that evaluates the hash function does not exceed O(m logm+ log u) bits. The log u
factor is not optimal. To obtain the optimal space complexity we need to reduce
the size of the universe. The reduction is based on [FKS84, Lemma 2]. By [FKS84,
Lemma 2] there exists a prime q < m2 log u that does not divide any key in W ,
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and that separates these elements into distinct residue classes modq. The number
of bits required by a binary representation of q is clearly O(logm+ log log u). Now
the keys in W are bounded by m2 log q and W ⊆ U ′ = {0, . . . , u′ = m2 log q − 1}.
Consequently, the log u′ factor is bounded by O(logm+ log log u) which is optimal.
Unfortunately this type of magnitude reduction may requireO(m2 log u) time. Hence
in practice we sacrifice space in order to gain time, especially since the log u term
dominates if and only if u = Ω(mm).

4 Complexity analysis

In this section we show that expected time complexity of the algorithm is linear in
the number of words. The proofs depend on analysis of random graphs, for which
[ER60, Bol85, Pal85] are references.

As the result of the technique used to generate edges of the graph there may
be some dependency among them. However, due to the large degree of randomness
introduced by the mapping functions, the assumption that the graphs are generated
uniformly at random should give quite accurate results, especially since our graphs
are quite sparse. We henceforth make this assumption in our theoretical analysis,
referring to it as the uniformity assumption.

(For character keys this assumption applies as long as m¿ |Σ|L, where L is the
maximum key length. This is of course the situation in all practical contexts. If m
is close to |Σ|L there is no point in generating a minimal perfect hash function, as
(almost) all possible keys are present. In such a case the most efficient method is to
treat the keys as numbers and simply store them in the locations addressed by these
numbers.)

In each iteration of the mapping step, the following operations are executed:
(i) generation of tables of random integers; (ii) computation of values of auxiliary
functions for each word in a set; (iii) testing if the generated graph G is acyclic.
Operation (i) takes time proportional to the maximum length of a word in the set
W (times size of alphabet Σ, if two dimensional tables are used). For a particular
set and predefined alphabet this may be considered constant. Operations (ii) and
(iii) need O(m) and O(m+ n) time, respectively. Hence, the complexity of a single
iteration is O(m+ n).

Let p denote the probability of generating an acyclic graph with m edges and
n vertices, and for convenience let q = 1 − p. The probability of i iterations in
the mapping step is pqi−1. Let Y be a random variable, with probability density
function

f(y) =

{

pqy−1 for y > 0
0 otherwise

By standard probability arguments, the mean of Y , which is equal to the expected
number of iterations executed in the mapping step, is 1/p and its variance is q/p2.
Also, the probability that the number of iterations in the mapping step exceeds some
k is qk.

12



It remains to determine the threshold function for a random graph to be acyclic.
The notion of threshold functions was introduced by Erdös and Rényi [ER60]. They
used the following model to study the structural properties of random graphs. A
random graph with n vertices is given. At time 0 it has no edges in it, i.e. it has n
separate components, each being a single vertex. Then the graph gains new edges
at random, one at a time (hence the number of edges may be considered as time

elapsed since the beginning of the “life” of the graph). Depending on the method of
selecting edges we obtain slightly different models. Erdös and Rényi [ER60, ER61]
and Bollobás [Bol85] consider a model, called Gm, in which no graph may have self-
loops or multiple edges, where at time t an edge is selected from a pool of

(n
2

)

−(t−1)
edges without returning it to the pool. Flajolet, Knuth and Pittel [FKP89] analyze,
in addition to Gm, a model, named the uniform model, in which at time t a pair of
vertices {x, y} is generated, where x and y are uniformly distributed between 1 and
n, and all n2 pairs are equally likely. It is easy to observe that model Gm can be
derived from the uniform model by disregarding pairs in which x = y or those where
the edge {x, y} duplicates a previous edge. If we only reject pairs with x = y we
obtain a class of graphs with no self-loops, but allowed to have multiple edges, where
at time t an edge is selected from a pool of

(n
2

)

edges. In this context we introduce
model Gκm, where κ > 0 denotes the minimum length of a cycle in a random graph.
Naturally, model Gm is now identical to G3m while the uniform model is equivalent
to G1m.

While studying the evolution of random graphs, Erdös and Rényi discovered that
for a number of fundamental structural properties A there exists a function A(n),
tending monotonically to ∞ for n→∞, such that the probability that a graph has
property A tends to 1 if limn→∞m(n)/A(n) = ∞ and to 0 otherwise. The m(n)
term is the number of edges of the graph depending on n. Many threshold functions
for model G3m are given in [ER60], [Bol85] and [Pal85]. We present the analysis for
model G2m. First we prove the following lemma:

Lemma 1 Let Xk denote the number of cycles of length k. Let n = cm, for some

constant c. Then the expected number of cycles of length k is

E(Xk) =

(

n

k

)

(k − 1)!

2

m!
((n
2

)

− k
)m−k

(m− k)!
(n
2

)m

while the expected number of multiple edges is

E(X2) =
∑

2≤j≤m

(

n

2

)
((n
2

)

− 1
)m−j

(n
2

)m

(

m

j

)

Moreover, for k ≥ 2 and n→∞

E(Xk) ≤

(

2

c

)k 1

2k
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Proof. Consider initially only cycles. The total number of graphs with n vertices
and m edges in model G2m is

(n
2

)m
/m!. From k given vertices we can form 1

2(k − 1)!
cycles of order k. These k vertices can be selected in

(n
k

)

ways. The remaining m−k

edges can be arranged in
((n
2

)

− k
)m−k

/(m− k)! ways. By the above argument the

total number of graphs containing a cycle of length k is
(n
k

) (k−1)!
2

((n
2

)

− k
)m−k

/(m−
k)!. Dividing by the number of graphs gives us the first part of the lemma.

For large n we observe that
(n
k

)

≤ nk/k!,
(n
2

)

≈ n2/2 = cnm/2 and m!
(m−k)! ≤ m

k.
Also

((n
2

)

− k
)m−k

(n
2

)m =

(

1− k

(n
2
)

)m

(n
2

)k
(

1− k

(n
2
)

)k
≤

(

n

2

)−k

Making the appropriate substitutions in the formula for E(Xk) proves the lemma
for k > 2.

Now consider multiple edges. This case can be reduced to a classic and well
understood problem, the occupancy problem (cf. [Fel68]). It asks for the probability
pj that a specified urn contains exactly j balls out of m randomly distributed
among N urns. The answer, an instance of the binomial distribution, is pj =
(m
j

)

1
Nj

(

1− 1
N

)m−j
. In our case we have N =

(n
2

)

urns, corresponding to all possible

edges in a graph, m balls, corresponding to actual edges, and j is the number of
edges that comprise a single multiple edge. The expected number of such edges, for
j ≥ 2 is E(uj) = Npj . Hence E(X2) =

∑

2≤j≤mE(uj).

To obtain the second part of the lemma we notice that N
Nj

(

1− 1
N

)m−j
≤ 1

Nj−1

and N ≈ cmn/2, and consequently:

E(uj) = N

(

m

j

)

1

N j

(

1−
1

N

)m−j

≤

(

m

j

)

1

N j−1

≤
mj

j!

(

2
c

)j

2mjnj−2j!

=

(

2

c

)j 1

2j!nj−2

It is easy to see that for c ≥ 2 and j ≥ 3, lim
n→∞

E(uj) = 0. Hence for n → ∞ the

expected number of multiple edges is equal to

E(X2) = E(u2) =

(

1−
1
(n
2

)

)m−2 (m
2

)

(n
2

) ≤

(

2

c

)2 1

2× 2
=

1

c2
.

2
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Theorem 2 Let G be a random graph in model G2m with n = cm vertices, for some

constant c > 0. Then

lim
n→∞

P (Xk = j) =
λjke

−λk

j!

where

λk = lim
n→∞

E(Xk) =

(

2

c

)k 1

2k

Proof. By Lemma 1 and [ER60, Theorem 3a]. 2

Corollary 3 Let m = cm, for some constant c > 2. Then the probability that a

random graph G in model G2m is acyclic, for n→∞, is

p = exp



−
∑

k>1

lim
n→∞

E(Xk)



 .

Proof. This follows from Theorem 2 by setting j = 0 and summing over all k’s. 2

Corollary 4 Let G be a random graph in model G2m with n vertices and m edges.

Then if n = cm holds with c > 2 the probability that G is acyclic, for n→∞, is

p = e1/c
√

c− 2

c
.

Proof. To prove the corollary we need to evaluate the sum:

∑

k>1

lim
n→∞

E(Xk) =
∑

k>1

1

2

(

2
c

)k

k

We denote 2
c by a. Thus we have

∑

k>1

lim
n→∞

E(Xk) =
1

2

∑

k>1

ak

k

=
1

2

∫

d

da





∑

k>1

ak

k



 da

=
−a

2
+

1

2
ln

(

1

1− a

)

=
−1

c
+

1

2
ln

(

c

c− 2

)
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Hence we compute the probability p of an acyclic graph, for c > 2:

p = exp



−
∑

k>1

lim
n→∞

E(Xk)





= exp

(

1

c
− ln

√

c/(c− 2)

)

= e1/c
√

c− 2

c
.

2

Corollary 5 The expected complexity of the probabilistic algorithm if n = cm, c > 2,
is Θ(m). The average number of iterations is e−1/c

√

c
c−2 .

Remark. This corollary relies on the uniformity assumption. To avoid it one must
prove that graphs generated by the algorithm possess some characteristics of truly
random graphs. Unfortunately, the question of providing a list of properties for
graphs, so that the list can be used to prove “quasi-randomness” has been settled
only for dense graphs [CGW89]. For sparse graphs it is still an important open
problem. It is however possible to prove that the above defined mapping functions
generate “quasi-random” graphs for m = O(n2).

In the case when u = O(n), that is the magnitude of keys is comparable with the
magnitude of values kept in array g we may use a simple technique to reduce the
storage requirements of the hash function. We may notice that array g has at most
2m entries occupied, as there can be only 2m distinct vertices. We extend the g array
so than it can hold 3m integers and use its unused entries to keep the keys. The
degrees of vertices in a random graph are binomially distributed, with parameters
2m and pd = 1/n [Pal85, Chapter 3]. As m tends to infinity the distribution can
be approximated by the Poisson distribution, and the number of vertices of degree
0 (i.e. unused locations) is

nP
(

dg(v ∈ V ) = 0
)

→
e−2mpd(2mpd)

0

0!
≈ cm× e−2/c

As a result we can expect to fit all m integers into unused locations of array g for
c > 2.345.

In both cases, for character and for integer keys, the form of the hash function can
be changed to h(w) = g(f1(w))⊕g(f2(w)), where ⊕ denotes exclusive or. This gives
a slight improvement in speed of generation and evaluation of the hash function.
We can speed-up the algorithm even further by early detection of cycles. One
possible method is to use a set union algorithm [TVL84]. There are several set
union algorithms with the worst-case complexity O(n+mα(n, n)), where α(n, n) is
a functional inverse of Ackermann’s function. This gives us a theoretically inferior
solution. However, as pointed out in [TVL84] “for all practical purposes, α(m,n) is a
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constant no larger than four.” In fact α(n, n) ≤ 4 if n ≤ 22
...

2

, with fifteen 2’s in the
exponent. Moreover, linear time performance of set union algorithms is expected on
the average [KS78, BS85, Yao85]. The benefit we get is that unsuccessful attempts
are interrupted as soon as possible. We have observed that this type of solution
indeed gives better performance of the algorithm, especially for c close to 2.

5 Experimental results

In order to verify the soundness and applicability of the theoretical model we carried
out a set of more than 10000 experiments. The new algorithm, without any specific
improvements, was implemented in the C language. All experiments were carried
out on a Sun Sparc station 2, running under the SunOStm operating system. We
ran separate experiments for integer and character keys. We looked at both random
keys and nonrandom keys, with the nonrandom keys selected to provide what might
be adverse cases for the algorithm.

For integer keys the results are presented in Table 1. The mapping functions fi,
1 ≤ i ≤ 2 were selected from class H3n. Each row in the table represents the average
taken over 250 experiments.

m iterations mapping assignment total iterations
(c = 2.1) random keys seconds seconds seconds nonrandom keys

1024 2.350 0.116 0.018 0.133 2.525
2048 2.515 0.244 0.033 0.277 2.365
4096 2.605 0.497 0.065 0.563 2.540
8192 2.295 0.907 0.131 1.038 2.630

16384 2.555 1.952 0.270 2.222 2.730
32768 2.625 3.978 0.553 4.530 2.850
65536 2.950 8.899 1.116 10.015 2.944

131072 2.800 16.921 2.240 19.161 2.708
262144 2.995 35.494 4.496 39.990 2.660
524288 2.750 64.944 9.011 73.955 2.976

Table 1: Experimental results for integer keys.

Entries in the five leftmost columns of the table were generated as follows: for
each specified m (number of keys) 250 random keys were selected. In a single exper-
iment m integer keys were randomly selected from the universe U = {0, . . . , 231−2}.
The table entries represent the averages over these 250 trials. The values of iterations,
mapping, assignment and total are average number of iterations in the mapping
step, time for the mapping step, time for the assignment step and total time for the
algorithm, respectively. The theoretical predictions fully agree with the experimental
data. The rightmost column is discussed below.
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The results for character keys treated as sequences of characters from the 26-
letter lower-case English alphabet are summarized in Table 2. Words were chosen
from 24692 words in a dictionary. The dictionary was obtained by removing from
the standard Unix dictionary all words shorter than 3 characters, longer than 18
characters or containing characters other than letters. For each experiment the words
were selected using shuffling [Knu73]. For m > 24692, artificial sets of random words
were generated.

m iterations mapping assignment total iterations
random keys seconds seconds seconds nonrandom keys

c=2.1 c=2.22

1024 2.248 0.068 0.016 0.085 2.092
2048 2.540 0.134 0.030 0.164 2.228
4096 2.536 0.246 0.056 0.302 1.916
8192 2.828 0.526 0.123 0.650 2.080

16384 2.620 0.972 0.255 1.227 2.284
24692 2.880 1.565 0.392 1.958 2.248
32768 2.660 2.109 0.529 2.638 2.300
65536 2.700 4.189 1.067 5.256 2.232

131072 2.824 8.582 2.148 10.730 2.544
262144 2.868 18.022 4.620 22.642 2.472
524288 2.756 33.448 8.563 42.011 2.608

1048576 2.711 64.402 17.179 81.581 2.348

Table 2: Experimental results for character keys.

The reason for focussing on this method is its better performance in practical
situations, with realistically sized alphabets and key lengths. Notice that computing
two polynomials of degree 3 takes substantial time, about twice as much as evaluating
two functions from class Cn.

For both integer and character keys we carried out ‘torture tests’. Random sets of
keys were replaced by sets of m successive keys, with the first key chosen randomly.
In the case of character keys the key length was set to the minimum required length.
As for the random sets, the average over 250 experiments was computed. The results
are shown in the rightmost column of each table, with only the average number of
iterations in the mapping step listed.

In the case of integer keys the theoretical predictions were again confirmed.
However for the class Cn we observed a deterioration in performance. The closer
c was to 2 the bigger the difference between the model and the observed number of
iterations. However for alphabets with more than 4 symbols the observed averages
never exceeded more than twice the model means.

With character keys and the class Cn there are some obvious dependencies in the
functions evaluated, especially for small alphabets and c close to 2. The theoretical
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model does not well reflect this situation and we do not recommend the character key
method in these circumstances. Our general recommendation is that the character
method is preferable when the alphabet size exceeds the length of the strings.

6 Conclusions

We have described and analyzed a practical method for generating order preserving
minimal perfect hashing functions which is optimal. Since it is order preserving the
keys may be arbitrarily arranged in the hash table, a property which may be useful
in some applications. Theoretical analyses based on random graphs and practical
evidence show that the expected time taken to generate the function is linear in
terms of the size of the set. The space required for generation and evaluation is
almost linear (but the nonlinear component may be ignored in practical application).
Evaluation of the hash function is done in fast, constant time, involving little more
than two standard hashes.
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