98. Triangles with integer sides

It is well–known [1–6] that the number T_n of triangles with integer sides and perimeter n is given by

$$
T_n = \begin{cases} \langle (n+3)^2/48 \rangle & \text{if } n \text{ is odd} \\ \langle n^2/48 \rangle & \text{if } n \text{ is even} \end{cases}
$$

where $\langle x \rangle$ is the integer closest to x.

The object of this note is to give as quick a proof of this as I can.

We prove

Lemma 1.

The number S_n of scalene triangles with integer sides and perimeter n is given for $n \geq 6$ by

$$
S_n = T_{n-6}.
$$

Proof: If $n = 6, 7, 8$ or 10, both are 0. Otherwise, given a scalene triangle with integer sides $a < b < c$ and perimeter n, let $a' = a - 1$, $b' = b - 2$, $c' = c - 3$. Then a', b', c' are the sides of a triangle of perimeter $n - 6$. Moreover, the process is reversible. The result follows.

Corollary.

$$
T_n - T_{n-6} = I_n,
$$

where I_n denotes the number of isosceles (including equilateral) triangles with integer sides and perimeter n.

Lemma 2. If $n \geq 1$

$$
I_n = \begin{cases} (n-4)/4 & \text{if } n \equiv 0 \pmod{4} \\ (n-1)/4 & \text{if } n \equiv 1 \pmod{4} \\ (n-2)/4 & \text{if } n \equiv 2 \pmod{4} \\ (n+1)/4 & \text{if } n \equiv 3 \pmod{4} . \end{cases}
$$

Proof: If $n = 1$, 2 or 4, $I_n = 0$. Otherwise, if $n \equiv 0 \pmod{4}$, write $n = 4m$. The isosceles triangles with integer sides and perimeter n have sides

 $\{2, 2m-1, 2m-1\}, \{4, 2m-2, 2m-2\}, \cdots, \{2m-2, m+1, m+1\}.$

Thus there are $m-1$ such triangles, and $I_n = m-1 = (n-4)/4$. The other three cases are similar.

Typeset by $\mathcal{A}\mathcal{M}$ S-TEX

1

Lemma 3. For $n\geq 7$

$$
I_n + I_{n-6} = \begin{cases} (n-6)/2 & \text{if } n \text{ is even} \\ (n-3)/2 & \text{if } n \text{ is odd.} \end{cases}
$$

Proof: Suppose $n \equiv 0 \pmod{4}$. Then $n-6 \equiv 2 \pmod{4}$, $I_n = (n-4)/4$, $I_{n-6} = (n-8)/4$ and $I_n + I_{n-6} = (n-6)/2$. If $n \equiv 2 \pmod{4}$, $n - 6 \equiv 0 \pmod{4}$, $I_n + I_{n-6} = (n-2)/4 + (n-10)/4 = (n-6)/2$. So if *n* is even, $I_n + I_{n-6} = (n-6)/2$. The case n odd is similar.

Lemma 4. For $n \geq 12$

$$
T_n - T_{n-12} = \begin{cases} (n-6)/2 & n \text{ even} \\ (n-3)/2 & n \text{ odd.} \end{cases}
$$

Proof:

$$
T_n - T_{n-6} = I_n, \quad T_{n-6} - T_{n-12} = I_{n-6}, \quad T_n - T_{n-12} = I_n + I_{n-6}.
$$

Lemma 5. Let $f(n)$ be defined by

$$
f(n) = \begin{cases} n^2/48 & n \text{ even} \\ (n+3)^2/48 & n \text{ odd.} \end{cases}
$$

Then

$$
f(n) - f(n-12) = \begin{cases} (n-6)/2 & n \text{ even} \\ (n-3)/2 & n \text{ odd.} \end{cases}
$$

Lemma 6. Let $\delta_n = T_n - f(n)$. Then for $n \geq 12$

$$
\delta_n = \delta_{n-12}.
$$

Theorem.

$$
T_n = \langle f(n) \rangle.
$$

Proof: It is easy to check that $|\delta_n| \leq 1/3$ for $0 \leq n \leq 11$, so by Lemma 6, $|\delta_n| \leq 1/3$ for all n . The result follows.

Reference

[1] George E. Andrews, A note on partitions and triangles with integer sides, Amer. Math. Monthly 86(1979), 477.

[2] Michael D. Hirschhorn, Triangles with integer sides, revisited, this MAGAZINE 73(2000), 59–64.

[3] R. Honsberger, Mathematical Gems III, vol. 9, Dolciana Mathematical Expositions, Mathematical Association of America, Washington, DC, 1985.

[4] Tom Jenkyns and Eric Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly 107(2000), 634–639.

[5] J. H. Jordan, R. Welch and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly 86(1979), 686–689.

[6] Nicholas Krier and Bennet Manvel, Counting integer triangles, this MAGAZINE 71(1998), 291–295.

For the referee

