
214



Bayreuther Mathematische Schriften 49 (1999), 215-223

Enumeration of isometry-classes of linear

(n, k)-codes over GF (q) in SYMMETRICA

Fripertinger Harald

December 20, 1999

Abstract

Isometry classes of linear codes can be described as orbits of gener-
ator matrices, as it was shown by Slepian. The author demonstrates
how they can be enumerated using cycle index polynomials and the
tools already incorporated in SYMMETRICA, a computer algebra
package devoted to representation theory and combinatorics of sym-
metric groups and of related classes of groups.

1 Isometry classes of linear codes

A linear (n, k)-code over the Galois field GF (q) is a k-dimensional subspace
of the vector space Y X := GF (q)n, where n denotes the set {0, 1, . . . , n− 1}.
As usual codewords will be written as rows x = (x0, . . . , xn−1). A k × n-
matrix Γ over GF (q) is called a generator matrix of the linear (n, k)-code
C, if and only if the rows of Γ form a basis of C, so that C = {x · Γ

x ∈
GF (q)k}. Two linear (n, k)-codes C1, C2 are called equivalent , if and only
if there is an isometry (with respect to the Hamming metric) which maps
C1 onto C2. Using the notion of finite group actions (see [8]) one can
easily express equivalence of codes in terms of the wreath product action:
C1 and C2 are equivalent, if and only if there exist (ψ, π) ∈ GF (q)∗ o Sn ={

(ψ, π)
ψ ∈ (GF (q)∗)n, π ∈ Sn

}
(where GF (q)∗ denotes the multiplicative

group of the Galois field) such that (ψ, π)(C1) = C2.
The complete monomial group GF (q)∗ oSn of degree n over GF (q)∗ acts on
GF (q)n by the following definition:

GF (q)∗ o Sn ×GF (q)n → GF (q)n (ψ, π) ((xi)i∈n) =
(
ψ(i)xπ−1(i)

)
i∈n .
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In order to apply the results of the theory of finite group actions, this
equivalence relation for linear (n, k)-codes is translated into an equivalence
relation for generator matrices of linear codes, and these generator matrices
are considered to be functions Γ:n → GF (q)k \ {0} where Γ(i) is the i-
th column of the generator matrix Γ. (We exclude 0-columns for obvious
reasons.)

1.1 Theorem The matrices corresponding to the two functions Γ1 and
Γ2 from n to GF (q)k \ {0} are generator matrices of two equivalent codes,
if and only if Γ1 and Γ2 lie in the same orbit of the following action of
GLk(q)×GF (q)∗ o Sn as permutation group on (GF (q)k \ {0})n:

(A, (ψ, π))(Γ) = Aψ(·)Γ(π−1·),

or, more explicitly,

(A, (ψ, π))(Γ)(i) := Aψ(i)Γ(π−1(i)).

As a generalization of Slepian’s article [11] we show in [5] that, by using
Lehmann’s Lemma about actions of the wreath product, the generating
function for the numbers

Tnkq :=
∣∣(GLk(q)×GF (q)∗ o Sn)\\(GF (q)k \ {0})n

∣∣
can be computed by the following substitution into the cycle index of the
projective group PGLk(q) acting on the k − 1-dimensional projective space
PGk−1(q):

∞∑
n=0

Tnkqx
n = Z(PGLk(q))

∣∣
xi=
∑∞

j=0
xij

= Z(PGLk(q))
∣∣
xi=

1
1−xi

. (1)

Since the Tnkq can be interpreted as numbers of classes of k×n-matrices of
rank ≤ k the numbers Snkq, which are the numbers of isometry classes of
linear (n, k)-codes with no columns of zeros, satisfy

Snkq = Tnkq − Tn,k−1,q. (2)

Restricting our attention to codes with generator matrices Γ, such that
Γ̄ : n → PGk−1(q), Γ̄(i) := GF (q)∗(Γ(i)) is injective, we can derive the
numbers of isometry classes of ”injective” linear codes, obtaining

S̄nkq = T̄nkq − T̄n,k−1,q, (3)
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where the T̄nkq are computed by:

∞∑
n=0

T̄nkqx
n = Z(PGLk(q))

∣∣
xi=1+xi

. (4)

In [3] it is shown how the cycle index of PGLk(q) acting on PGk−1(q) can
be computed. This paper is a generalization of [11] and of Harrison [7, 6],
where the cycle indices of GLk(2) are computed. The idea for computing
these cycle indices is the following: First determine the conjugacy classes
in GLk(q), which can be done by using the theory of normal forms of ma-
trices. Then determine the number of elements in these conjugacy classes,
for instance by applying a very nice formula of Kung [9]. Finally com-
pute the cycle type of one representative of each class. (It is well known
that all elements in one conjugacy class are of the same cycle type.) These
formulae have been implemented into SYMMETRICA, so a C-program for
computing Sikq for i = k, . . . , n can be written in the following way:

INT S_nkq_maxgrad(n,k,q,f)
OP n,k,q,f;
{
OP c,d;
INT erg=OK;
c=callocobject();
d=callocobject();
erg+=T_nkq_maxgrad(n,k,q,c);
if (gt(k,cons_eins))
{
erg+=dec(k);
erg+=T_nkq_maxgrad(n,k,q,d);
erg+=inc(k);
erg+=sub(c,d,f);

}
else erg+=copy(c,f);
erg+=freeall(c);
erg+=freeall(d);
if (erg!=OK) return error(" in computation of S_nkq_maxgrad");
return erg;
}
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The program for the computation of the Tikq for i ≤ n is the following:

INT T_nkq_maxgrad(n,k,q,f)
OP k,q,n,f;
{
OP c,d;
INT erg=OK;
c=callocobject();
d=callocobject();
erg+=zykelind_pglkq(k,q,c);
erg+=numberofvariables(c,d);
erg+=co_polya3_sub(c,d,n,f);
erg+=freeall(c);
erg+=freeall(d);
if (erg!=OK) return error(" in computation of T_nkq_maxgrad");
return erg;
}

With the routine zykelind_pglkq(k,q,c) one can compute the cycle index
of PGLk−1(q) acting on the projective space PGk−1(q), and the routine
co_polya3_sub(c,d,n,f) computes the first part of degree ≤ n of the
substitution xi 7→

∑∞
j=0 x

ij in the polynomial c. Both these routines can
be found in the source file zykelind.c.

2 Indecomposable codes

In order to minimize the number of orbits that must be enumerated or rep-
resented, and following Slepian again, we can restrict attention to inde-
composable linear (n, k)-codes. Let C1 be a linear (n1, k1)-code over GF (q)
with generator matrix Γ1 and let C2 be a linear (n2, k2)-code over GF (q)
with generator matrix Γ2, then the code C with generator matrix

Γ :=
(

Γ1 0
0 Γ2

)
is called the direct sum of the codes C1 and C2, and it will be denoted by
C = C1⊕C2. A code C is called decomposable, if and only if it is equivalent
to a code which is the direct sum of two or more linear codes. Otherwise it
is called indecomposable.
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Since there are some errors in Slepian’s table of the numbers of isome-
try classes of indecomposable (n, k)-codes, denoted by Rnkq or R̄nkq, the
following theorem is proved in [5]:

2.1 Theorem The number Rnkq is equal to

Snkq −
∑
a

∑
b

n−1∏
j=1
aj 6=0


∑

c=(c1,...,caj )∈IN
aj

j≥c1≥...≥caj≥1,
∑

ci=bj

U(j, a, c)

 , (5)

where

U(j, a, c) =
j∏
i=1

Z(Sν(i,aj ,c))
∣∣
x`=Rjiq

, ν(i, aj , c) =
∣∣{1 ≤ l ≤ aj

cl = i
}∣∣ ,

and where the first sum is taken over the cycle types a = (a1, . . . , an−1) of
n, (which means that ai ∈ IN0 and

∑
iai = n) such that

∑
ai ≤ k, while

the second sum is over the (n − 1)-tuples b = (b1, . . . , bn−1) ∈ INn−1
0 , for

which ai ≤ bi ≤ iai, and
∑
bi = k. In the same way the R̄nkq can be

computed from the S̄nkq. The numerical results show that for fixed q and n
the sequence of Rnkq is unimodal and symmetric. (It is easy to prove that
this sequence must be symmetric, but the proof of the unimodality is still
open.)

This formula is implemented in SYMMETRICA as well. For instance for
computing the tables of Snkq and Rnkq one can use the next program:

INT co_all_codes()
{
OP n,k,q,R,S;
INT i,j;
INT erg=OK;
n=callocobject();
k=callocobject();
q=callocobject();
S=callocobject();
R=callocobject();
erg+=printeingabe("maximum value of n=? ");
erg+=scan(INTEGER,n);
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erg+=printeingabe("maximum value of k=? ");
erg+=scan(INTEGER,k);
erg+=printeingabe("q=? ");
erg+=scan(INTEGER,q);
erg+=all_codes(n,k,q,S,R);
erg+=println(S);
erg+=println(R);
erg+=freeall(n); erg+=freeall(k); erg+=freeall(q);
erg+=freeall(S); erg+=freeall(R);
if (erg!=OK) return error(" in computation of co_all_codes");
return erg;
}

The routine all_codes(n,k,q,S,R) first computes the numbers Tijq for
1 ≤ i ≤ n and 1 ≤ j ≤ k by (1), then the Sijq by (2) and finally the Rijq
by (5). For computing the numbers of classes of injective linear (n, k)-codes
by (3), (4) and (5) there is the routine all_inj_codes(n,k,q,S,R). The
following tables for q = 8, n ≤ 15 and k ≤ 4 were computed using these two
routines:

Table 1: Number of isometry classes of linear (n, k)-codes over GF (8)

n\k 1 2 3 4
1 1 0 0 0
2 1 1 0 0
3 1 2 1 0
4 1 4 3 1
5 1 6 9 4
6 1 13 43 21
7 1 20 252 282
8 1 38 1995 11897
9 1 63 16604 697905

10 1 108 132128 40.614006
11 1 172 986280 2187.942319
12 1 285 6.875894 108580.294923
13 1 438 44.880497 4.985498.095659
14 1 685 275.497100 212.944334.871779
15 1 1027 1597.384440 8503.509808.998891
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Table 2: Number of isometry classes of indecomposable linear (n, k)-codes
over GF (8)

n\k 1 2 3 4
1 1 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 2 1 0
5 1 4 4 1
6 1 10 33 10
7 1 17 231 231
8 1 34 1956 11596
9 1 59 16529 695614

10 1 103 131993 40.595108
11 1 167 986040 2187.791284
12 1 279 6.875485 108579.157553
13 1 432 44.879807 4.985490.082276
14 1 678 275.495976 212.944281.977581
15 1 1020 1597.382635 8503.509480.606942

Table 3: Number of isometry classes of injective linear (n, k)-codes over
GF (8)

n\k 1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 1 1 0
4 0 1 2 1
5 0 1 4 3
6 0 1 24 14
7 0 1 131 232
8 0 1 900 10507
9 0 1 6154 613247

10 0 0 38344 34.772483
11 0 0 217432 1812.280847
12 0 0 1119290 86639.601001
13 0 0 5.242484 3.818387.464701
14 0 0 22.449375 156.004956.091612
15 0 0 88.267837 5938.561168.433472



222 Fripertinger Harald

Table 4: Number of isometry classes of injective indecomposable linear
(n, k)-codes over GF (8)

n\k 1 2 3 4
1 1 0 0 0
2 0 0 0 0
3 0 1 0 0
4 0 1 1 0
5 0 1 3 1
6 0 1 23 9
7 0 1 130 207
8 0 1 899 10374
9 0 1 6153 612345

10 0 0 38343 34.766326
11 0 0 217432 1812.242500
12 0 0 1119290 86639.383565
13 0 0 5.242484 3.818386.345408
14 0 0 22.449375 156.004950.849125
15 0 0 88.267837 5938.561145.984095

In [5] there are tables of Rnkq and R̄nkq for q = 2, 3, 4, 5, 7. Tables of Snkq
can be found in [3, 4] and in the article of Wild [12], when interpreting
matroids as linear codes. Extensions of the tables given in [11] for the
binary case were evaluated by Lattermann in [10].
In her thesis [1], Arnold evaluated transversals of isometry classes of lin-
ear codes. Another implementation, due to Betten allowed to evaluate
representatives of all the isometry classes of indecomposable binary (n, k)-
codes for n ≤ 12 except for the case of n = 12 and k = 6. Use was made
of orderly generation in connection with isomorphism checking [2]. Details
will be given elsewhere.
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